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Chapter 3. Asymptotic Methods

1 Modes of Convergence of A Sequence of Random Vari-
ables

Due to the difficulty of making exact calculation, we make use of asymptotic

results. For example, we experience the approximation of probabilities for

computing significance levels and setting confidence. In this process, we use

the following facts: Law of Large Numbers, Central Limit Theorem, and the

Approximation of Binomial Distribution by Normal Distribution or Poisson

Distribution and etc.. The essence of asymptotic methods is approximation.

We approximate functions, random variables, probability distributions, means,

variances, and covariance. However, we need to understand what kind of ap-

proximation we are using. The strong law of large numbers and the central

limit theorem illustrate the two main types of limit theorems in probability.

Strong limit theorems. Given a sequence of functions X1(w), X2(w), . . .

there is a limit function X(w) such that P (w : limn Xn(w) = X(w)) = 1.

Weak limit theorems. Given a sequence of functions X1(w), X2(w), . . . show

that limn P (w : Xn(w) < x) exists for every x.

There is a great difference between strong and weak theorems which will

become more apparent. A more dramatic example of this is: on ([0, 1),B1([0, 1)))

with P being Lebesgue measure, define

Xn(w) =

 0, w < 1
2
,

1, 1
2
≤ w < 1,

for n even. For n odd,

Xn(w) =

 1, w < 1
2
,

0, 1
2
≤ w < 1.

For all n, P (w : Xn(w) < x) = P (w : X1(w) < x). But for every w ∈ [0, 1)

lim sup
n

Xn(w) = 1, lim inf
n

Xn(w) = 0.

In this chapter, we will attempt to understand these asymptotic calculation.

1.1 The O, o Notation

Before the discussion of the concept of convergence for random variable, we will

give a quick review of ways of comparing the magnitude of two sequences. A
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notation that is especially useful for keeping track of the order of an approx-

imation is the “big O, little o.” Let {an} and {βn} be two sequences of real

numbers. We have the following three concept of comparison:

an = O(βn) if the ratio an/βn is bounded for large n, if there exists a number

K and an integer n(K) such that if n ≥ K, then |an| < K|bn|.

an = o(βn) if the ratio an/βn converges to 0, as n →∞.

an ∼ βn iff an/βn = c + o(1), c 6= 0, as n →∞.

Fact. (1) O(an)O(βn) = O(anβn), (2) O(an)o(βn) = o(anβn), (3) o(an)o(βn) =

o(anβn),

(4) o(1) + O(n−1/2) + O(n−1) = o(1). The order of magnitude of a finite sum is

the largest order of magnitude of the summands.

Example. Taylor expansion of a function f(·) about the value c can be stated

as

f(x) = f(c) + (x− c)f
′
(c) + o(|x− c|) as x → c.

In general,

Theorem 1 (Taylor). Let the function f have a finite nth derivatives f (n)

everywhere in the open interval (a, b) and (n−1)th derivative f (n−1) continuous

in the closed interval [a, b]. Let x ∈ [a, b]. For each point y ∈ [a, b], y 6= x, there

exists a point z interior to the interval joining x and y such that

f(y) = f(x) +
n−1∑
k=1

f (k)(x)

k!
(y − x)k +

f (n)(z)

n!
(y − x)n.

or

f(y) = f(x) +
n−1∑
k=1

f (k)(x)

k!
(y − x)k + o(|y − x|n−1) as y → x.

1.2 Convergence of Stochastic Sequences

Now we consider probabilistic version of these order of magnitude relations. Let

An and Bn be sequences of real random variables. Then

An = Op(Bn) iff for every ε > 0, there exists a constant M(ε) and an integer

N(ε) such that if n ≥ N(ε), then

P{|An/Bn| ≤ M(ε)} ≥ 1− ε.

An = op(Bn) iff for every ε > 0, limn→∞ P{|An/Bn| ≤ ε} = 1.

An ≈ Bn iff An = Bn + op(Bn).
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If Xn is a vector, we say that Xn = op(βn) if ‖Xn‖ = op(βn). Here ‖Xn‖
denotes the length of the vector Xn.

Let X1, X2, . . . and X be random variables on a probability space (Ω,A, P ).

As an example, we take a measurement from an experiment in a laboratory.

Usually the outcome of the experiment cannot be predicted with certainty. To

handle this situation, we introduce the probability of A (a collection of possible

outcomes) to be the fraction of times that the outcome of the experiment results

in A in a large number of trials of the experiment. The set of all outcomes of

an experiment are called elementary events. Here, Ω is the set of all elementary

events which is also called the sample space. A is a class of subsets of Ω to

which we can assign probability. For each set A ∈ A we assign a value P (A) to

be called the probability of A. Note that P is a set function over the members

of A.

What kind ofA would suffice our need? From our experience, four kinds of

operations on sets, which are intersection, complement, union and set difference,

are convenient and useful tools describing events. It is then quite natural to

require that A contains the event formed by such operations. Such a class of

sets is called a Boolean field. Based on the need, we also like to consider unions

of all countable sequences of sets (events). We therefore require that A to be

a Borel field or a σ-field. It means that it contains unions of all countable

sequences of sets (and therefore countable intersections) and complementation.

For example, Ω can be a set of numbers or a subinterval of the real line.

The context that is necessary for the strong limit theorems we want to prove

is:

Definition A probability space consists of a triple (Ω,F , P ) where

(i) Ω is a space of points w, called the sample space and sample points. It

is a nonempty set that represents the collection of all possible outcomes of an

experiment.

(ii) F is a σ-field of subsets of Ω. It includes the empty set as well as the set Ω

and is closed under the set operations of complements and finite or countable

unions and intersections. The elements of F are called measurable events, or

simply events.

(iii) P (·) is a probability measure on F ; henceforth refer to P as simply a

probability. It is an assignment of probabilities to events in F that is subject

to the conditions that

1. 0 ≤ P (F ) ≤ 1, for each F ∈ F ,
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2. P (Ø) = 0, P (Ω) = 1,

3. P (∪iFi) =
∑

i P (Fi) for any finite or countable sequence of mutually

exclusive events Fi, i = 1, 2, . . ., belonging to F .

2 Remarks on measure and integration

A pair (Ω,F) consisting of a set Ω and a σ-field F of subsets of Ω is called

a measurable space. For any given Ω, there is one trivial σ-field which is the

collection containing exactly two elements, empty set and Ω. However, this

field cannot be useful in applications.

Consider the set of real numbers R, which is uncountably infinite. We

define the Lebesgue measure of intervals in R to be their length. This definition

and the properties of measure determine the Lebesgue measure of many, but

not all, subsets of R. The collection of subsets of R we consider, and for which

Lebesgue measure is defined, is the collection of Borel sets defined below.

Let C be the collection of all finite open intervals on R. Then B = σ(C) is called

the Borel σ-field. The elements of B are called Borel sets.

• All intervals (finite or infinite), open sets, and closed sets are Borel sets.

These can be shown easily by the following.

(a,∞) = ∪∞n=1(a, a + n), (−∞, a) = ∪∞n=1(a− n, a), [a, b] = ((−∞, a) ∪ (b,∞))c ,

[a,∞) = ∪∞n=1[a, a + n), (−∞, a] = ∪∞n=1[a− n, a), (a, b] = (−∞, b] ∩ (a,∞),

{a} = ∩
(
a− 1

n
, a +

1

n

)
.

This means that every set containing countably infinitely many numbers

is Borel; if A = {a1, a2, . . .}, then

A = ∪∞k=1{ak}.

Hence the set of rational numbers is Borel, as is its complement, the set

of irrational numbers. There are, however, sets which are not Borel. We

have just seen that any non-Borel set must have uncountably many points.

• B = σ(O), where O is the collection of all open sets.

• The Borel σ-field Bk on the k-dimensional Enclidean space Rk can be

similarly defined.

• Let C ⊂ Rk be a Borel set and let BC = {C∩B : B ∈ Bk}. Then (C,BC) is

a measurable space and BC is called the Borel σ-field on C. (In statistics,

it is quite often that we need to consider conditional probability and etc.)
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The closure properties of F ensure that the usual applications of set op-

erations in representing events do not lead to nonmeasurable events for which

no (consistent) assignment of probability is possible.

The required countable additivity property (3) gives probabilities a suffi-

ciently rich structure for doing calculations and approximations involving lim-

its. Two immediate consequences of (3) are the following so-called continuity

properties: if A1 ⊂ A2 ⊂ · · · is a nondecreasing sequence of events in F then,

thinking of ∪∞n=1An as the limiting event for such sequences,

P (∪∞n=1An) = lim
n

P (An).

To prove this, disjointify {An} by Bn = An − An−1, n ≥ 1, A0 = Ø, and apply

(iii) to ∪∞n=1Bn = ∪∞n=1An. By considering complements, one gets for decreasing

measurable events A1 ⊃ A2 ⊃ · · · that

P (∪∞n=1An) = lim
n

P (An).

Example 1. Suppose that {Xt : 0 ≤ t < ∞} is a continuous-time Markov chains

with a finite or countable state space S. The Markov property here refers to

the property that the conditional distribution of the future, given past and

present states of the process, does not depend on the past. The conditional

probabilities pij(s, t) = P (Xt = j|Xs = i), 0 ≤ s < t, are collectively referred

to as the transition probability law for the process. In the case pij(s, t) is a

function of t − s, the transition law is called time-homogeneous, and we write

pij(s, t) = pij(t−s). Write p(t0) = ((pij(t0)), where pij(t0) gives the probability

that the process will be in state j at time t0 if it is initially at state i. We

assume that limt→0 p(t) = I, where I is the identity matrix. It means that with

probability 1, the process spends a positive (but variable) amount of time in

the initial state i before moving to a different state j. Set

qij = lim
t→0

pij(t)− pij(0)

t
= lim

t→0

pij(t)− δ

t

which is being referred to as the infinitesimal transition rates. Write Q =

((qij)), the infinitesimal generator.

Assume the Markov chain have the initial state i and let T0 = inf{t > 0 :

Xt 6= i}. An important question is finding the distribution of T0.

Let A denote the event that {T0 > t}. Choose and fix t > 0. For each integer

n ≥ 1 define the finite-dimensional event

An = {X(m/2n)t = i for m = 0, 1, . . . , 2n}.
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The events An are decreasing as n increases and

A = lim
n→∞

An = ∩∞n=1An

= {Xu = i for all u in [0, t] which is a binary rational multiple of t}

= {T0 > t}.

Since there is some u of the form u = (m/2n)t ≤ t in every nondegenerate

interval, it follows that T0 has an exponential distribution with parameter −qii.

