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Introduction

Up to now, we discuss how to find the most plausible parameter value
after an observation x has been made. For example, the method
of maximum likelihood tries to assign that value of the parameter
which gives greatest probability to x. However, we should be ex-
tremely reluctant to believe that an estimate coincided with the true
parameter in all circumstances, and it is natural to ask how near the
true parameter we might expect an estimate to be. The very use of
the phrase how near implies that there is a metric on the parameter
space.

We may take the point of view that, when an observation has
been made, this observation divides the parameter set into two dis-
joint subsets: a plausible subset and an implausible subset; and
that what we really want to do, rather than to fix attention on a
particular parameter value as an estimate of the true parameter, is
to determine this plausible subset of parameter values. Then our
conclusion based on an observation would be, “The true parameter
is in such-and-such a subset of the set of possible parameters.” The
formalization of this idea leads to the problem of set estimation.

Example 3.1 Suppose that we have available a random sample
x = (x1,...,2,) from a normal distribution with unknown mean g
and unknown variance o2 and we wish to determine a plausible set
of values of p.

o Let @ = (u,0%) and let t(x,p) = /n(T — u)/s, where T =

n!'S! ziand 2= (n—- 1) (v — 7).

e Note that ¢(x, p) is distributed as Student’s ¢ with n—1 degrees
of freedom which does not depend on unknown 6.

e Without knowing what @ is, we can find a number ¢,/ such
that
PQ(_ta/2 S t(X, :U’) S ta/2) =1- «,

where « is a small preassigned number between 0 and 1.

e The above can be rewritten in the following form:

_ S — S
Pyl X —toyp—=<pu<X+ty—|=1—q.
”( SV /Wﬁ) )
It reads as Whatever the true value of ; may be, the
probability that the random interval

- S - S
[X _ta/2ﬁ1X+ta/2jﬁ]

contains this true value is 1 — a.



e For each given x, the interval

s s
T —tajo——=0 +ty/o——

a/Z\/ﬁ a/Z\/ﬁ
may be regarded as a plausible set of values of u, plausible in
the sense that we are 100(1 — «) per cent confident that this
set contains the true parameter value.

e The interval is called a confidence interval for u with confidence
coefficient 1 — .

e Do you note the difference between X and z?
e Think of the meaning of 1 — a.
Remarks:

e As o decreases, ./, increases, so that this 100(1 — «) per cent

confidence interval, corresponding to any given x, widens as «
decreases.
In other words. If we wish to have great confidence in a chosen
plausible interval, we must choose a larger interval than is nec-
essary if we are content to have less confidence in our chosen
interval.

e For fixed o and any given x, there is not a unique 100(1 — «)
per cent confidence interval for .
For example, we can choose two numbers ¢, and t,, such that
tia # —toq, and still have

Py{tia < t(x, 1)) < b} = 1—av

If we do so, then we are led by exactly the same argument to
the 100(1 — «) per cent confidence interval

_ S _ S
x_t2a 7:U_t1a

v v

In science, medicine, public policy, and indeed most human ac-
tivities, we are quite often to get a yes or no answer to important
questions. In one of Mendel’s famous experiments,

e He crossed peas heterozygous for a trait with two alleles, one
of which was dominant.

e The progeny exhibited approximately the expected ratio of one
homozygous dominant to two heterozygous dominants (to one
recessive).



e In a modern formulation, if there were n dominant offspring
(seeds), the natural model is to assume, if the inheritance ratio
can be arbitrary, that N4, the number of homozygous corre-
sponds to Hy : p = 1/3 with the alternative H; : p # 1/3.

As a further example, the graduate division of the University of
California at Berkeley attempted to study the possibility that sex
bias operated in graduate admissions in 1973 by examining admis-
sion data. In this case, what does the hypothesis of no sex bias
corresponds to? It is natural to translate this into

P[Admit|Male] = P[Admit|Female].

Example 3.2 Suppose that a new drug is being considered with
a view to curing a certain disease.

e The drug is given to n patients suffering from the disease and
the number r of cures is noted.

e We wish to test the hypothesis that there is at least a 50 — 50
chance of a cure by this drug based on the following data:

r cures among n patients.

e Put the problem in the following framework of statistical test:

— The sample space X is simple-it is the set {0,1,2,...,n}.

— The family { Py} of possible distributions on X is (assuming
independent patients) the family of binomial distributions,
parametrized by the real parameter # taking values in [0, 1].
f is being interpreted as the probability of cure.

— The stated hypothesis defines the subset 0y = [1/2,1] of
the parameter space.

