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Chapter 4. Method of Maximum Likelihood

1 Introduction

Many statistical procedures are based on statistical models which specify under

which conditions the data are generated. Usually the assumption is made that

the set of observations x1, . . . , xn is a set of (i) independent random variables (ii)

identically distributed with common pdf f(xi, θ). Once this model is specified,

the statistician tries to find optimal solutions to his problem (usually related to

the inference on a set of parameters θ ∈ Θ ⊂ Rk, characterizing the uncertainty

about the model).

The procedure just described is not always easy to carry out. In fact,

when confronted with a set of data three attitudes are possible:

• The statistician may be a “pessimist” who does not believe in any par-

ticular model f(x, θ). In this case he must be satisfied with descriptive

methods (like exploratory data analysis) without the possibility of induc-

tive inference.

• The statistician may be an “optimist” who strongly believes in one model.

In this case the analysis is straightforward and optimal solutions may often

be easily obtained.

• The statistician may be “realist”: he would like to specify a particular

model f(x, θ) in order to get operational results but he may have either

some doubt about the validity of this hypothesis or some difficulty in choos-

ing a particular parametric family.

Let us illustrate this kind of preoccupation with an example. Suppose

that the parameter of interest is the “center” of some population. In many

situations, the statistician may argue that, due to a central limit effect, the

data are generated by a normal pdf. In this case the problem is restricted to

the problem of inference on µ, the mean of the population. But in some cases,

he may have some doubt about these central limit effects and may suspect some

skewness and/or some kurtosis or he may suspect that some observations are

generated by other models (leading to the presence of outliers).

In this context three types of question may be raised to avoid gross errors

in the prediction, or in the inference:

• Does the optimal solution, computed for assumed model f(x, θ), still have

“good” properties if the true model is a little different?



2

• Are the optimal solutions computed for other models near to the original

one really substantially different?

• Is it possible to compute (exactly or approximately) optimal solutions for

a wider class of models based on very few assumptions?

The first question is concerned with the sensitivity of a given criterion to

the hypotheses (criterion robustness). In the second question, it is the sensitiv-

ity of the inference which is analyzed (inference robustness). The last question

may be viewed as a tentative first step towards the development of nonpara-

metric methods (i.e. methods based on a very large parametric space).

2 Information Bound

Any statistical inference starts from a basic family of probability measures, ex-

pressing our prior knowledge about the nature of the probability measures from

where the observations originate. Or a model P is a collection of probability

measures P on (X ,A) where X is the sample space with a σ-field of subsets A.

If

P = {Pθ : θ ∈ Θ}, Θ ⊂ Rs

for some k, then P is a parametric model. On the other hand, if

P = {all P on (X ,A)},

then P is often referred to as a nonparametric model.

Suppose that we have a fully specified parametric family of models. De-

note the parameter of interest by θ. Suppose that we wish to calculate from

the data a single value representing the “best estimate” that we can make of

the unknown parameter. We call such a problem one of point estimation.

Define the information matrix as the s× s matrix

I(θ) = ‖Iij(θ)‖,

where

Iij(θ) = Eθ

[
∂ log f(X; θ)

∂θi

∂ log f(X; θ)

∂θj

]
.

When k = 1, I(θ) is known as the Fisher information. Under regularity condi-

tions, we have

E

[
∂

∂θi

log f(X; θ)

]
= 0 (1)



3

and

Iij(θ) = cov

[
∂

∂θi

log f(X; θ),
∂

∂θj

log f(X; θ)

]
.

Being a covariance matrix, I(θ) is then positive semidefinite and positive definite

unless the (∂/∂θi) log f(X; θ), i = 1, . . . , s are affinely dependent (and hence,

by (1), linear dependent). When the density also has the second derivatives,

we have the following alternative expression for Iij(θ) which is

Iij(θ) = −E
[

∂2

∂θi∂θj

log f(X; θ)

]
.

To make above statements correct, we make the following assumptions

when s = 1:

(i) Θ is an open interval (finite, infinite, or semi-infinite).