2.0.1 The Homogeneous Poisson Process, the Poisson Distribution and the Ex-
ponential Distribution

In survival analysis, we are often interested in studying whether a particular

event occurs or not. In this case, we can think in terms of death (denoted by

state 1) and survive (denoted by state 0) using the language of Markov chain.

We just describe a very special chain with two states and state 1 is an absorbing

state. As an illustration, we now consider a simplest chain in which there are

only two states, 0 and 1. Usually, we would like to know the sojourn time of

staying at state 0. Denote the sojourn time of staying at state 0 by T . We

know that

P (T < t + δ|T ≥ t) ≈ λ(t)δ,

where λ(t) is the hazard function of T . Let T0 denote a fix time and δ = T0/n

where n ∈ N . Using Markov property, we have

P (T ≥ T0) = P
(
T ≥ (n− 1)

T0

δ

)
P
(
T ≥ T0

∣∣∣∣T ≥ (n− 1)
T0

δ

)
= P

(
T ≥ (n− 2)

T0

δ

)
P
(
T ≥ (n− 1)

T0

δ

∣∣∣∣T ≥ (n− 2)
T0

δ

)
·P
(
T ≥ T0

∣∣∣∣T ≥ (n− 1)
T0

δ

)
.

Continue in this fashion, we have

P (T ≥ T0) ≈
∏
i

[
1− λ

(
i
T0

δ

)]
= exp

{∑
i

ln
[
1− λ

(
i
T0

δ

)]}

≈ exp

{∑
i

[
1− λ

(
i
T0

δ

)]}

→ exp

[
−
∫ T0

0
λ(t)dt

]
.

This is the commonly seen form of survival function written in terms of the

hazard function. If λ(t) = λ0, T is exponential distributed random variable.

Now we consider a different kind of chains with no absorbing states. This

is usually seen in terms of Poisson Processes and Queues. The occurrences of
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a sequence of discrete events can often be realistically modelled as a Poisson

process. The defining characteristic of such a process is that the time intervals

between successive events are exponentially distributed. Now it is still a multi-

state Markov chain with no absorbing state. For the purpose of illustration,

we describe discrete-time Markov chains. In such a chain, it is often being

discussed in terms of finite, aperiodic, and irreducible. Finiteness means that

there is a finite number of possible states. The aperiodicity assumption is that

there is no state such that a return to, that state is possible only at t0, 2t0, 3t0, . . .

transitions later, where t0 is an integer exceeding 1. If the transition matrix of

a Markov chain with states El, E2, E3, E4 is, for example,

P =


0 0 0.6 0.4

0 0 0.3 0.7

0.5 0.5 0 0

0.2 0.8 0 0

 ,

then the Markov chain is periodic. If the Markovian random variable starts (at

time 0) in E1 then at time 1 it must be either in E3 or E4, at time 2 it must

be in either El or E2, and in general it can visit only El at times 2, 4, 6, . . .. It

is therefore periodic. The irreducibility assumption implies that any state can

eventually be reached from any other state, if not in one step then after several

steps except for the case of Markov chains with absorbing states.

Now we come back to the chain associated with Poisson process. Given

a sequence of discrete events occurring at times t0, t1, t2, t3, . . . the intervals

between successive events are4t1 = (t1−t0),4t2 = (t2−t1),4t3 = (t3−t2), . . .,

and so on. Assume the transition law is time-homogeneous. By the above

argument, 4ti is again exponentially distributed. Due to the definition of

Markov chain, these intervals 4ti are treated as independent random variables

drawn from an exponentially distributed population, i.e., a population with the

density function f(x) = λ exp(−λx) for some fixed constant λ.

Now we state the fundamental properties that define a Poisson process,

and from these properties we derive the Poisson distribution. Suppose that a

sequence of random events occur during some time interval. These events form

a homogeneous Poisson process if the following two conditions are met:

(1) The occurrence of any event in the time interval (a, b) is independent of the

occurrence of any event in the time interval (c, d), while (a, b) and (c, d)

do not overlap.

(2) There is a constant λ > 0 such that for any sufficiently small time interval,
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(t, t + h), h > 0, the probability that one event occurs in (t, t + h), is

independent of t, and is λh+o(h), and the probability that more than one

event occurs in the interval (t, t + h) is o(h).

Condition 2 has two implications. The first is time homogeneity: The proba-

bility of an event in the time interval (t, t + h) is independent of t. Second,

this condition means that the probability of an event occurring in a small time

interval is (up to a small order term) proportional to the length of the interval

(with fixed proportionality constant λ). Thus the probability of no events in

the interval (t, t+h) is 1−λh+ o(h), and the probability of one or more events

in the interval (t, t + h) is λh + o(h).

Various naturally occurring phenomena follow, or very nearly follow, these

two conditions. Suppose a cellular protein degrades spontaneously, and the

quantity of this protein in the cell is maintained at a constant level by the

continual generation of new proteins at approximately the degradation rate.

The number of proteins that degrade in any given time interval approximately

satisfies conditions 1 and 2. The justification that condition 1 can be assumed

in the model is that the number of proteins in the cell is essentially constant and

that the spontaneous nature of the degradation process makes the independence

assumption reasonable. Through time division and using Bernoulli random

variable to indicate whether such an event occurs in (t, t + h), Condition 2 also

follows when np is small, the probability of at least one success in n Bernoulli

trials is approximately np.

We now show that under conditions 1 and 2, the number N of events that

occur up to any arbitrary time t has a Poisson distribution with parameter λt.

At time 0 the value of N is necessarily 0, and at any later time t, the possible

values of N are 0, 1, 2, 3, . . .. We denote the probability that N = j at any given

time t by Pj(t). We would like to assess how Pj(t) behaves as a function of j

and t.

The event that N = 0 at time t+h occurs only if no events occur in (0, t)

and also no events occur in (t, t + h). Thus for small h,

P0(t + h) = P0(t)(1− λh + o(h)) = P0(t)(l − λh) + o(h).

This equality follows from conditions 1 and 2.

The event that N = 1 at time t + h can occur - in two ways. The first is

that N = 1 at time t and that no event occurs in the time interval (t, t + h),

the second is that N = 0 at time t and that exactly one event occurs in the
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time interval (t, t + h). This gives

P1(t + h) = P0(t)(λh) + P1(t)(1− λh) + o(h),

where the term o(h) is the sum of two terms, both of which are o(h). Finally,

for j = 2, 3, . . . the event that N = j at time t + h can occur in three different

ways. The first is that N = j at time t and that no event occurs in the time

interval (t, t + h). The second is that N = j − 1 at time t and that exactly one

event occurs in (t, t + h). The final possibility is that N < j − 2 at time t and

that two or more events occur in (t, t + h). Thus, for j = 2, 3, . . .,

Pj(t + h) = Pj−l(t)(λh) + Pj(t)(l − λh) + o(h).

The above discussion leads to

P0(t + h)− P0(t)

h
= −P0(t)(λh) + o(h)

h
Pj(t + h)− Pj(t)

h
= −Pj−1(t)(λh)− Pj(t(λh)) + o(h)

h
,

j = 1, 2, 3, . . .. Letting h → 0, we get,

d

dt
P0(t) = −λP0(t),

and
d

dt
Pj(t) = λPj−l(t)− λPj(t), j = 1, 2, 3, . . . .

The Pj(t) are subject to the conditions

P0(0) = 1, Pj(0) = 0, j = 1, 2, 3, . . . .

The probability of the system still being in state 0 at time t, P0(t) =

exp(−λt), which can be obtained easily. Note that P0(t)+P1(t) = 1. We could

replace P0 with 1− P1 and write this as

1

λ

dP1(t)

dt
+ P1(t) = 1.

From this
d

dt
(P1(t) exp(λt)) = λ.

We have

P1(t) = e−λtλt.

By induction, the probability of the nth state at time t is

Pn(t) = e−λt (λt)n

n!
.
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This is the probability distribution for a simple Poisson counting process, rep-

resenting the probability that exactly n events will have occurred by the time

t. Obviously the sum of these probabilities for n = 1 to ∞ equals 1, because

the exponential exp(−λt) factors out of the sum, and the sum of the remaining

factors is just the power series expansion of exp(−λt).

It’s worth noting that since the distribution of intervals between successive

occurrences is exponential, the Poisson distribution is stationary, meaning that

any time can be taken as the initial time t = 0, which implies that the proba-

bility of n occurrences in an interval of time depends only on the length of the

interval, not on when the interval occurs. The expected number of occurrences

by the time t is given by the integral

E(n, t) =
∞∑
i=0

iPi(t) = λt.

Since the distribution of the time between successive events is given by the

exponential distribution. Thus the (random) time until the kth event occurs is

the sum of k independent exponentially distributed times. Let t0 be some fixed

value of t. Then if the time until the kth evenn occurs exceeds t0, the number

of events occurring before time t0 is less than k, and conversely. This means

that the probability that k − 1 or fewer-events occur before time t0 must be

identical to the probability that the time until the kth event occurs exceeds t0.

In other words it must be true that

e−λt0

(
1 + (λt0) +

(λt0)
2

2!
+ · · ·+ (λt0)

k−1

(k − 1)!

)
=

λk

Γ(k)

∫ ∞

t0
xk−1exp(−λx)dx.

This equation can also be established by repeated integration by parts of the

right-hand side.

2.1 Counting measure and Lebesgue measure

First, we consider the counting measure in which Ω is a finite or countable set.

Then probabilities are defined for all subsets F of Ω once they are specified

for singletons, so F is the collection of all subsets of Ω. Thus, if f is a prob-

ability mass function (p.m.f.) for singletons, i.e., f(w) ≥ 0 for all w ∈ Ω and∑
w f(w) = 1, then one may define P (F ) =

∑
w∈F f(w). The function P so

defined on the class of all subsets of Ω is countably additive, i.e., P satisfies (3).

So (Ω,F , P ) is easily seen to be a probability space. In this case the probability

measure P is determined by the probabilities of singletons {w}.
In the case Ω is not finite or countable, e.g., when Ω is the real line or

the space of all infinite sequences of 0’s and 1’s, then the counting measure
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formulation is no longer possible in general. We consider Lebesgue measure.

The Lebesgue measure µ0 of a set containing only one point must be zero. In

fact, since

{a} ⊂
(
a− 1

n
, a +

1

n

)
for every positive integer n, we must have µ0({a}) = 0. Hence, the Lebesgue

measure of a set containing countably many points must also be zero. Instead,

for example in the case Ω = R1, one is often given a piecewise continuous

probability density function (p.d.f.) f , i.e., f is nonnegative, integrable, and∫∞
−∞ f(x)dx = 1. For an interval I = (a, b) or (b,∞), −∞ ≤ a < b ≤ ∞, one

then assigns the probability P (I) =
∫ b
a f(x)dx, by a Riemann integral. The

Lebesgue measure of a set containing uncountably many points can be either

zero, positive and finite, or infinite. We may not compute the Lebesgue measure

of an uncountable set by adding up the Lebesgue measure of its individual

members, because there is no way to add up uncountably many numbers.