— In this situation, only a small class of tests which seem
worth considering on a purely intuitive basis.
We will only consider those for which the set of x taken to
be consistent with O, have the form {z : z > k}

— Question: Does it make sense to consider that r cures out
of n patients were consistent with g, while r+1 were not?

— What is a reasonable test?



The Neyman-Pearson Theory

Now we provide a theoretical discussion on testing of statistical
hypotheses to resolve the difficulty stated in Example 3.2. Ney-
man and Pearson (1933) presented Neyman-Pearson Fundamental
Lemma which unfolded the various complex problems in testing sta-
tistical hypotheses. The basic mathematical framework is: a sample
space X and a family {Py : § € ©} of probability distributions on
X, labeled by a parameter § which ranges over a parameter space

O.

e A hypothesis is a statement which implies that the true proba-

bility distribution describing the inherent variability in an ob-
servational situation belongs to a proper subset of a family of
possible probability distribution.
Alternatively we may say that a hypothesis implies that the
true parameter 6 belongs to a proper subset of the parameter
space ©; and it is convenient to identify the hypothesis with
the subset, to talk about the hypothesis ©g, where ©, C O.

e The theory of hypothesis testing is concerned with the problem:
Is a given observation consistent with some stated hypothesis
or is it not?

e A statistical test of a hypothesis is a rule which assigns each
possible observation to one of two exclusive categories: consis-
tent with the hypothesis under consideration and not consistent
with the hypothesis.

Set-Up

e X: a sample from a population P in P
P: a family of population

e Test a given hypothesis Hy : P € Py versus H, : P € P, where
Py and Py are two disjoint subsets of P and Py U P; =P

e H, is called the null hypothesis and H; is called the alternative
hypothesis.
The names of these two hypotheses suggest that in some sense
they are not on an equal footing, a point to which we shall
return.

e The action space for this problem contains only two elements,
i.e., A= {0, 1}, where 0 is the action of accepting Hy and 1 is
the action of rejecting Hy.

e A decision rule is called a test.
It partitions the sample space into two subsets, a set of points



each of which is consistent with Hy (a region of acceptance of
Hy); and its complement, consisting of points not consistent
with Hy (the critical region of the test).

e Our object in constructing a good test may then be interpreted
as choosing a critical region which is optimum relative to some
criterion.

e There are only two types of statistical errors we may commit:

— Reject Hy when Hj is true. It is called the type I error.
— Accept Hy when Hj is wrong. It is called the type II error.

— In statistical inference, a test 1", which is a statistic from
X to {0,1}, is assessed by the probabilities of making two
types of errors:

ar(P) = P(T(X)=1), PeP,

and
1—ar(P)=P(T(X)=0), PecP,

were denoted by ar(f) and 1 —ar(0) if P is in a parametric
family indexed by 6.

— For a given test T'(X), its power function is defined to be
pr(P) = ET(X)], PeP,

which is the type I error probability of T'(X) when P € P,
and one minus the type II error probability of T'(X) when
P e P.

— Here we only consider T'(X) =1 or 0.
This kind of test is called a nonrandomized test.

— Later on, we may consider randomized tests in which T'(X)
take values in [0, 1].

e Neyman-Pearson framework:

An optimal test is to assign a small bound « to one of the
error probabilities, say ap(P), P € Py, and then to attempt to
minimize the other error probability 1—ar(P), P € Py subject
to

sup ar(P) < a.

PePy
The bound « is called the level of significance. The left-hand
side of the above is called the size of the test T'.

Why Neyman-Pearson framework is being accepted?



e A test whose error probabilities are as small as possible is
clearly desirable.
However, we cannot choose the critical region in such a way
that a(f) and (3(0) are simultaneously uniformly minimized.
By taking the critical region as the empty set, we can make
a(f) = 0 and by taking the critical region as the sample space,
we can make ($(f) = 0. Hence a test which uniformly mini-
mized both error-probability functions would require to have
zero error probabilities, and usually no such test exists.

e The modification suggested by Neyman and Pearson is based
on the fact that in most circumstances our attitudes to the
hypotheses Oy and © — O, are different- we are often asking if
there is sufficient evidence to reject the hypothesis ©y.

In terms of the two possible errors this may be translated into
the statement that often the Type I error is more serious than
the Type II error.

e We should control the probability of the Type I error at some
pre-assigned small value «, and then, subject to this control,
look for a test which uniformly minimizes the function describ-
ing the probabilities of Type II error.

e [s this asymmetry on (H,, H;) reasonable?

— Suppose we use this testing technique in searching for re-
gions of the genome that resemble other regions that are
known to have significant biological activity.