(ii) The distribution Pθ have common support, so that without loss of generality

the set A = {x : pθ(x) > 0} is independent of θ. (2)

(iii) For any x in A and θ in Θ, the derivative p
′
θ(x) = ∂pθ(x)/∂θ exists and is finite.

Lemma 1 (i) If (2) holds, and the derivative with respect to θ of the left side

of ∫
f(x; θ)dµ(x) = 1 (3)

can be obtained by differentiating under the integral sign, then

Eθ

[
∂

∂θ
log f(X; θ)

]
= 0

and

I(θ) = varθ

[
∂

∂θ
log f(X; θ)

]
. (4)

(ii) If, in addition, the second derivative with respect to θ of log f(X; θ) exists

for all x and θ and the second derivative with respect to θ of the left side of (3)

can be obtained by differentiating twice under the integral sign, then

I(θ) = −Eθ

[
∂2

∂θ2
log f(X; θ)

]
.

Let us now derive the information inequality for s = 1.

Theorem 1 Suppose (2) and (4) hold, and that I(θ) > 0. Let δ be any statistic

with Eθ(δ
2) < ∞ for which the derivative with respect to θ of Eθ(δ) exists and

can be obtained by differentiating under the integral sign. Then

varθ(δ) ≥

[
∂
∂θ
Eθ(δ)

]2
I(θ)

.
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Proof. For any estimator δ of g(θ) and any function ψ(x, θ) with finite second

moment, the covariance inequality states that

varθ(δ) ≥
[cov(δ, ψ)]2

var(ψ)
. (5)

Denote g(θ) = Eθδ and set

ψ(X, θ) =
∂

∂θ
log f(X; θ).

If differentiation under the integral sign is permitted in Eθδ, it then follows that

cov(δ, ψ) =
∫
δ(x)

f
′
(x; θ)

f(x; θ)
f(x; θ)dx = g

′
(θ)

and hence

varθ(δ) ≥

[
g

′
(θ)
]2

var
[

∂
∂θ

log f(X, θ)
] .

This completes the proof of this theorem.

If δ is an unbiased estimator of θ, then

varθ(δ) ≥
1

nI(θ)
.

The above inequality provides a lower bound for the variance of any estimator.

In fact, the quantity nI(θ) is known as the “Cramer-Rao lower bound.” Like-

liwise, we can also have the information inequality for general s. We begin by

generalizing the correlation inequality to one involving many ψi (i = 1, . . . , r).

Theorem 2 For any unbiased estimator δ of g(θ) and any functions ψi(x, θ)

with finite second moments, we have

var(δ) ≥ γ
′
C−1γ, (6)

where γ = (γ1, · · · , γr) and C = ‖Cij‖ are defined by

γi = cov(δ, ψi), Cij = cov(ψi, ψj). (7)

Proof. Replace Y by δ and Xi by ψi(X, θ) in the following lemma. Then the

fact that ρ∗2 ≤ 1 yields this theorem.

Let (X1, . . . , Xr) and Y be random variables with finite second moment,

and consider the correlation coefficient corr(
∑
aiXi, Y ). Its maximum value ρ∗

over all (a1, . . . , ar) is the multiple correlation coefficient between Y and the

vector (X1, . . . , Xr).
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Lemma 2 Let (X1, . . . , Xr) and Y have finite second moment, let γi = cov(Xi, Y )

and Σ be the covariance matrix of the X’s. Without loss of generality, suppose

Σ is positive definite. Then

ρ∗2 =
γ

′
Σ−1γ

var(Y )
. (8)

Proof. Since a correlation coefficient is invariant under scale changes, the a’s

maximizing (8) are not uniquely determined. Without loss of generality, we

therefore impose the condition var(
∑

i aiXi) = a
′
Σa = 1. In view of a

′
Σa = 1,

corr(
∑

i

aiXi, Y ) = a
′
γ/
√
var(Y ).