This set function P may be extended to the class C comprising all finite

unions F = ∪jIj of pairwise disjoint intervals Ij by setting P (F ) =
∑

j P (Ij).

The class C is a field, i.e., the empty set and Ω belong to C and it is closed

under complements and finite intersection (and therefore finite unions). But,

since C is not a σ field, usual sequentially applied operations on events may

lead to events outside of C for which probabilities have not been defined. But

a theorem from measure theory, the Caratheodory Extension Theorem, asserts

that there is a unique countably additive extension of P from a field C to the

smallest σ field that contains C. In the case of C above, this σ field is called the

Borel σ field B1 on R1 and its sets are called Borel sets of R1.

In general, such an extension of P to the power set σ-field, that is the

collection of all subsets of R1, is not possible. The same considerations apply

to all measures (i.e., countably additive nonnegative set functions µ defined

on a σ-field with µ(O) = 0), whether the measure of Ω is 1 or not. The

measure µ0 = m, which is defined first for each interval I and the length of

the interval, and then extend uniquely to B1, is called Lebesgue measure on

R1. Similarly, one defines the Lebesgue measure on Rk (k ≥ 2) whose Borel

σ-field Bk is the smallest σ field that contains all k-dimensional rectangles

I = I1 × I2 × · · · × Ik, with Ij a one-dimensional rectangle (interval) of the

previous type. The Lebesgue measure of a rectangle is the product of the lengths

of its sides, i.e., its volume. Lebesgue measure on Rk has the property that

the space can be decomposed into a countable union measurable sets of finite

Lebesgue measure; such measures are said to be sigma-finite. All measures
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referred to in this note are sigma-finite.

2.2 Extension

A finitely additive measure µ on a field F is a real-valued (including ∞), non-

negative function with domain F such that for A, B ∈ F , A ∩B = Ø,

µ(A ∪B) = µ(A) + µ(B).

The extension problem for measures is: Given a finitely additive measure µ0

on a field F0, when does there exist a measure µ on F(F0) agreeing with µ0 on

F0? A measure has certain continuity properties:

Theorem 2 Let µ be a measure on the σ-field F. If An ↓ A, An ∈ F , and if

µ(An) < ∞ for some n, then

lim
n

µ(An) = µ(A).

Also, if An ↑ A, An ∈ F , then

lim
n

µ(An) = µ(A).

This is called continuity from above and below. Certainly, if µ0 is to be ex-

tended, then the minimum requirement needed is that µ0 be continuous on its

domain. Call µ0 continuous from above at Ø if whenever An ∈ F0, An ↓ Ø, and

µ0(An) < ∞ for some n, then

lim
n

µ0(An) = 0.

Consider the example that

A1 = [1,∞), A2 = [2,∞), A3 = [3,∞), . . . .

Then ∩∞k=1Ak = Ø, so µ(∩∞k=1Ak) = 0, but limn→∞ µ(An) = ∞.

Caratheodory Extension Theorem. If µ0 on F0 is continuous from

above at Ø, then there is a unique measure µ on F(F0) agreeing with µ0 on F0

(see Halmos, p. 54).

The extension of a measure µ from a field C, as provided by the Caratheodory

Extension Theorem stated above, is unique and may be expressed by the for-

mula

µ(F ) = inf
∑
n

µ(Cn), (F ∈ F),

where the summation is over a finite collection C1, C2, . . . of sets in C whose

union contains F and the infimum is over all such collections.
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As suggested by the construction of measures on Bk outlined above, start-

ing from their specifications on a class of rectangles, if two measures µ1 and µ2

on a sigmafield F agree on subclass A ⊂ F closed under finite intersections and

Ω ∈ A, then they agree on the smallest sigmafield, denoted σ(A), that contains

A. The sigmafield σ(A) is called the σ-field generated by A. On a metric space

S the σ-field B = B(S) generated by the class of all open sets is called the Borel

σ field.

2.3 Lebesgue integral

An indicator function g from R to R is a function which takes only the values

0 and 1. We call

A = {x ∈ R; g(x) = 1}

the set indicated by g. We define the Lebesgue integral of g to be∫
R

gdµ = µ0(A).

A simple function h from R to R is a linear combination of indicators, i.e., a

function of the form h(x) =
∑n

k=1 ckgk(x), where each gk is of the form

gk(x) =

 1 if x ∈ Ak

0 if x 6∈ Ak

and each ck is a real number. We define the Lebesgue integral of h to be∑n
k=1 ckµ(Ak). Let f be a nonnegative function defined on R, possibly taking

the value ∞ at some points. We define the Lebesgue integral of f to be∫
R

fdµ0 = sup
{∫

R
hdµ0; h is simple and h(x) ≤ f(x) for every x ∈ R

}
.

It is possible that this integral is infinite. If it is finite, we say that f is integrable.

Finally, let f be a function defined on R, possibly taking the value ∞
at some points and the value −∞ at other points. We define the positive and

negative parts of f to be

f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0},

respectively, and we define the Lebesgue integral of f to be∫
R

fdµ0 =
∫

R
f+dµ0 −

∫
R

f−dµ0,

provided the right-hand side is not of the form ∞−∞. If both
∫
R f+dµ0 and∫

R f−dµ) are finite (or equivalently,
∫
R |f |dµ0 < ∞, since |f | = f+ + f−), we

say that f is integrable.
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Let f be a function defined on R, possibly taking the value ∞ at some

points and the value −∞ at other points. Let A be a subset of R. We define∫
A fdµ0 =

∫
R 1Afdµ0.

The Lebesgue integral just defined is related to the Riemann integral in

one very important way: if the Riemann integral
∫ b
a f(x)dx is defined, then the

Lebesgue integral
∫
[a,b] fdµ0 agrees with the Riemann integral. The Lebesgue

integral has two important advantages over the Riemann integral. The first

is that the Lebesgue integral is defined for more functions, as we show in the

following examples.

Example 2. Let Q be the set of rational numbers in [0, 1] and consider f = 1Q.

Being a countable set, Q has Lebesgue measure zero, and so the Lebesgue

integral of f over [0, 1] is
∫
[0,1] fdµ0 = 0. To compute the Riemann integral∫ 1

0 f(x)dx, we choose partition points 0 = x0 < x1 < · · · < xn = 1 and and

divide the interval [0, 1] into subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn]. In each

subinterval [xk−1, xk] there is a rational point qk, where f(qk) = 1, and also an

irrational point rk, where f(rk) = 0. We approximate the Riemann integral

from above by the upper sum 1 and also approximate it from below by the

lower sum 0. No matter how fine we take the partition of [0, 1], the upper sum

is always 1 and the lower sum is always 0. Since these two do not converge

to a common value as the partition becomes finer, the Riemann integral is not

defined.

Example 3. Consider the function

f(x) =

 ∞, if x = 0,

0, if x 6= 0.

Every simple function which lies between 0 and f is of the form

h(x) =

 y, if x = 0,

0, if x 6= 0.

for some y ∈ [0,∞), and thus has Lebesgue integral∫
R

hdµ0 = yµ({0}).

It follows that
∫
R fdµ0 = 0. Now consider the Riemann integral

∫∞
−∞ f(x)dx,

which for this function f is the same as the Riemann integral
∫ 1
−1 f(x)dx. When

we partition [−1, 1] into subintervals, one of these will contain the point 0, and

when we compute the upper approximating sum for
∫ 1
−1 f(x)dx, this point will

contribute ∞ times the length of the subinterval containing it. Thus the upper

approximating sum is ∞. On the other hand, the lower approximating sum is

0, and again the Riemann integral does not exist.
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The Lebesgue integral has all linearity and comparison properties one

would expect of an integral. In particular, for any two functions f and g and

any real constant c,∫
R
(f + g)dµ0 =

∫
R

fdµ0 +
∫

R
gdµ0,∫

R
cfdµ0 = c

∫
R

fdµ0,∫
R

fdµ0 ≤
∫

R
gdµ0, when f(x) ≤ g(x)∫

A∪B
fdµ0 =

∫
A

fdµ0 +
∫

B
fdµ0.

There are three convergence theorems satisfied by the Lebesgue integral.

In each of these the situation is that there is a sequence of functions fn, n =

1, 2, . . . converging pointwise to a limiting function f . Pointwise convergence

just means that

lim
n→∞

fn(x) = f(x) for every x ∈ R.

There are no such theorems for the Riemann integral, because the Riemann

integral of the limiting function f is too often not defined. Before we state

the theorems, we given two examples of pointwise convergence which arise in

probability theory.

Example 4. Consider a sequence of normal densities, each with variance

1 and the n-th having mean n:

fn(x) =
1√
2π

exp

(
−(x− n)2

2

)
.

These converge pointwise to the zero function. We have
∫
R fndµ0 = 1 for every

n but
∫
R fdµ) = 0.

Example 5. Consider a sequence of normal densities, each with mean 0

and the n-th having variance 1/n:

fn(x) =
n√
2π

exp

(
− x2

2n−1

)
.

These converge pointwise to the function

f(x) =

 ∞, if x = 0,

0, if x 6= 0.

We have
∫
R fndµ0 = 1 for every n but

∫
R fdµ0 = 0.

Theorem 3 (Fatous Lemma) Let fn, n = 1, 2, . . . be a sequence of nonnegative

functions converging pointwise to a function f . Then∫
R

fdµ0 ≤ lim inf
n→∞

∫
R

fndµ0.
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The key assumption in Fatou’s Lemma is that all the functions take only non-

negative values. Fatou’s Lemma does not assume much but it is is not very

satisfying because it does not conclude that∫
R

fdµ0 = lim
n→∞

∫
R

fndµ0,

There are two sets of assumptions which permit this stronger conclusion.

Theorem 4 (Monotone Convergence Theorem) Let fn, n = 1, 2, . . . be a se-

quence of functions converging pointwise to a function f . Assume that

0 ≤ f1(x) ≤ f2(x) ≤ · · · for every x ∈ R.

Then ∫
R

fdµ0 = lim
n→∞

∫
R

fndµ0,

where both sides are allowed to be ∞.

Theorem 5 (Dominated Convergence Theorem) Let fn, n = 1, 2, . . . be a se-

quence of functions converging pointwise to a function f . Assume that there is

a nonnegative integrable function g (i.e.,
∫
R gdµ0 < ∞) such that

|fn(x)| ≤ g(x) for every x ∈ R for every n.