— One way of doing this is to align the known and unknown
regions and compute statistics based on the number of
matches.

— To determine significant values of these statistics a (more
complicated) version of the following is done.
Thresholds (critical values) are set so that if the matches
occur at random and the probability of a match is 1/2,
then the probability of exceeding the threshold (type I)
error is smaller than a.

— No one really believes that Hy is true and possible types of
alternatives are vaguely known at best, but computation
under H is easy.

Now we use the following example to motivate Neyman-Pearson
lemma. We start from the simplest possible situation, that where ©
has only two elements 6, and 6;, say, and where ©y = {6y}, ©—0, =
{6,}. Note that a hypothesis which specifies a set in the parameter
space containing only one element is called a simple hypothesis.



Thus we are now considering testing a simple null-hypothesis against
a simple alternative. In this case, the power function of any test
reduces to a single number, and we examine the question of the
existence of a most-powerful test of given significance level a.

Example 3.3 Consider the problem that r cures out of n patients
when n = 5. We wish to test

Hy:p=0.5 versus H;:p=0.3.
e The probability distribution of r is
r 0 1 2 3 4 5
p=0.5 0.031 | 0.156 | 0.313 | 0.313 | 0.156 | 0.031
p=0.3 0.168 | 0.360 | 0.309 | 0.132 | 0.028 | 0.003
fi(r)/ fo(r) | 5.419 | 2.308 | 0.987 | 0.422 | 0.179 | 0.097

e Think of the meaning of likelihood ratio fi(r)/ fo(r).

e We consider all possible nonrandomized tests of significance

level 0.2.
critical region | 5 Bo.s || critical region | (g5 Bo.3
{0} 0.031 | 0.168 {0,1} 0.187 | 0.528
{1} 0.156 | 0.360 {0,4} 0.187 | 0.196
{4} 0.156 | 0.028 {1,5} 0.187 | 0.363
{5} 0.031 | 0.003 {4,5} 0.187 | 0.031
{0,5} 0.062 | 0.171

e The best test is the one with critical region {0,1}. Can you
give a reason for that? Or, can you find a rule?
Try to think in terms of likelihood ratio by noting

fi(r)

_ Nl
fo(r)

- fg(’f').

As a hint, compare the two tests {0,1} and {0,4} with the
same a. Observe that their power are

[Pp=0.3)(r = 0)] + Pgp—os(r = 1)
B{OA} = [P{p:[).?;} (7" - 0)] + P{p:O.S} (7" = 4)

Compare Pp,—g3)(r = 4) to Pyp—o3(r =1).

Bio,1y

e Conclusion: Refer to Remark 2 of Theorem 1.

Definition A test T, of size « is a uniformly most powerful
(UMP) test if and only if Gy (P) > pr(P) for all P € P; and T
of size a.

If U(X) is a sufficient statistic for P € P, then for any test T'(X),
E(T|U) has the same power function as 7" and, therefore, to find a
UMP test we may consider tests that are functions of U only.



We now state and prove the Neyman-Pearson fundamental lemma.
Suppose that the probability distributions P, and P; on the sam-
ple space X and defined by density functions fy and f; respectively
with respect to some fixed measure on X. (There is no loss of gen-
erality in this assumption since the fixed measure may be taken, for
instance, to be Py + P;.) The following result gives a recipe to find
the UMP tests when both Hy and H; are simple.

Theorem 1 (The Neyman-Pearson lemma). Suppose that Oy =
{Py} and © — Oy = {P1}. Let f; be the pdf of P; with respect to a
o-finite measure v.

(i) (Existence of a UMP test). For every «, there exists a UMP test
of size o, which is equal to

L A(X) > cfo(X)
T.(X) =1 v filX)=cfo(X) ,
0 fi(X) <cfo(X)
where v € (0,1) and ¢ > 0 are some constants chosen so that
ET.(X)] = a when P = Py (c = 00 is allowed).
(11) (Uniqueness). If T.. is a UMP test of size a,then

L fA(X cfo(X
TalX) = { 0 FiX) 2 ehx) o P

Proof. Assume now that 0 < o < 1. We first prove (i).

e Show that there exist v and ¢ such that Ey[T,(X)] = «, where
E; is the expectation wrt P;.

— Let y(t) = Po(f1(X) > tfo(X)). Then v(t) is nonincreas-
ing, y(—o0) =1, and y(c0) = 0.
To get a better understanding, you can think in terms of
Example 3.3 with @ = 0.2. Here ¢ refers to the likelihood
ratio

— Thus, there exists a ¢ € (0,00) such that y(c) < a <
v(e—). Set

Note that y(c—) —v(c) = P(f1(X) = cfo(X)).
— Then

Eo[T(X)] = Po(f1(X) > cfo(X))+7Po(f1(X) = cfo(X)) = e

e Next, we show that T, is a UMP test.