The problem then becomes that of maximizing a
′
γ subject to a

′
Σa = 1. Using

the method of undetermined multipliers, one maximizes instead

a
′
γ − λ

2
a

′
Σa (9)

with respect to a and then determines λ so as to satisfy a
′
Σa = 1. Differentia-

tion with respect to the ai of (9) leads to a system of linear equations with the

unique solution

a =
1

λ
Σ−1γ, (10)

and the side condition a
′
Σa = 1 gives

λ = ±
√
γ′Σ−1γ.

Substituting these values of λ into (10), one finds that

a =
±Σ−1γ√
γ′Σ−1γ

and the maximum value of corr(
∑

i aiXi, Y ), ρ∗, is therefore the positive root

of (8).

Note that always 0 ≤ ρ∗ ≤ 1, and that ρ∗ is 1 if and only if constants

a1, . . . , ar and b exist such that Y =
∑

i aiXi + b.

Let us now state the information inequality for the multiparameter case

in which θ = (θ1, . . . , θs).

Theorem 3 Suppose that (1) holds and that I(θ) is positive definite Let δ be

any statistic with Eθ(δ
2) <∞ for which the derivative with respect to θi exists

for each i and can be obtained by differentiating under the integral sign. Then

varθ(δ) ≥ α
′
I−1(θ)α, (11)
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where α
′
is the row matrix with ith element

αi =
∂

∂θi

Eθ(δ(X)).

Proof. If the functions ψi of Theorem 2 are taken to be ψi = (∂/∂θi) log f(X; θ),

this theorem follows immediately.

Under regularity conditions on the class of estimators θ̂n under consider-

ation, it may be asserted that if θ̂n is AN(θ, n−1Σ(θ)), then the condition

Σ(θ)− I(θ)−1 is nonnegative definite

must hold. (Read Ch2.6 and 2.7 of Lehmann (1983) for further details.) In this

respect, an estimator θ̂n which is AN(θ,Σθ) is “optimal.” (Such an estimator

need not exist.)

The following definition is thus motivated. An estimator θ̂n which is called

asymptotically efficient, or best asymptotically normal (BAN). Under suitable

regularity conditions, an asymptotically efficient estimate exists. One approach

toward finding such estimates is the method of maximum likelihood. Neyman

(1949) pointed out that these large-sample criteria were also satisfied by other

estimates. He defined a class of best asymptotically normal estimates. So

far, we have described three desirable properties θ̂n. They are unbiasedness,

consistency, and efficiency. We now describe a general procedure to produce an

asymptotic unbiased, consistent, and asymptotic efficient estimator.

3 Maximum Likelihood Methodology

Many statistical techniques were invented in the nineteenth century by experi-

mental scientists who personally applied their methods to authentic data sets.

In these conditions the limits of what is computationally feasible are sponta-

neously observed. Until quite recently these limits were set by the capacity of

the human calculator, equipped with pencil and paper and with such aids as

the slide rule, tables of logarithms, and other convenient tables, which have

been in constant use from the seventeenth century until well into the twentieth.

Until the advent of the electronic computer, the powers of the human operator

set the standard. This restriction has left its mark on statistical technique, and

many new developments have taken place since it was lifted.

The first result of this modern computing revolution is that estimates de-

fined by nonlinear equations can be established as a matter of routine by the

appropriate iterative algorithms. This permits the use of nonlinear functional
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forms. Although the progress of computing technology made nonlinear estima-

tion possible, the statistical theory of Maximum Likelihood provided techniques

and respectability. Its principle was first put forward as a novel and original

method of deriving estimators by R.A. Fisher in the early 1920s. It very soon

proved to be a fertile approach to statistical inference in general, and was widely

adopted; but the exact properties of the ensuring estimators and test procedures

were only gradually discovered.

Let observations x = (x1, . . . , xn) be realized values of random variables

X = (X1, . . . , Xn) and suppose that the random vector X, having density

fX(x; θ) with respect to some σ-finite measure ν. Here θ is the scalar parameter

to be determined. The likelihood function corresponding to an observed vector

x from the density fX(x; θ) is written

LikX(θ
′
;x) = fX(x; θ

′
),

whose logarithm is denoted by L(θ
′
;x). When the Xi are iid with probability

density f(x; θ) with respect to a σ-finite measure µ,

f(x; θ) =
n∏

i=1

f(xi; θ).