Then ∫
R

fdµ0 = lim
n→∞

∫
R

fndµ0,

and both sides will be finite.

2.4 Related results in probability theory

Theorem 6 (Bounded Convergence Theorem) Suppose that Xn converges to X

in probability and that there exists a constant M such that P (|Xn| ≤ M) = 1.

Then E(Xn) → E(X).

Proof. Let {xi} be a partition of R such that FX is continuous at each xi.

Then ∑
i

xiP{xi < Xn ≤ xi+1} ≤ E(Xn) ≤
∑

i

xi+1P{xi < Xn ≤ xi+1}

and taking limits we have∑
i

xiP{xi < Xn ≤ xi+1} ≤ limE(Xn)

≤ limE(Xn) ≤
∑

i

xi+1P{xi < Xn ≤ xi+1}.

As max |xi+1 − xi| → 0, the left and right sides converges to E(X) giving the

theorem.
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Theorem 7 (Monotone Convergence Theorem) Suppose 0 ≤ Xn ≤ X and Xn

converges to X in probability. Then limn→∞ E(Xn) = E(X).

Proof. For M > 0

E(X) ≥ E(Xn) ≥ E(Xn ∧M) → E(X ∧M)

where the convergence on the right follows from the bounded convergence the-

orem. It follows that

E(X
∧

M) ≤ lim inf
n→

E(Xn) ≤ lim sup
n→

E(Xn) ≤ E(X).

Theorem 8 (Dominated Convergence Theorem) Assume Xn and Yn converge

to X and Y , respectively, in probability. Also, |Xn| ≤ Yn and E(Yn) → E(Y ) <

∞. Then limn→∞ E(Xn) = E(X).

Its proof follows from Fatou Lemma.

3 Mode of Convergence

On Ω there is defined a sequence of real-valued functions X1(w), X2(w), . . .

which are random variables in the sense of the following definition.

Definition A function X(w) defined on Ω is called a random variable if for

every Borel set B in the real line R, the set is {w : X(w) ∈ B} is in F . (X(w)

is a measurable function on (Ω,F). )

3.1 Convergence in Distribution

Suppose we flip a fair coin 400 times and want to find out the probability

of getting heads between 190 and 210. A standard practice is to invoke the

Central Limit Theorem to get an approximation of the above probability. Let

S400 denote the number of heads in the 400 flips. For this particular problem,

our major concern is P (190 ≤ S400 ≤ 210) or whether this probability can be

approximated well by P (−1.05 ≤ Z ≤ 1.05). Here Z is a standard normal ran-

dom variable. In this example, we need the concept of converges in distribution.

Consider distribution functions F1(·), F2(·), . . . and F (·). Let X1, X2, . . . and X

denote random variables (not necessarily on a common probability space) hav-

ing these distributions, respectively. We say that Xn converges in distribution

(or in law) to X if

lim
n→∞

Fn(t) = F (t), for all t which are continuity points of F .
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This is written Xn
d→ X or Xn

L→ X or Fn
w→ F . What are convergent here

are not the values of the random variables themselves, but the probabilities

with which the random variables assume certain values. If Xn
d→ X, then the

distribution of Xn can be well approximated for large n by the distribution of

X. This observation is extremely useful since FX is often easier to compute

than FXn .

In general, we would like to say that the distribution of the random vari-

ables Xn converes to the distribution of X if Fn(x) = P (Xn < x) → F (x) =

P (X < x) for every x ∈ R. But this is a bit too strong. We now use an example

to illustrate why we require the convergence only occurs at the continuity points

of F? Consider random variables Xn which take values 1−n−1 or 1+n−1 with

probabilities 1/2. Heuristically, we would want the values of Xn to be more and

more concentrated about 1. Note that the distribution of Xn is

Fn(x) =


0, x < 1− n−1

1/2, 1− n−1 ≤ x < 1 + n−1

1, x ≥ 1 + n−1.

By calculation, we have Fn(x) → F ∗(x) as n →∞ where

F ∗(x) =


0, x < 1

1/2, x = 1

1, 1 < x.

On the other hand, for the random variable X taking value 1 with probability

1. The distribution of X is

F (x) =

 0, x < 1

1, x ≥ 1.

Apparently, not much should be assumed about what happens for x at a dis-

continuity point of F (x). Therefore, we can only consider convergence in dis-

tribution at continuity points of F . Read Example 14.3-2(pp467) of Bishop,

Feinberg and Holland (1975) for direct verification that Fn
w→ F . Another

important tool for establishing convergence in distribution is to use moment-

generating function or characteristic function. Read Example 14.3-3(pp467) of

Bishop, Feinberg and Holland (1975). In later section, we will use this tool to

prove the central limit theorem (Chung[1974], Theorem 6.4.4).

When we talk about convergence in distribution, w never come into the

picture. As an example, flip a fair coin once. Let X = 1 if we get head and

X = 0, otherwise. On the other hand, set Y = 1 − X. It is obvious that X
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and Y have the same distribution. As a remark, the random variable X is a

function of w but we can never observe w.

3.2 Convergence with Probability 1

Next, we discuss convergence with probability 1 (or strongly, almost surely, al-

most everywhere, etc.) which is closely related to the convergence of sequences

of functions in advanced calculus. This criterion of convergence is of partic-

ular importance in the probability limit theorems known as the laws of large

numbers. This is defined in terms of the entire sequence of random variables

X1, X2, . . . , Xn, . . .. Regarding such a sequence as a new random variable with

realized value x1, x2, . . . , xn, . . ., we may say that this realized sequence either

does or does not converge in the ordinary sense to a limit x. If the probability

that it does so is unity, then we say that Xn → X almost certainly. Consider

random variables X1, X2, · · · and X, we say that Xn converges with probability

1 (or almost surely) to X if

P (w : lim
n→∞

Xn(w) = X(w)) = 1.

This is written Xn
wp1→ X, n →∞. To be better understanding this convergence,

we give the following equivalent condition:

lim
n→∞

P (|Xm −Xn| < ε, for all m ≥ n) = 1, for every ε > 0.

Suppose we have to deal with questions of convergence when no limit

is in evidence. For convergence almost surely, this is immediately reducible

to the numerical case where the Cauchy criterion is applicable. Specifically,

{Xn} converges a.s. if and only if there exists a null set N such that for every

w ∈ Ω−N and every ε > 0, there exists m(w, ε) such that

n
′
> n ≥ m(w, ε) → |Xn(w)−Xn′ (w)| ≤ ε.

Or, for any positive ε and η, there is an n0 such that

P{|Xn −Xm| > ε for at least one m ≥ n} < η

for all n ≥ n0. As almost surely convergence depends on the simultaneous

behavior of Xn for all n ≥ n0, it is obviously more difficult to handle, but the

following sufficient criterion is useful. If
∑∞

n=1 E{|Xn − X|p} < ∞ for some

p > 0, then Xn → X almost surely. This criterion follows from the observation:

P (|Xm −X| > ε for some m ≥ n) = P (∪∞m=n{|Xm −X| > ε})

≤
∞∑

m=n

P (|Xm −X| > ε).
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3.2.1 Consistency of the Empirical Distribution Function

Let X1, . . . , Xn be independent identically distributed random variables on R
with distribution function F (x) = P (X ≤ x). The nonparametric maximum-

likelihood estimate of F is the sample distribution function or empirical distri-

bution function defined as

Fn(x) =
1

n

n∑
i=1

I[Xi,∞)(x).

Thus, Fn(x) is the proportion of the observations that fall less than or equal to x.

For each fixed x, the strong law of large numbers implies that Fn(x)
a.s.−→ F (x),

because we may consider I[Xi,∞)(x) as i.i.d. random variables with mean F (x).

Thus, Fn(x) is a strongly consistent estimate of F (x) for every x.

The following corollary improves on this observation in two ways. First,

the set of probability one on which convergence takes place may be chosen to

be independent of x. Second, the convergence is uniform in x. This assertion,

that the empirical distribution function converges uniformly almost surely to

the true distribution function, is known as the Glivenko-Cantelli Theorem.

COROLLARY. P{supx |Fn(x)− F (x)| → 0} = 1.

Proof. Let ε > 0. Find an integer k > 1/ε and numbers −∞ = x0 < x1 ≤
x2 ≤ · · · ≤ xk−1 < xk = ∞, such that

F (x−j ) ≤ j/k ≤ F (xj)

for j = 1, . . . , k − 1. [F (x−j ) may be considered notation for P (X < xj).] Note

that if xj−1 < xj then F (x−j ) − F (xj−1) ≤ ε. From the strong law of large

numbers, Fn(xj)
a.s.−→ F (xj) and Fn(x−j )

a.s.−→ F (x−j ) for j = 1, . . . , k− 1. Hence,

4n = max(|Fn(xj)− F (xj)|, |Fn(x−j )− F (x−j )|, j = 1, . . . , k − 1)
a.s.−→ 0.

Let x be arbitrary and find j such that xj−1 < x ≤ xj. Then,

Fn(x)− F (x) ≤ Fn(x−j )− F (xj−1) ≤ Fn(x−j )− F (x−j ) + ε,

and

Fn(x)− F (x) ≥ Fn(xj−1)− F (x−j ) ≥ Fn(xj − 1)− F (xj−1)− ε.

This implies that

sup
x
|Fn(x)− F (x)| ≤ 4n + ε

a.s.−→ ε.

Since this holds for all ε > 0, the corollary follows.
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3.2.2 Law of Large Numbers

The weak (strong) law of large numbers states the sample mean is a weakly

(strongly) consistent estimate of the population mean. The weak law of large

numbers says that if X1, . . . , Xn are i.i.d. random variables with finite first

moment, µ, then for every ε > 0 we have

P (|X̄n − µ| > ε) → 0

as n → ∞. The argument of using Chebyschev inequality with finite second

moment shows that

P (|X̂n − µ| > ε) → 0

at rate 1/n. On the other hand, we can show that X̂n converges to µ weakly

(strongly) as long as E|X| < ∞.

3.3 Convergence in Probability

We say that Xn converges in probability to X as n →∞ if, for any positive ε,

lim
n→∞

P (w : |Xn(w)−X(w)| > ε) = 0.

This is written Xn
P→ X, as n → ∞. A necessary and sufficient condition for

such convergence is that for any positive ε and η there is an n0 such that

P (w : |Xn(w)−X(w)| > ε) < η for all n ≥ n0.

A numerical constant c can always be viewed as a degenerate random variable C

whose distribution has all of its probability concentrated on the single value c.

As an example, the weak law of large numbers states that the random variable

sample mean converges in probability to a population mean (a constant).