10



— Suppose that T'(X) is a test satisfying Ey[T'(X)] < a.
If T,.(z) =T (x) > 0, then T, (z) > 0 and, therefore, fi(z) >

cfolz).
If YS* (25‘) —T(z) <0, then T,(x) < 1 and, therefore, f;(z) <
cfo(x).
~ Since [, (x) — T(2)][f1(x) — cfo(x)] = 0,
[IT(@) = T@)A(@) - @y = o,
[IT@) = T@A@)dr > ¢ [T@) - T,

— The above inequality leads to
E\[T(X)] = EA[T(X)] 2 { Eo[To(X)] = Eo[T(X)]} = 0.
We now prove (ii). Let T..(X) be a UMP test of size . Define

A= {a: TX) £ Tu(X), fil2) # cfo( X))},

Then [T, (z) — Tee(2)][f1(z) — cfo(z)] > 0 when 2 € A and = 0 when
xr € A, and

JIT.(@) = T (@)][(@) = ehol@)ldv = 0,

since both T, and T, are UMP tests of size o. This implies that
v(A)=0.
Remarks

1. When both Hy and H; are simple, there exists a UMP test
that can be determined by Theorem 1(ii) uniquely except
on the set B = {x: fi(x) = cfo(x)}.

2. The critical region determined by {z : fi(z)/fo(x) > ¢} is
quite intuitive. Suppose that we set out to order points
in the sample space according to the amount of evidence
they provide for P, rather than F,. We should naturally
order them according to the value of the ratio fi(z)/fo(z);
any x for which this ratio is large provides evidence than
P, rather than F, is the true underlying probability distri-
bution. The Neyman-Pearson analysis gives us a basis for
choosing ¢ so that

nf iz

3. If v(B) = 0, then we have a unique nonrandomized UMP
test; otherwise UMP tests are randomized on the set B
and the randomization is necessary for UMP tests to have
the given size a.

11



4. To overcome the difficulty caused by possible discreteness
of the probability distributions involved is to allow ran-
domized tests, according to which, having observed an x
in the sample space, with probability v we decide that H,
is true and with probability 1—~ we decide that Hy is true.

Now we use the Neyman-Pearson lemma to derive UMP test in
the following two examples.

Example 3.4 Suppose that X is a sample of size 1. We wish
to test whether it comes from N(0,1) or the double exponential
distribution DE(0,2) with the pdf 4! exp(—|z|/2).

e Since P(fi(x) = cfo(x)) = 0, there is a unique nonrandomized
UMP test.

e The UMP test T.(x) =1 if and only if
gexp(ac2 —|z|) > ¢

for some ¢ > 0, which is equivalent to |z| > ¢ or |z| < 1 —t for

some t > 1/2.
e Suppose that o < 1/4. We use

a = EyT.(X)] = Py(|X| >t) =0.3374 > .
Hence t should be greater than 1 and
a=o(—t)+1— ().

Thus, t = & (1 — «/2) and T, (X) = I(1,0) (| X]).

e Why the UMP test rejects Hy when | X]| is large?

e The power of T, under H; is

1 t
EL(X)] = P(X|>t) =1— Z/ elol/2 gy = o=t/2,

—t

Example 3.5 Let Xy,..., X, be iid binary random variables
with p = P(X; = 1). Suppose that we wish to test Hy : p = po
versus Hy : p = py, where 0 < pg < p; < 1.

e Since P(fi(z) = cfo(x)) # 0, we may need to consider random-
ized UMP test.

o A UMP test of size « is

1 AY)>c¢
T.Y)=¢ v AMY)=c¢
0 AY) <e,



where Y = " | X, and

- () (=)

e Since A\(Y) is increasing in Y, there is an integer m > 0 such

that
1 Y>m
T.Y)={ v Y=m
0 Y <m,

where m and -~y satisfy

a=BT.(Y)] = Py(Y > m) +yPy(Y = m).

e Since Y has the binomial distribution Bin(n,p), we can deter-
mine m and vy from

o= En: ( " )%(1 —po)" 7+ ( ;:L >p6”(1 —po)" "

j=m+1 J

e Unless ;
a= ) (?)%(1—P0)n_j
j=m+1

for some integer m, the UMP test is a randomized test.
e Do you notice that the UMP test T, does not depend on p;?