If the parameter space is Ω, then the maximum likelihood estimate (MLE)

θ̂ = θ̂(x) is that value of θ
′
maximizing likX(θ

′
;x), or equivalently its logarithm

L(θ
′
;x), over Ω. That is,

L(θ̂;x) ≥ L(θ
′
;x) (θ

′ ∈ Ω). (12)

L(θ,x) is called the log-likelihood. Note that L is regarded as a function of θ

with x fixed.

A MLE may not exist. It certainly exists if Ω is compact and f(x; θ) is

upper semicontinuous in θ for all x. As an example, consider U(θ, θ+1). Later

on, we shall use the shorthand notation L(θ) for L(θ,x) and L
′
(θ), L(θ)

′′
, . . . for

its derivatives with respect to θ. (Note that f is said to be upper semicontinuous

if {x|f(x) < α} is an open set.)

Fisher was the first to study and establish optimum properties of esti-

mates obtained by maximizing the likelihood function, using criteria such as

consistency and efficiency (involving asymptotic variances) in large samples. At

that time, however, the computation involved were hardly practicable, this pre-

vented a widespread adoption of these methods. Fortunately, the new computer

technology had become generally accessible. Therefore, Maximum Likelihood

(ML) methodology is widely used now.
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It is a constant theme of the history of the method that the use of ML

techniques is not always accompanied by a clear appreciation of their limita-

tions. Le Cam (1953) complains that

· · · although all efforts at a proof of the general existence of [as-

ymptotically] efficient estimates · · · as well as a proof of the efficiency

of ML estimates were obviously inaccurate and although accurate

proofs of similar statements always referred not to the general case

but to particular classes of estimates · · · a general belief became estab-

lished that the above statements are true in the most general sense.

As an illustration, consider the famous Neyman-Scott (1948) problem. In this

example, the MLE is not even consistent.

Example 1. Estimation of a Common Variance. Let Xαj (j = 1, . . . , r)

be independently distributed according to N(θα, σ
2), α = 1, . . . , n. The MLEs

are

θ̂α = Xα·, σ̂2 =
1

rn

∑∑
(Xαj −Xα·)

2.

Furthermore, these are the unique solutions of the likelihood equations.

However, in the present case, the MLE of σ2 is not even consistent. To

see this, note that the statistics

S2
α =

∑
(Xαj −Xα·)

2

are identically independently distributed with expectation

E(S2
α) = (r − 1)σ2

so that
∑
S2

α/n→ (r − 1)σ2 and hence

σ̂2 → r − 1

r
σ2 in probability.

Example 2. Suppose X1, X2, . . . , Xn is a random sample from a uniform dis-

tribution U(0, θ). The likelihood function is

L(θ,x) =
1

θn
, 0 < x1, . . . , xn < θ.

Clearly L cannot be maximized wrt θ by differentiation. However, it is not

difficult to find θ̂n = X(n) with density function ntn−1/θn where t ∈ (0, θ).

Then

E(θ̂n) =
nθ

n+ 1
,

which is a biased estimator of θ. (But it is asymptotic unbiased.)
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3.1 Efficient Likelihood Estimation

According to the example discussed by Neyman and Scott (1948), we will show

that, under regularity conditions, the ML estimates are consistent, asymptot-

ically normal, and asymptotically efficient. For simplicity, our treatment will

be confined to the case of a 1-dimensional parameter.

We begin with the following regularity assumptions:

(A0) The distributions Pθ of the observations are distinct (otherwise, θ cannot

be estimated consistently).

(A1) The distributions Pθ have common support.

(A2) The observations are X = (X1, . . . , Xn), where the Xi are iid with prob-

ability density f(xi, θ) with respect to µ.

(A3) The parameter space Ω contains an open interval ω of which the true

parameter value θ0 is an interior point.