Now we try to use the following theorem and the example to illustrate the

difference between converegence with probability 1 and convergence in probabil-

ity. For convergence in probability, one needs for every ε > 0 that the probability

that Xn is within ε of X tends to one. For convergence almost surely, one needs

for every ε > 0 that the probability that Xn stays within ε of X for all k ≥ n

tends to one as n tends to infinity.

Theorem 9 The sequence {Xn} of random variables converges to a random

variable X with probability 1 if and only if

lim
n→∞

P {∪∞m=n(|Xm −X| ≥ ε)} = 0

for every ε > 0.
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By the above theorem, convergence in probability is weaker than con-

vergence with probability 1. The following example is used to illustrate the

difference.

Example 6. Let Ω = [0, 1], and let S be the class of all Borel sets on Ω. Let

P be the Lebesgue measure. For any positive integer n, choose integer m with

2m ≤ n < 2m+1. Clearly, n →∞ if and only if m →∞. We can write n ≥ 1 as

n = 2m + k, k = 0, 1, . . . , 2m − 1. Let us define Xn on Ω by

Xn(w) =

 1 if w ∈
[

k
2m , k+1

2m

]
,

0 otherwise,

if n = 2m + k. Then Xn is a random variable which satisfies

P{|Xn(w)| ≥ ε} =


1

2m if 0 < ε < 1,

0 if ε ≥ 1,

so that Xn
P→ 0. However, Xn does not converge to 0 with probability 1. In

fact, for any w ∈ [0, 1], there are an infinite number of intervals of the form

[k/2m, (k + 1)/2m] which contain w. Such a sequence of intervals depends on

w. Let us denote it by {[
k

2m
,
k + 1

2m

]
, m = 1, 2, . . .

}
,

and let nm = 2m + km. Then Xnm(w) = 1, but Xn(w) = 0 if n 6= nm. It follows

that {Xn} does not converge at w. Since w is arbitrary, Xn does not converge

with probability 1 to any random variable.

3.3.1 Borel-Cantelli Lemma

First, we give an example to illustrate the difference between convergence in

probability and convergence in distribution. Consider {Xn} where Xn is uni-

formly distributed on the set of points {1/n, 2/n, . . . , 1}. It can be shown easily

that Xn
L→ X where X is uniformly distributed over (0, 1). Can we answer the

question whether Xn
P→ X?

Next, we give the Borel-Cantelli Lemma and the concept of infinitely of-

ten which are often used in proving strong law of large number. For events Aj,

j = 0, 1, . . ., the event {Aj i.o.} (read Aj infinitely often), stands for the event

that infinitely many Aj occur.

THE BOREL-CANTELLI LEMMA. If
∑∞

j=1 P (Aj) < ∞, then P{Aj i.o.} =

0. Conversely, if the Aj are independent and
∑∞

j=1 P (Aj) = ∞, then P{Aj i.o.} =

1.



23

Proof. (The general half) If infinitely many of the Aj occur, then for all n, at

least one Aj with j ≥ n occurs. Hence,

P{Aj i.o.} ≤ P


∞⋃

j=n

Aj

 ≤
∞∑

j=n

P (Aj) → 0.

The proof of the converse can be found in standard probability textbook.

A typical example of the use of the Borel-Cantelli Lemma occurs in coin

tossing. Let X1, X2, . . . be a sequence of independent Bernoulli trials with

probability of success on the nth trial equal to pn. What is the probability of

an infinite number of successes? Or, equivalently, what is P{Xn = 1 i.o.}?
From the Borel-Cantelli Lemma and its converse, this probability is zero or

one depending on whether
∑

pn < ∞ or not. If pn = 1/n2, for example, then

P{Xn = 1 i.o.} = 0. If pn = 1/n, then P{Xn = 1 i.o.} = 1.

The Borel-Cantelli Lemma is useful in dealing with problems involving

almost sure convergence because Xn
a.s.−→ X is equivalent to

P{|Xn −X| > ε i.o.} = 0, for all ε > 0.

3.4 Convergence in rth Mean

We say that Xn converges in rth mean to X if

lim
n→∞

E|Xn −X|r = 0.

This is written Xn
rth→ X, n →∞. We say that X is dominated by Y if |X| ≤ Y

almost surely, and that the sequence {Xn} is dominated by Y iff this is true

for each Xn with the same Y . We say that X or {Xn} is uniformly bounded iff

the Y above may be taken to be a constant. Observe that

E|Xn−X|r = E|Xn−X|r1{|Xn−X|<ε}+E|Xn−X|r1{|Xn−X|>ε} ≤ εr+EY r1{|Xn−X|>ε}.

We then conclude that Xn
rth→ X if Xn

P→ X and {Xn} is dominated by some

Y that belongs to Lp.

We now use a Chebyshev type of “weak laws of large numbers” to demon-

strate a method for determining the large sample behavior of linear combination

of random variables.

Theorem (Chebyshev). Let X1, X2, . . . be uncorrelated with means µ1, µ2, . . .

and variances σ2
1, σ

2
2, . . .. If

∑n
i=1 σ2

i = o(n2), n →∞, then

1

n

n∑
i=1

Xi −
1

n

n∑
i=1

µi
P→ 0.
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Proof. By the Chebyschev’s inequality, we see that

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi −
1

n

n∑
i=1

µi

∣∣∣∣∣ > ε

)
≤ 1

ε2

1

n2

n∑
i=1

σ2
i → 0.

By the definition of convergence in probability, we prove that this theorem

holds.

Remark. The method we just use can be viewed as an application of the

fact of Convergence in rth Mean Implies Convergence in Probability.

Theorem 10 If Xn converges to X in rth mean, then it converges to X in

probability. The converse is true provided that {Xn} is dominated by some Y

with E|Y |r < ∞.

Proof. For any ε > 0,

E|Xn −X|r ≥ E{|Xn −X|rI(|Xn −X| > ε)} ≥ εrP (|Xn −X| > ε)

and thus

P (|Xn −X| > ε) ≤ ε−rE|Xn −X|r → 0, n →∞.

As a further demonstration of Convergence in rth Mean Implies

Convergence in Probability, consider the following two examples.

Example 7. Let X1, X2, . . . be n independent random variables with mean

µ, common variance σ2, and common third and fourth moments about their

mean, µ3 and µ4, respectively (that is µr = E(Xi − µi)
r). Show s2 = (n −

1)−1∑n
i=1(Xi − X̄)2 converges to σ2 in probability.

Solution 1: Calculate E(s2− σ2)2 and employ the fact that Convergence in

rth Mean Implies Convergence in Probability.

Fact: Let X1, X2, . . . , Xn be n independent random variables with means

θ1, θ2, . . . , θn, common variance σ2, and common third and fourth moments

about their mean, µ3 and µ4, respectively. If A is any n×n symmetric matrix,

and a is the column vector of the diagonal elements of A, then

V ar[XtAX] = (µ4 − 3σ4)ata + 2σ4trA2 + 4σ2θtA2θ + 4µ3θ
tAa.

Observe that E(s2) = σ2 and s2 can be written as X tAX, where A is a

projection matrix with diagonal elements 1 − n−1 and off-diagonal elements

−n−1. By calculation, we have V ar(s2) = (µ4 − n−3
n−1

σ4)/n. Hence, s2 P→ σ2.

Solution 2: Should we use such a complicate calculation? Write

s2 =
1

n− 1

[
n∑

i=1

X2
i − nX̄2

]
=

1

n− 1

n∑
i=1

X2
i −

n

n− 1
X̄2.
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Using WLLN and the definition of convergence in probability, we have s2 P→ σ2

since Xn + Yn
P→ c + d when Xn

P→ c and Yn
P→ d.

Example 8. (Lehmann[1983], p333) Consider a two-state Markov chain.

The variables X1, X2, . . . each take on the values 0 and 1, with the joint distri-

bution determined by the initial probability P (X1 = 1) = p1, and the transition

probabilities

P (Xi+1 = 1|Xi = 0) = π0, P (Xi+1 = 1|Xi = 1) = π1,

of which we shall assume 0 < π0, π1 < 1. For such a chain, the probability

pk = P (Xk = 1) typically depends on k and the initial probability p1. However,

as k → ∞, pk tends to a limit p, which is independent of p1. It is easy to see

what the value of p must be. For consider the recurrence relation

pk+1 = pkπ1 + (1− pk)π0 = pk(π1 − π0) + π0. (1)

If pk → p, this implies p = π0/(1−π1 +π0). Since pk = (p1− p)(π1−π0)
k−1 + p

by the iteration of (1) with k = 1, we have pk → p by |π1 − π0| < 1.

Now, the question is how to estimate p. Recall that pk = (p1 − p)(π1 −
π0)

k−1+p. We then expect that pk ≈ p when k is large. After n trials, a natural

estimator is X̄n which is the frequency of ones in these trials. We now prove

that X̄n is a consistent estimator of p. Observe that E(X̄n) = (p1 + · · ·+pn)/n.

Since pn → p, we have E(X̄n) → p or X̄n is asymptotically unbiased. Note that

EX̄n − p is the bias of proposed estimate X̄. Consistency of X̄n will therefore

follow if we can show that V ar(X̄n) → 0. Now

V ar(X̄n) =
n∑

i=1

n∑
j=1

Cov(Xi, Xj)/n
2

and for i < j

Cov(Xi, Xj) = P (Xi = 1, Xj = 1)− pipj = P (Xi = 1)P (Xj = 1|Xi = 1)− pipj.

Define the probability pj,i = P (Xj = 1|Xi = 1) for i < j. Then we have

pj,i = π1pj−1,i + π0(1− pj−1,i) = pj−1,i(π1 − π0) + π0

pi+1,i = π1.

Note that

pipj,i − pipj = pi{[(π1 − p)(π1 − π0)
j−i−1 + p]− [(p1 − p)(π1 − π0)

j−1 + p]}

= (π1 − π0)
j−i{(π1 − p)− (p1 − p)(π1 − π0)

i−1}[(p1 − p0)(π1 − π0)
i−1 + p].
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Hence, we have

|Cov(Xi, Xj)| ≤ M |π1 − π0|j−i.

Therefore, V ar(X̄n) is of order n−1 and hence that X̄n is consistent.

3.5 Relationships Among The Modes of Convergence

Theorem 1. (a) If Xn
wp1→ X, then Xn

P→ X.

(b) If Xn
rth→ X, then Xn

P→ X.

(c) If Xn
P→ X, then Xn

d→ X.

Proof of (c). For ε > 0 and x is a point of continuity of F , we have

{X ≤ x−ε} = {Xn ≤ x, X ≤ x−ε}∪{Xn > x,X ≤ x−ε} ⊂ {Xn ≤ x}∪{|Xn−X| ≥ ε}.