— Neyman-Pearson lemma tells us that we should put those
x into rejection region according to its likelihood ratio until
the level of test achieves a.

— Think of two hypothesis testing problems: The first one
is Hy : p = py versus H; : p = p; and the second one is
Hy : p = py versus Hy : p = py where p; > py and py > py.

— For the above two testing problems, both their likelihood
ratios increase as y increases.

— T, is in fact a UMP test for testing Hy : p = py versus
Hi:p>pp.

e Suppose that there is a test T, of size a such that for every
P, € P, T, is UMP for testing H, versus the hypothesis P = P.
Then T, is UMP for testing H, versus H;.

Before we move to next topic, we discuss an example in which
the two kinds of probability might be equally important.
Example 3.6 (Fisher’s Discriminant Function)
Suppose X ~ N(p;,5,), 6; = (1), ;). j = 0, 1.

13



e In a classification context, 8y and @, correspond to two known
populations and we desire to classify a new observation X as
belonging to one or the other.

— Learning sample, training sample and etc can be used to
estimate 0, j =0, 1.

— What is the optimal classifier?

— Denote unknown parameter associated with the new ob-
servation x as 6. If we put it as Hy : 8 = 60, versus
H, : @ = 0, the probability of type I error and the prob-
ability of type II error will be its misclassification error
probability.

— Which misclassification error probability is more serious?
e Use N-P lemma, we reject 8 = 0, if
Q=(X- HO)TEIO(X — o) — (X = lh)TEl_l(X — )
is large.
e In the case ¥y = ¥, when @ is large is equivalent to
F=(p — 1o)%5'X
is large.

e How do we determine the optimal cutting value of () if our goal
is to minimize the sum of misclassification error probabilities?

e F'is known as the Fisher discriminant function.

14



Duality between confidence sets and tests

e Confidence regions are random subsets of the parameter space
that contain the true parameter with probability at least 1 — a.

e Acceptance regions of statistical tests are, for a given hypothe-
sis Hy, subsets of the sample space with probability of accepting
H, at least 1 — o when Hj is true.

e To illustrate the duality, we consider the example of two-sided
tests for the mean of a normal distribution.

— An established theory postulates the value 6, for a certain
physical constant.

— A scientist has reasons to believe that the theory is incor-
rect and measures the constant n times obtaining measure-
ments Xy,..., X,.

— Knowledge of his instruments leads him to assume that
Xi,..., X, are iid N(0,0?).

— Consider testing Hy : 0 = 0y versus H; : 6 # 6.

— A size « test can be obtained by the level (1—«) confidence
interval

(7 — sto_1 (1 — /2)/v/n, & + sta_1(1 — 0/2)/v/n).

Namely, we accept Hy, if and only if, the postulated value
6y is a member of the level (1 — «) confidence interval

[z — sty_1(1 — a/2)//n, T + sty_1(1 — a/2)/\/n].

— Set T(#) = /n(X — 0)/s. Because the same interval is
used for every 6y, it generates a family of level a tests.
Reject H if

0 otherwise.

7.(x.0) = {

It leads to a two-sided test with size a.

— On the other hand, by starting with the test 7, we obtain
the above confidence interval by finding the set of # where
T.(x,0) = 0.

Note that

_90

Pn(T.(x,60) = 0) = Pu [ﬂ a

>tn (1 — 04/2)] =1l-a.
Now we consider the duality theorem.

15



Theorem 2 For each 6y € O, let Ty, be a test for Hy : 8 = 0
(versus some Hy) with significance level o and acceptance region
A(By). For eazh x in the range of X, define

C(x)={0:x€ A(0)}.

(1) C(X) is a level 1 — « confidence set for 6.

(i1) If TOO s a nonrandomized and has size o for every @y, then
C(X) has confidence coefficient 1 — .

(111) Let C(X) be a confidence set for @ with significance level (or
confidence coefficient) 1 — a. For any 6, € O, define a region
A(By) = {x: 0y € C(x)}. Then the test T,(X) =1 — [A(Oo)(X)

has significance level a for testing Hy : @ = 6y versus some H;.

Proof. We only prove the first assertion. The proofs for the
second and third assertions are similar.

e Under the given condition,

sup P(X ¢ A(0y)) = sup P(Ty =1) <a,
0-0, 0-=0,

which is the same as

l—a< eiilf P(X € A(0y)) = i{lf P(6, € C(X)).

=0, 0
e The above holds for all 8y, the result follows from

]iDIgDP(O € C(X)) = inf inf POy C(X))>1—a.