Hence,

P (X ≤ x− ε) ≤ P (Xn ≤ x) + P (|Xn −X| ≥ ε),

F (x− ε) ≤ Fn(x) + P (|Xn −X| ≥ ε).

Since Xn
P→ X, we have P (|Xn−X| ≥ ε) → 0. Thus F (x−ε) ≤ lim infn→∞ Fn(x).

By a similar argument, we have lim supn→∞ Fn(x) ≤ F (x+ε). Since x is a point

of continuity of F , we have

lim inf
n→∞

Fn(x) = lim sup
n→∞

Fn(x) = F (x).

4 Conditions for Existence of Moments of a Distribution

In this section, we discuss the relationship between moments and probability.

In fact, we talk about convergence in moments implies convergence in proba-

bility before. We now attempt to answer when can we say that convergence

in probability implies convergence in moments. Refer to Chapter 1 of Serfling

(1980) for further details.

Lemma 1 For any random variable X, (a) E|X| =
∫∞
0 P (|X| ≥ t)dt, (≤ ∞)

and

(b) if E|X| < ∞, then P (|X| ≥ t) = o(t−1), t →∞.

Proof. Denote by G the distribution of |X| and let c denote a (finite)

continuity point of G. By integration by parts, we have∫ c

0
xdG(x) =

∫ c

o
[1−G(x)]dx− c[1−G(c)], (2)

and hence also ∫ c

0
xdG(x) ≤

∫ c

o
[1−G(x)]dx. (3)
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Further, it is easily seen that

c[1−G(c)] ≤
∫ ∞

c
xdG(x). (4)

Now suppose that E|X| = ∞. Then (3) yields (a) for this case. On the other

hand, suppose that E|X| < ∞. Then (4) yields (b). Also, making use of (4) in

conjuction with (2), we obtain (a) for this case.

The lemma immediately yields its own generalization:

Corollary For any random variable X and real number r > 0,

(a) E|X|r = r
∫∞
0 tr−1P (|X| ≥ t)dt, and

(b) if E|Xr| < ∞, then P (|X| ≥ t) = o(t−r), t →∞.

If Xn
d→ X, we may also want to know if E(Xr

n) → E(Xr) for various

choices of r, usually 1 and 2. Usually, we refer to E(Xr) as the asymptotic rth

moment of Xn, while limn→∞ E(Xr
n) is the limit of the rth moment of Xn, if it

exists. Recall Slutsky Theorem which states that Xn
P→ X and Yn

p→ 0 imply

Xn + Yn
d→ X. Moreover, Yn

p→ 0 does not guarantee that E(Y r
n ) 6→ 0. Hence,

convergence in moments will not imply convergence in probability in general.

An implication is that the asymptotic variance is not necessary equal to the

limit of the variance. What can we stated quite generally is that the limit of

the variances is greater than or equal to the asymptotic variance which is given

in the next theorem.

Theorem 11 . If Xn
d→ X and if we let V ar(Xn) denote the variance of Xn

when it exists and set it equals to ∞ otherwise, then

lim inf
n→∞

V ar(Xn) ≥ V ar(X).

To see this, let us first state the following lemma.

Lemma 2 . Let Yn, n = 1, 2, . . . be a sequence of random variables tending

in law to a random variable Y with cdf H and with E(Y 2) = v2. Let YnA be

the random variable Yn truncated at ±A, so that YnA = Yn if |Yn| ≤ A, and

YnA = A or −A if Yn > A or < −A.

(i) Then

lim
A→∞

lim
n→∞

E(Y 2
nA) = lim

A→∞
lim

n→∞
E
[
min(Y 2

n , A2)
]
.

exists and is equal to v2.

(ii) If, in addition, E(Y 2
n ) → w2 as n →∞, then v2 ≤ w2.

Proof. (i) Note that YnA is a truncation of the random variable Yn. Since

Yn tends in law to Y , it follows that

lim
n→∞

E(Y 2
nA) =

∫ A

−A
y2dH(y) + A2P (|Y | > A),
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and as A →∞, the right side tends to v2.

(ii) It follows easily that

lim
A→∞

lim
n→

E(Y 2
nA) ≤ lim

n→
lim

A→∞
E(Y 2

nA) (5)

provided the indicated limits exist. Now

lim
A→∞

E(Y 2
nA) = E(Y 2

n )

so that the right side of (5) is w2, while the left side is v2 by (i).

Next, we give an example in which the asymptotic variance is equal to

the limit of variance.

Example 9. Suppose that Xn has the binomial distribution B(n, p). Let p̂ =

n−1Xn and Un =
√

n(p̂− p). Then we have

√
n(p̂2 − p2) = 2pUn +

U2
n√
n

. Observe that

E
U2

n√
n

=
√

nE(p̂− p)2 =
p(1− p)√

n
.

By Markov inequality, we have U2
n/
√

n
P→ 0. It follows from Slutsky Theorem,

√
n(p̂2 − p2)

d→ V , where V has the normal distribution N (0, 4p3(1 − p)). We

calculate that the actual variance of
√

n(p̂2
n − p2) is :

V ar(
√

n(p̂2
n − p2)) = nV ar(p̂2

n)

= 4p3(1− p) + n−1p2(10p2 − 16p + 6)− n−2p(6p3 − 12p2 + 7p− 1)

= 4p3(1− p) + O(n−1).

Now we state a theorem which can be used to justify why the above

example holds. (i.e., The reason is that |p̂| ≤ 1.) Quite often, we are interested

in getting an approximation of moments of h(X̄). Suppose that X̄
P→ µ. If h

is continuous, Taylor expansion gives us

h(x) = h(µ) + h
′
(µ)(x− µ) +

1

2
h

′′
(µ)(x− µ)2 + R(x, µ).

We then expect that

Eh(X̄) = h(µ) + h
′
(µ)E(X̄ − µ) +

1

2
h

′′
(µ)var(X̄) + Rn

= h(µ) +
1

2n
h

′′
(µ)σ2 + Rn

where Rn = E(R(X̄, µ)). The question is whether Rn tends to zero fast enough.

Refer to Chapter 1 of Bickel and Doksum (1977) for further reading.

Theorem 12 (Dominated Convergence Theorem) Suppose that Xn
P→ X, |Xn| ≤

|Y | with probability 1 (all n), and E|Y |r < ∞. Then Xn
rth→ X.
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5 Further Discussion on Convergence in Distribution

The following theorem provides another methodology (characteristic function)

for establishing convergence in distribution.

Theorem 13 (Serfling[1980], pp16). Let the distribution functions F, F1, F2, . . .

possess respective characteristic functions φ, φ1, φ2, . . .. The following state-

ments are equivalent:

1. Fn
w→ F ;

2. limn φn(t) = φ(t), each real t;

3. limn

∫
gdFn =

∫
gdF , each bounded continuous function g.

To demonstrate the above theorem, we will prove the most widely known ver-

sions of the Central Limit Theorem.

Theorem 14 (Lindeberg-Levy). Let {Xi} be I.I.D. with mean µ and finite

variance σ2 > 0. Then

√
n

(
1

n

n∑
i=1

Xi − µ

)
d→ N(0, σ2).

Proof. We may suppose µ = 0 by considering the r.v.’s Xi − µ, whose second

moment is σ2. Note that

E

(
exp

(
it

n∑
i=1

Xi

σ
√

n

))
=

[
φ

(
t

σ
√

n

)]n

=

1 +
i2σ2

2

(
t

σ
√

n

)2

+ o

(
|t|

σ
√

n

)2


n

=

{
1− t2

2n
+ o

(
t2

n

)}n

→ exp(−t2/2).

The limit being the ch.f. of normal distribution, the proof is ended.

We now state a result due to Cramer and Wold which states that the

distribution of a p-dimensional random variable is completely determined by

the one-dimensional distributions of linear functions. This result allows the

question of convergence of multivariate distribution functions to be reduced to

that convergence of univariate distribution functions.

Theorem. In Rk, the random vector Xn converges in distribution to the

random vector X if and only if each linear combination of the components of

Xn converges in distribution to the same linear combination of the components

of X.
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Next, we use this “Cramer-Wold device” to prove asymptotic multivari-

ate normality of cell frequency vectors. Consider a squence of n independent

trials, with k possible outcomes for each trial. Let pj denote the probability of

occurrence of the jth outcome in any given trial (
∑k

1 pj = 1). Let nj denote the

number of occurrences of the jth outcome in the series of n trials (
∑k

i nj = n).

We call (n1, . . . , nk) the “cell frequency vector” associated with the n trials.

The exact distribution of (n1, . . . , nk) is the multinomial distributionM(n, p)

where p = (p1, . . . , pk). Then E(ni) = npi, V ar(ni) = npi(1−pi) and Cov(ni, nj) =

−npipj, so that E(n1, . . . , nk) = np, Cov((n1, . . . , nk)) = n(Dp − ptp), where

Dp = diag(p). Let p̂ = n−1(n1, . . . , nk) be the vector of sample proportions,

and set Un =
√

n(p̂− p). Then E(Un) = 0, Cov(Un) = Dp − ptp.

Theorem 15 The random vector Un converges in distribution to k-variate nor-

mal with mean 0 and covariance Dp − ptp.

Proof. We compute the characteristic function of E exp(it
∑n

i=1 ui) where Un =

(u1, . . . , uk). Observe that

E

exp

it k∑
j=1

λjuj

 = E

exp

 k∑
j=1

itλj

(
nj√
n
−
√

npj

)
= exp

−it
√

n
k∑

j=1

λjpj

 · E
exp

 it√
n

k∑
j=1

λjnj


= exp

−it
√

n
k∑

j=1

λjpj

 ·
 k∑

j=1

pj exp

(
it√
n

λj

)n

=

 k∑
j=1

pj · exp

[
it√
n

(
λj −

k∑
i=1

λipi

)]n

=


k∑

j=1

pj

[
1 +

it√
n

(λj −
k∑

i=1

λipi)−
t2

2n
(λj −

k∑
i=1

λipi)
2 + o(n−1)

]
n

=

1− t2

2n

k∑
j=1

pj

(
λj −

k∑
i=1

λipi

)2

+ o(n−1)


n

→ exp

(
−t2

2
(λ1, . . . , λk)(Dp − ptp)(λ1, . . . , λk)

t

)
.

The limit being the ch.f. of the multivariate normal distribution with mean

vector 0 and covariance matrix Dp − ptp.
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6 Convergence in Distribution for Perturbed Random
Variables

A common situation in mathematical statistics is that the statistic of interest

is a slight modification of a random variable having a known limit distribution.