B.co 0=0,

Remarks.

e (/(X) in Theorem 2 can be determined numerically, if it does
not have an explicit form. Note that we just try to solve an
equation as in the above example.

e Theorem 2 can be best illustrated in the case when 0 is real-
valued and A(0) = {Y : a(0) <Y < b(0)} for a real-valued
statistic Y/ (X) and some nondecreasing functions a(@) and b(8).

— When we observe Y = y, C(X) is an interval with limits
0 and 0, which are the @-values at which the horizontal
line Y = y intersects the curve Y = b(0) and Y = a(0),
respectively.

— If y = b(0) (or y = a(@)) has no solution or more than one
solution, @ = inf{@ : y < b(0)} (or @ =sup{0 : a(0) < y}

16



Example 3.7 Assume Xi,..., X, are iid binary random vari-
ables with p = P(X; = 1). Suppose that we need a lower confidence
bound for p.

e Consider Hy : p = pg versus Hy : p > py.

e The acceptance region of a UMP test of size o € (0,1) is
Alpo) = {y : v < m(po)}, where y = >, x; and m(py) is
an integer between 0 and n such that

n

S p(l-p) T <a< S Clnj)wh(1—po)™ .

j=m(po)+1 j=m(po)

e m(p) is an integer-valued, nondecreasing step-function of p.
e Define
n . .
p=inf{p:m(p) >y} =inf{> Cn,j)p’ (1 —-p)" 7’ >ay.
=y

(p,1) is a level 1 — « confidence interval.

17



Bayesian Analysis

Now we give an example in which neither estimation or testing is
appropriate.

Example 3.8 A hazardous toxic waste site requires clean-up
when the true chemical concentration # in the contaminated soil is
higher than a given level 6, > 0.

e Because of the limitation in resources, we would like to spend
our money and efforts more in those areas that pose high risk
to public health.

e In a particular area where soil samples are obtained, we would
like to take one of these three actions: a complete clean-up (a1),
a partial clean-up (ay), and no clean-up (a3).

e Suppose that the cost for a complete clean-up is ¢; and for a
partial clean-up is ¢y < ¢p; the risk to public health is c3(6 — 6y)
if 6 > 6y and 0 if < 6y; a complete clean-up can reduce the
toxic concentration to an amount < #,, whereas a partial clean-
up can only reduce a fixed amount of the toxic concentration,
i.e., the chemical concentration becomes 6 — ¢ after a partial
clean-up, where ¢ is a known constant.

e The loss in making a decision for the above can be written as

L(,a) a, a9 as

0 S 90 C1 Cy 0
90 <9§90+t C1 Co 03(9—90)
9>00+t C1 02+C3(0_90_t) 03(9—90)

e The true chemical concentration # is unknown, we now use the
Bayesian approach to tackle this question. 6 is viewed as a
realization of a random vector @ whose prior distribution is II.
II is based on past experience, past data, or statistician’s belief
and, thus, can be very subjective.

IT is a probability distribution on a class of measurable sets in

©.

e A sample X is drawn from Py = P,jy, which is viewed as the
conditional distribution of X given @ = . The sample X =z
is then used to obtain an updated prior distribution, which is
called the posterior distribution.

e If both X and @ are discrete, the Bayes formula appeared in
elementary probability leads to

P(X =20 =0)P(0 =0

PO=0|X =z) = VORI

- >0co P(X :$|0
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Assume that {P,g : # € ©} is dominated by a o-finite measure
vand fy(z) = dPyg(x)/dv. Suppose that m(z) = [o fo(z)dIl >
0 and dIT/d\ = 7(0) for a o-finite measure A. Then

APy, fo(z)
d—)\| B W(G)m(x)’

where m(x) = [g 7(0) fo(x)db.

An observed result changes our degrees of belief in different pa-
rameter values by changing a prior distribution into a posterior
distribution.

In the Bayesian approach, the posterior distribution Py, con-
tains all the information we have about 6 and, therefore, sta-
tistical decisions and inference should be made based on Py,
conditional on the observed X = .

Choosing a prior distribution

If we have accepted that degrees of belief can properly be de-
scribed by probability distributions, it remains to establish a
method of determining the appropriate prior distribution for
each problem we encounter.

In practice, prior knowledge is often rather vague and there is a
whole class of prior distributions, each one of which is adequate
for describing an individual’s degrees of belief.

What is the consequence of choosing a wrong prior?

Robustness: It is claimed that the choice of prior distribution
is not crucial as long as it is from a good enough class.

The above claim can be justified via the following setting of
asymptotic analysis.
— Suppose that 8 = 0 (in frequentist terms).