Usually, we can use the following theorem to derive the limit distribution for

perturbed random variable.

Theorem 16 (Slutsky). Let Xn
d→ X and Yn

p→ c, where c is a finite constant.

Then

(i) Xn + Yn
d→ X + c;

(ii) XnYn
d→ cX;

(iii) Xn/Yn
d→ X/c if c 6= 0.

Proof of (i). Choose and fix t such that t− c is a continuity point of FX .

Let ε > 0 be such that t− c + ε and t− c− ε are also continuity points of FX .

Then

FXn+Yn(t) = P (Xn + Yn ≤ t)

≤ P (Xn + Yn ≤ t, |Yn − c| < ε) + P (|Yn − c| ≥ ε)

≤ P (Xn ≤ t− c + ε) + P (|Yn − c| ≥ ε).

Hence, by the hypotheses of the theorem, and by the choice of t− c + ε,

lim sup
n

FXn+Yn(t) ≤ lim sup
n

P (Xn ≤ t− c + ε) + lim sup
n

P (|Yn − c| ≥ ε)

= FX(t− c + ε).

Similarly,

P (Xn ≤ t− c− ε) ≤ P (Xn + Yn ≤ t) + P (|Yn − c| ≥ ε)

and thus

FX(t− c− ε) ≤ lim inf
n

FXn+Yn(t).

Since t − c is a continuity point of FX , and since ε may be taken arbitrarily

small, we have

lim
n

FXn+Yn(t) = FX(t− c) = FX+c(t).

Now we derive the asymptotic distribution of sample variance to demon-

strate Slustky Theorem.

(Cont.) Example 7. Let X1, X2, . . . be n independent random variables with

mean µ, common variance σ2, and common third and fourth moments about
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their mean, µ3 and µ4, respectively. Find the asymptotic distribution of s2.

Solution: It is well-known that (n− 1)s2/σ2 follows a Chi-square distribution

with degrees of freedom n− 1 when the Xi’s are normally distributed. By the

calculation of Example 1.1, it states that var(s2) = (µ4 − n−3
n−1

σ4)/n. This re-

sult indicates that the distribution of s2 will depend on the third and fourth

moments of X in general. This raises the following question:

Can we look up the chi-square distribution table to derive confidence

interval or to do hypotheses testing on σ2 in general?

or

Is the distribution of s2 is robust against the assumption of normality?

To get some feeling on the above question, we will derive the distribution of
√

n(s2
n − σ2) without assuming that Xi’s are normally distributed. To make

our life easier, we rely on an asymptotic analysis to derive the asymptotic

distribution of
√

n(s2
n − σ2).

Observe that
n

n− 1
s2

n =
1

n

n∑
i=1

(Xi − X̄)2.

By WLLN, we expects that X̄ ≈ EX or

n− 1

n
s2

n ≈
1

n

n∑
i=1

(Xi − E(X))2.

Then CLT can be applied or
√

n(s2
n − σ2)

d→ N(0, V ar((X − EX)2)).

But how can we make it rigorously? Without loss of generality, we can assume

that EX = 0 and V ar(X) = 1. Write
n∑

i=1

(Xi − X̄)2 =
n− 1

n

n∑
i=1

X2
i −

1

n

∑
i6=j

XiXj.

Observe that

E

 1

n

∑
i6=j

XiXj

 = 0

var(X1, X2) = E(X1X2)
2

Cov(X1X2, X1X3) = E(X2
1X2X3)− [E(X1X2)][E(X1X3)] = 0

Cov(X1X2, X3X4) = E(X1X2X3X4)− [E(X1X2)][E(X3X4)] = 0

V ar

 1

n

∑
i6=j

XiXj

 =
1

n2
{n(n− 1)V ar(X1X2) + n(n− 1)(n− 2)cov(X1X2, X1X3)

+n(n− 1)(n− 2)(n− 3)(n− 4)cov(X1X2, X3X4)} =
n− 1

n
E(X2

1X
2
2 ).
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Hence, √
n

n

∑
i6=j

XiXj
P→ 0.

By Slustky Theorem, we have

√
n(s2

n − σ2)
d→ N(0, V ar((X − EX)2))

or

P
(√

n(s2
n − σ2) ≤ 1.96

√
µ4 − σ4

)
≈ 0.975

P

(
s2

n ≤ σ2 + 1.96

√
µ4 − σ4

√
n

)
≈ 0.975.

On the other hand, (n − 1)s2
n/σ

2 ∼ χ2
n−1 when Xi’s are normally dis-

tributed. If we can show that the following statement holds by checking the

chi-square table, it implies that the procedure for finding confidence interval

of σ2 or doing hypothesis testing on σ2 based on normal theory is generally

applicable when n is large.

P

(
s2

n ≤ σ2 + 1.96

√
µ4 − σ4

√
n

)
≈ 0.975.

Suppose that V ∼ χ2
n−1. We can write V = Z2

1 + · · ·+Z2
n−1 where Zi ∼ N(0, 1).

Hence,
V − (n− 1)√

2(n− 1)

d→ Z

where Z ∼ N(0, 1). It means that a Chi-square distribution of degree of freedom

n− 1 can be approximated well by a normal distribution with mean n− 1 and

variance 2(n − 1) as n tends to infinity. Suppose we look up the chi-square

distribution table to derive confidence interval for σ2.

P

(
s2

n ≤ σ2 + 1.96

√
µ4 − σ4

√
n

)

= P

(
(n− 1)s2

n

σ2
≤ n− 1 + 1.96

(n− 1)
√

µ4 − σ4

√
nσ2

)

= P

 (n−1)s2
n

σ2 − (n− 1)√
2(n− 1)

≤ 1.96(n− 1)
√

µ4 − σ4/
√

nσ2√
2(n− 1)


≈ P

 (n−1)s2
n

σ2 − (n− 1)√
2(n− 1)

≤ 1.96

√
µ4 − σ4

√
2σ4

 .

When µ4 = 3σ4,

P

(
s2

n ≤ σ2 + 1.96

√
µ4 − σ4

√
n

)
≈ 0.975.
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Otherwise, it cannot be close to 0.975. Therefore, the distribution of s2 is not

robust against the assumption of normality.

7 Convergence Properties of Transformed Sequences

Given that Xn → X in some sense of convergence, and given a function g, a

basic question is whether g(Xn) → g(X) in the same sense of convergence. The

following theorem states that the answer is yes if the function g is continuous.

As a remark, commonly used δ-method for approximating moments and distri-

butions relies on the following theorem. Further discussion of δ-method can be

found in the following two sections.

Theorem 17 Let X1, X2, . . . and X be random k-vectors defined on a proba-

bility space and let g be a vector-valued Borel function defined on Rk. Suppose

that g is continuous with PX-probability 1. Then

(i) Xn
wp1→ X implies g(Xn)

wp1→ g(X);

(ii) Xn
p→ X implies g(Xn)

p→ g(X);

(iii) Xn
d→ X implies g(Xn)

d→ g(X).

Suppose that X = k, a constant, Xn
p→ k and g is a function continuous

at k, then g(Xn)
p→ g(k).

Proof. If g is continuous at k, then for every ε > 0, there exists a constant

δ > 0 such that

|x− k| < δ ⇒ |g(x)− g(k)| < ε

so that

P (|Xn − k| < δ) ≤ P (|g(Xn)− g(k)| < ε).

But Xn
p→ k, so P (|Xn − k| < δ) → 1. This implies that

P (|g(Xn)− g(k)| < ε) → 1.

Or, g(Xn)
p→ g(k).

Consider the following example on finding the asymptotic distribution of

p̂2, the square of a binomial proportion. We begin by observing that

p̂2 = p2 + 2p(p̂− p) + (p̂− p)2,

or
√

n(p̂2 − p2) = 2p
√

n(p̂− p)
√

n(p̂− p)2 = 2pZn + n−1/2Z2
n,
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where we set Zn =
√

n(p̂ − p). We know that Zn converges in distribution,

so from above theorem we know that Z2
n also converges in distribution. Then

Z2
n = OP (1), and hence n−1/2Z2

n = oP (1). These facts give us

√
n(p̂2 − p2) = 2pZn + oP (1).

We conclude that p̂2 has an approximate normal distribution with mean p2 and

variance n−14p3(1− p).

The most commonly considered functions of vectors converging in some

stochastic sense are linear transformations and quadratic forms. As an example,

consider the residual of sum squares in linear regression.

Corollary 1 Suppose that the k-vectors Xn converge to the k-vector X wp 1,

or in probability, or in distribution. Let Am×k and Bk×k be matrices. Then

AX
′

n → AX
′
and XnBX

′

n → XBX
′
in the given mode of convergence.

Proof. The vector-valued function

Ax
′
=

(
k∑

i=1

a1ixi, . . . ,
k∑

i=1

amixi

)

and the real-valued function

xBx
′
=

k∑
i=1

k∑
j=1

bijxixj

are continuous functions of x = (x1, . . . , xk).

7.1 The δ Method for Calculating Asymptotic Distribution

If every individual in the population under study can be classified as falling

into one and only one of k categories, we say that the categories are mutually

exclusive and exhaustive. A randomly selected member of the population will

fall into one of the k categories with probability p, where p is the vector of cell

probabilities

p = (p1, p2, . . . , pk)

and
∑k

i=1 pi = 1. Here the cells are strung out into a line for purposes of

indexing only; their arrangement and ordering does not reflect anything about

the characteristics of individuals falling into a particular cell. The pi reflect the

relative frequency of each category in the population.

As an example, we might be interested in whether hair color is related to

eye color. We then can conduct a study by collecting a random sample and get

a count of the number of people who fall in this particular cross-classification
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determined by hair color and eye color. When the cells are defined in terms of

the categories of two or more variables, a structure relating to the nature of the

data is imposed. The natural structure for two variables is often a rectangular

array with columns corresponding to the categories of one variable and rows

to categories of the second variable; three variables creates layers of two-way

tables, and so on. The simplest contingency table is based on four cells, and the

categories depend on two variables. The four cells are arranged in a 2× 2 table

whose two rows correspond to the categorical variable A and whose two columns

correspond to the second categorical variable B. Double subscripts refer to the

position of the cells in our arrangement. The first subscript gives the category

number of variable A, the second of variable B, and the two-dimensional array

is displayed as a grid with two rows and two columns. The probability pij is

the probability of an individual being in category i of variable A and category

j of variable B. Usually, we have some theory in mind which can be checked in

terms of hypothesis testing such as

H0 : p = π (π a fixed value).

Then the problem can phrased as n observations from the k-cell multi-

nomial distribution with cell probabilities p1, . . . , pk. Then we encounter the

problem of proving asymptotic multivariate normality of cell frequency vectors.

To test H0, it can be proceed by the Pearson chi square test, which is to reject

H0 if X2 is too large, where

X2 =
k∑

i=1

(ni − nπi)
2

nπi

.

This test statistic was first derived by Pearson (1900). Then we need to answer

two questions. The first one is to determine what kind of the magnitude of X2

is the so-called too large. The second one is whether the Pearson chi-square test

is a reasonable testing procedure. These questions will be tackled by deriving

the asymptotic distribution of the Pearson chi square statistic under H0 and a

local alternative of H0.

Using matrix notation, X2 can be written as

X2 = UnD
−1
π U t

n,

where

Un =
√

n(p̂− π), p̂ = n−1(n1, . . . , nk), and Dπ = diag(π).

Let g(x) = xD−1
π xt for x = (x1, . . . , xk). Evidently, g is a continuous function

of x. It can be shown that Un
d→ U, where U has the multivariate normal
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distribution N (0,Dπ − πtπ). Then by the Corollary in previous section, we

have

UnD
−1
π Ut

n
d→ UD−1

π Ut.

Thus the asymptotic distribution of X2 under H0, which is the distribution

of UD−1
π Ut, where U has the N (0,Dπ − πtπ) distribution. This reduces the

problem to finding the distribution of a quadratic form of a multivariate normal

random vector. The above process is the so-called δ method.

Now we state without proof the following general result on the distribution

of a quadratic form of a multivariate normal random variable. It can be found

in Chapter 3b in Rao (1973) and Chapter 3.5 of Serfling (1980).

Theorem 18 If X = (X1, . . . , Xd) has the multivariate normal distribution

N (0, Σ) and Y = XAXt for some symmetric matrix A, then L[Y ] = L[
∑d

i=1 λiZ
2
i ],

where Z2
1 , . . . , Z

2
d are independent chi square variables with one degree of free-

dom each and λ1, . . . , λd are the eigenvalues of A1/2Σ(A1/2)t.

Apply the above theorem to the present problem, we see that L[UD−1
π Ut] =

L[
∑d

i=1 λiZ
2
i ], where λi are the eigenvalues of

B = D
−1/2
π (Dπ − πtπ)D

−1/2
π = I−

√
πt
√

π,

where
√

π = (
√

π1, . . . ,
√

πk). Now it remains to find the eigenvalues of B.

Since B2 = B and B is symmetric, the eigenvalues of B are all either 1 or 0.

Moreover,
k∑

i=1

λi = tr(B) = k − 1.

Therefore, we establish the result that under the simple hypothesis H0, Pear-

son’s chi-square statistic X2 has an asymptotic chi square distribution with

k − 1 degrees of freedom.

We already examined the limiting distribution of the Pearson chi square

statistic under H0 by employing δ method. In essence, the δ method requires

two ingredients: first, a random variable (which we denote here by θ̂n) whose

distribution depends on a real-valued parameter θ in such a way that

L[
√

n(θ̂n − θ)] → N(0, σ2(θ)); (6)

and second, a function f(x) that can be differentiated at x = θ so that it

possesses the following expansion about θ:

f(x) = f(θ) + (x− θ)f
′
(θ) + o(|x− θ|) as x → θ. (7)
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The δ method for finding approximate means and variances (asymptotic

mean and asymptotic variance) of a function of a random variable is justified

by the following theorem.

Theorem 19 (The one-dimensional δ method.) If θ̂n is a real-valued random

variable and θ is a real-valued parameter such that (6) holds, and if f is a

function satisfying (7), then the asymptotic distribution of f(θ̂n) is given by

L[
√

n(f(θ̂n)− f(θ))] → N(0, σ2(θ)[f
′
(θ)]2). (8)

Proof. Set Ωn = R, Ω = Ω1 × Ω2 × · · · × Ωn × · · · = ×∞
n=1Ωn, and Pn to be

the probability distribution of θ̂n on R. Note that Ω is the set of all sequences

{tn} such that tn ∈ Ωn. We define two subsets of Ω:

S = {{tn} ∈ Ω : tn − θ = O(n−1/2)},

T = {{tn} ∈ Ω : f(tn)− f(θ)− (tn − θ)f
′
(θ) = o(n−1/2)}.

Since f satisfies (7), then S ⊂ T . By (6), we have

n1/2(θ̂n − θ) = OP (1) and hence θ̂n − θ = OP (n−1/2). (9)

Note that S occurs in probability and hence T also occur in probability since

S ⊂ T . Finally,

f(θ̂n)− f(θ)− (θ̂n − θ)f
′
(θ) = oP (n−1/2) (10)

or
√

n(f(θ̂n)− f(θ)) =
√

n(θ̂n − θ)f
′
(θ) + oP (1). (11)

Now let Vn =
√

n(f(θ̂n) − f(θ)), Un =
√

n(θ̂n − θ), and g(x) = xf
′
(θ) for all

real numbers x. Then (11) may be rewritten as

Vn = g(Un) + oP (1).

Now we discuss the power of Pearson’s chi square test when p = π +

n−1/2µ. This case is useful in the study of goodness-of-fit tests when the model

being tested is wrong but not far wrong. In this case,

E(Xn) = nπ +
√

nµ, (12)

Cov(Xn) = n(Dπ − π
′
π) +

√
n(Dµ − 2π

′
µ) + µ

′
µ.

The coordinates of π and p both sum to 1 so that µ satisfies the condition∑k
i=1 µi = 0. Here µ acts as a noncentrality parameter.

Set Un =
√

n(p̂− π), so that E(Un) = µ, and

Cov(Un) = Dπ − πtπ + n−1/2(Dµ − 2πtµ) + n−1µtµ. (13)
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Theorem 20 . L[Un] → L[U], where U has the multivariate normal distribu-

tion with mean vector µ and covariance matrix Dπ − πtπ.

Proof. We compute the characteristic function of E exp(it
∑k

i=1 ui) and show

that it converges to that of U :

E

exp

it k∑
j=1

λjuj

 = E

exp

 k∑
j=1

itλj

(
nj√
n
−
√

npj

)
= exp

−it
√

n
k∑

j=1

λjpj

 · E
exp

 it√
n

k∑
j=1

λjnj


= exp

−it
√

n
k∑

j=1

λjpj

 ·
 k∑

j=1

pj exp

(
it√
n

λj

)n

=

 k∑
j=1

pj · exp

[
it√
n

(
λj −

k∑
i=1

λi

)]n

=


k∑

j=1

pj

[
1 +

it√
n

(λj −
k∑

i=1

λipi)−
t2

2n
(λj −

k∑
i=1

λipi)
2 + o(n−1)

]
n

=

1− t2

2n

k∑
j=1

pj

(
λj −

k∑
i=1

λipi

)2

+ o(n−1)


n

→ exp

it
k∑

j=1

λiµi −
t2

2
(λ1, . . . , λk)(Dπ − πtπ)(λ1, . . . , λk)

t


using the facts that

∑k
i=1 µiti = µtt and

k∑
i=1

πi(ti − tπt)2 = t(Dπ − πtπ)tt.

The limit being the ch.f. of the multivariate normal distribution with mean

vector µ and covariance matrix Dπ − πtπ.

7.2 Variance-Stabilizing Transformations

Sometime the statistic of interest for inference about a parameter θ is con-

veniently asymptotically normal, but with an asymptotic variance parameter

functionally dependent on θ, i.e., the asymptotic variance is σ2(θ). According

to the δ method, a smooth transformation, g, of statistic also are approximately

normally distributed. It turns out to be useful to know transformations g called

variance stabilizing, such that the asymptotic variance of that statistic is ap-

proximately independent of the parameter θ. Usually, g can be found by solving

a differential equation.
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Example. (Binomial Proportion) It is known that
√

n(p̂−p)
d→ N(0, p(1−

p)), where p̂ is a binomial proportion. Here the variance of p̂ depends on both

n and p. The problem of variance stabilization is to find a one-to-one function

g : D → R such that the variance of g(p̂) is proportional to n−1 and does not

depend on p. Suppose that such a g exists. Applying the δ method to g, we

have a differential equation

dg

dp
=

1√
p(1− p)

.

It can be solved easily that

g(p) = 2 arcsin
√

p + constant.

Further examples of the variance-stabilizing technique may be found in

Rao (1973), Section 6.g. Refer to the first five sections of Chapter 3 of Serfling

(1980) for additional reading on transformation of given statistics.

7.3 Multivariate versions of the δ method

Let θ̂n be a T -dimensional random vector: θ̂n = (θ̂n1, . . . , θ̂nT ), and let θ be a

T -dimensional vector parameter: θ = (θ1, . . . , θT ). We assume that θ̂n has an

asymptotic normal distribution in the sense that

L[
√

n(θ̂n − θ)] → N(0, Σ(θ̂n)). (14)

Here Σ(θ̂n) is the T × T asymptotic covariance matrix of θ̂n.

Now suppose f is a function defined on an open subset of T -dimensional

space and taking values in R-dimensional space, i.e.,

f(θ) = (f1(θ), . . . , fR(θ)) .

We assume that f has a differential at θ, i.e., that f has the following expansion

as x → θ:

fi(x) = fi(θ) +
T∑

j=1

(xj − θj)
∂fi

∂xj

∣∣∣∣∣
x=θ

+ o(‖x− θ‖) (15)

for i = 1, . . . , R. If we let (∂f/∂θ) denote the R×T matrix whose (i, j) entry is

the partial derivative of fi with respect to the jth coordinate of x = (x1, . . . , xT )

evaluated at x = θ, i.e., (
∂f

∂θ

)
ij

=
∂fi

∂xj

∣∣∣∣∣
x=θ

,
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then (15) can be expressed neartly in matrix notation as

f(x) = f(θ) + (x− θ)

(
∂f

∂θ

∣∣∣∣∣
x

+ o(‖x− θ‖)
)

(16)

as x → θ. Within this framework, the δ method can be stated as follows:

Theorem 21 (Multivariate δ method.) If θ̂n, θ, and f be as described above

and suppose (14) and (16) hold. Then the asymptotic distribution of f(θ̂n) is

given by:

L[
√

n(f(θ̂n)− f(θ))] → N

0,

(
∂f

∂θ

)
Σ(θ)

(
∂f

∂θ

)′ . (17)

Note that a broad class of statistics of interest, such as the sample coeffi-

cient of variation s/x̄, may be expressed as a smooth function of a vector of the

basic sample statistics. The sample moments are known to be asymptotically

jointly normal statistics. Then the above theorem can be used to find out the

asymptotic distribution of statistics of interest. Refer to Chapter 8 of Ferguson

(1996) on the asymptotic behavior of the sample correlation coefficient.
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