— Does the Bayes posterior distribution concentrate all mass
more and more tightly around 6 as n — oo?

— Assume © = {6y,...,60;} (finite). Let 7 = P(0 = 6;),
j=1,...,k denote the prior distribution of 6.

— Use Bayes theorem, we have

T p( X6,
P(0:9]|X1,,Xn) = kﬂ.j Hz_lnp( |sz])9 .
> a1 Ta lli=1 p( z| a)

— Use the above fact, P(0 = 0;|X;,...,X,) =0if r; =0.
It means that no amount of data can convince a Bayesian
who has decided a prior that 6; is impossible.
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— If all 7r; are positive,
P(0, X1, ..., X,) (1 o 1 p(Xi|9a)>
log =n|—log—+ =) log————<].
P(9j|X1,...,Xn) n 7Tj n; p(sz])
By the weak law of large numbers, under P,

n X |9 ) p(X1|9a)
n Zl (X g (bgp(xle))

in probability. But

Ey, (log

if 6, # 0;. Therefore,

IOg P(0a|X11---7Xn) - —00.
P(0;]X,. .., X,)

p(X1|9a)
p<X1|ej>> <!

— This proof depends critically on the consistency of the
MLE. In fact, we can also derive asymptotic normality of
Bayes estimator under regularity conditions.

e Another major issue that arises is computation. There are two
major methods: Laplace’s method and Markov chain Monte
Carlo.

For Example 3.8, it concerns about the cost. Under Bayesian
analysis, it can be dealt as follows:

e The average loss for the action a(X), which is called the risk
of using a, is defined to be

Ro(P) = E[L(P,a(X))] = /X L(P, a(z))dP ().

R,(P) is also denoted by R,(f) if P is a parametric family
indexed by 6.

e Since # ~ II, we use the Bayesian approach by considering an

average of R,(f) over 6:
- / Ra(6)dT1(6)
o

which is called the Bayes risk of a with respect to II.

e We now find a good action with the smallest Bayes’s risk. Ob-
serve that

ro(Tl) = /@ 7(6)dA /X L6, a(x)) fy(z)dv
— /Xm(x)du/eL(H,a(x))Md)\,

m(z)
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since

dP, x)m (0
w(6)fo(e) = =2 () () = m(x)%.
Here m(z) is the marginal density function and fp(z)m(0)/m(x)
is the posterior density function of 6 after observing .

Hence, we choose a to minimize the expected posterior loss for
fixed x since all terms in the above double integral are non-
negative.

e For this problem, a Bayes action can be obtained by comparing

&1 j =1
EQ‘I[L(H, a]‘)] =4 G+ CSEQ\I[w(Oﬂ t)] J=
c3Epj2[(0,0)] J=3,

where ¢(9a t) = (9 — b — t)l(ﬂo-l-t,oo)(g)'
Revisits of Decision Theory

When we talk about the estimation, we discuss how to measure the
performance of an estimator 7'(X) of a parameter ¢(8)? When we
do hypothesis testing, we discuss why to adopt the Neyman-Pearson
framework and how to finds a UMP test and etc. These lead to

e clarify the objectives of a study,
e point to what the different possible actions are,

e provide assessments of risk, accuracy, and reliability of statis-
tical procedures,

e provide guidance in the choice of procedures for analyzing out-
comes of experiments.

This leads to the consideration of decision theoretic framework.
We begin with a statistical model with an observation vector x
whose distribution P ranges over a set P. We usually take P to
be parametrized, P = {Pg : 0 € 6}.

e Action space A: It is the space of actions or decisions or claims
that we can contemplate making.

— For point estimation of ¢(0), a is T(x) € R

— For testing, only two actions are contemplated: accepting
or rejecting the specialness of P (i.e. Hy : P € Py).
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e Loss function /(6,a): It is defined as a function
(:PxA—R".

It is the loss incurred if we take action a when @ is the true
state of nature.

Think of mean squared error in estimation and 0 — 1 loss in
testing (Type I error and Type II error).

e Decision procedures §(x):

¢ Risk function (expected or average loss):
R(0,6) = E[((0,(X))].
Consider the 0 — 1 loss in testing (o and ).
Comparison of decision procedures

How do we find the optimum procedure?

e Two decision rules which have the same risk function are con-
sidered equivalent from the point of view of decision theory.

e Avoid bad procedure approach: Avoid the estimate that can be
improved by others.
A procedure § improves a procedure ¢* if, and only if,

R(6,5) < R(0,0")

for all @ with strict inequality for some 6.

If the above hold, 0* is then called inadmissible.

Typically, there is no rule ¢ that improves all others. (You can
think in terms of estimation.)

e Minimax approach: Look at the worst possible risk.

sup R(0,¢6") = inf sup R(8, 9).
0 )

e Bayesian approach: Consider an average of R(0,J) over 6.
r(6) = E[R(6,4)] = / R(8,6)dr(8).

— 7 is called a prior density in Bayesian analysis. (We can
think of 7 as a weight function in general.)

— r(0) is called the Bayes risk of 4.

— In the Bayesian analysis, @ is viewed as a realization of a
random vector whose prior distribution is .
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— The prior distribution is based on past experience, past
data, or statistician’s belief and, thus, can be very subjec-
tive.

— A sample X is drawn from Px\O’ which is viewed as the
conditional distribution of X given 6.

— The sample x is then used to obtain an updated prior dis-
tribution, which is called the posterior distribution.

How to find Bayes estimate?
e Consider the Bayes risk
r(m,8) = E[R(6,0)] = E[((0,5(X))],
where (6, X) are random vector.

e Write r(m,0) as
E{E[((6,5(X))X]}.

e Recall that £(0,§(X)) is nonnegative. A possible strategy is to
find the minimizer of E[((0,(X))|X].
E[¢(0,6(X))|X] is called the posterior risk.

— For the squared error loss, the minimizer is
6" (x) = E[0|x].

— For the absolute error loss, the minimizer is the median of
posterior distribution.

e The function ¢*(x) with
E[((0,0"(X))|x] = inf E[((0, a(X))|x]
is called a Bayes estimate.

Example 3.9 Suppose X, ..., X, isa N (6, o) sample, where o3
is known and 6 is unknown. The prior distribution of 6 is N (o, 73).

e If we observe Y; X; = s, the posterior distribution 7(0|x) is a
normal density with mean

o2 -1 77002
(—g + n) (s + 20>
7o 70
1 N n\""
e o} '
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e For the squared error loss, the Bayes estimate is

2 2
5(X) =g Mo
n/o¢ + 1/7 n/o¢ +1/78

e The Bayes risk is
1

njot + 1/
How to find minimax procedures?

e A worst-case analysis: (The true € is one that is as hard as
possible.)
01 is better than d, from a minimiax point of view if

sup R(0,61) < sup R(6, d2).
0 0

e Suppose that we want to estimate the mean 6 of a normal
distribution with known variance o2 and use the squared error
loss as a criterion.

— Note that E(X,, — 0)? = o2 /n.

— The risk of using X as estimate of § does not depend on
the value of unknown parameter 6.

— In Example 3.9, we just describe a Bayes estimate with
Bayes risk is (n/og + 1/73)7".
When n is large, the Bayes risk tends to of /n.

— Observe that

Sl;p R(H, 5) > EW(R(Q, 5)) > EW(R(Q, 5*))7

where ¢* is Bayes estimate of # under prior 7.

— For the above set-up,
E.(R(9,6%)) = (n/oj+1/73)~" = sup R(Q,Xn)——ir
0

When 78 — oo,

Ex(R(6,0"))

—~— — 1.
supy R(0, X,,)

We conclude that X,, is minimax.
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Theorem 3 Let 6* be a rule such that supy R(0,6*) = r < oo,
let {my} denote a sequence of prior distributions such that mi{6 :
R(0,6*) =r} =1, and let ry = infsr(mg, 0), where r(mg, §) denotes
the Bayes risk wrt m. If

ry =1 as k — 00,
then 6* is minimaz.

If * is a Bayes rule whose risk is constant on @, then 0* is mini-
max.

How to find admissible procedures?

e A method to eliminate bad procedures.

e Any procedure which is strictly dominated by another is said
to be inadmissible.
§ strictly dominates §* if R(6,d) < R(0,6*), for all 8, and this
inequality is strict for some 6.

e When O is finite and ¢* is Bayes with respect to a prior fre-
quency function 7 such that 7(@) > 0 for every 8 € O, then ¢*
is admissible.

e When O is an interval and ¢* is Bayes with respect to a prior
density 7 such that 7 > 0 on © and R(8,0) is a continuous
function of @ for all 9, then 0* is admissible.

If
re(07) = i (9)
ff i (0)d0
as k — oo for every fixed a < b, then §* is admissible.

Example 3.10 Under the setting of Example 3.9, X is also ad-
missible.

e Set 7 to be N(u, k).
e Observe that
re(X) = m(0) _ (0®/n)(1/(1 +K))

Lime(@)do [ me(6)de

as k — oo.
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