Theorem 4 Under assumptions (A0)-(A2),

Pθ0{f(X1, θ0) · · · f(Xn, θ0) > f(X1, θ) · · · f(Xn, θ)} → 1

as n→∞ for any fixed θ 6= θ0.

Proof. The inequality is equivalent to

1

n

n∑
i=1

log [f(Xi, θ)/f(Xi, θ0)] < 0.

By the strong law of large numbers, the left side tends with probability 1 toward

Eθ0 log[f(X, θ)/f(X, θ0)].

Since − log is strictly convex, Jensen’s inequality shows that

Eθ0 log[f(X, θ)/f(X, θ0)] < logEθ0 [f(X, θ)/f(X, θ0)] = 0, (13)

and the results follows. When θ0 is the true value, the above proof gives a

meaning to the numerical value of the Kullback-Leibler information number.

Namely, the likelihood ratio converges to zero exponential fast, at rate I(θ, η).

Remark 1. Define the Kullback-Leibler information number

I(θ, η) = Eθ

(
log

f(X, θ)

f(X, η)

)
.
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Note that I(θ, η) ≥ 0 with equality holding if and only if, f(x, θ) = f(x, η).

I(θ, η) is a measure of the ability of the likelihood ratio to distinguish between

f(X, θ) and f(X, θ0) when the latter is true.

Remark 2. If θ̂n is an MLE of θ and if g is a function, then g(θ̂n) is an

MLE of g(θ). When g is one-to-one, it holds obviously. If g is many-to-one,

this result holds again when the derivative of g is nonzero.

By Theorem 4, the density of X at the true θ0 exceeds that any other

fixed θ with high probability when n is large. We do not know θ0 but we can

determine the value θ̂ of θ which maximizes the density of X. However, Theorem

4 cannot guarantee that the MLE is consistent since we have to apply the law

of large numbers to the right-hand side of (13) for all θ
′ 6= θ simultaneously.

However, if Ω is finite, the MLE θ̂n exists, it is unique with probability tending

to 1, and it is consistent.

The following theorem is motivated by the simple fact by differentiating∫
f(x, θ)µ(dx) = 1 with respect to θ. It leads to

Eθ0

f
′
(X, θ0)

f(X, θ0)
= 0.

Theorem 5 Let X1, . . . , Xn satisfy assumptions (A0)-(A3) and suppose that

for almost all x, f(x, θ) is differentiable with respect to θ in w, with derivative

f
′
(x, θ). Then with probability tending to 1 as n→∞, the likelihood equation

∂

∂θ
[f(x1, θ) · · · f(xn, θ)] = 0 (14)

or, equivalently, the equation

L
′
(θ,x) =

n∑
i=1

f
′
(xi, θ)

f(xn, θ)
= 0 (15)

has a root θ̂n = θ̂n(x1, . . . , xn) such that θ̂n(X1, . . . , Xn) tends to the true values

θ0 in probability.

Proof. Let a be small enough so that (θ0 − a, θ0 + a) ⊂ w, and let

Sn = {x : L(θ0,x) > L(θ0 − a,x) and L(θ0,x) > L(θ0 + a,x)}. (16)

By Theorem 4, Pθ0(Sn) → 1. For any x ∈ Sn there thus exists a value θ0− a <
θ̂n < θ0 + a at which L(θ) has a local maximum, so that L

′
(θ̂n) = 0. Hence for

any a > 0 sufficiently small, there exists a sequence θ̂n = θ̂n(a) of roots such

that

Pθ0(|θ̂n − θ0| < a) → 1.
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It remains to show that we can determine such a sequence, which does not

depend on a.

Let θ̂∗n be the root closest to θ0, This exists because the limit of a sequence

of roots is again a root by the continuity of L(θ).) Then clearly Pθ0(|θ̂∗n− θ0| <
a) → 1 and this completes the proof.

Remarks. 1. This theorem does not establish the existence of a consis-

tent estimator sequence since, with the true value θ0 unknown, the data do not

tell us which root to choose so as to obtain a consistent sequence. An exception,

of course, is the case in which the root is unique.

2. It should also be emphasized that existence of a root θ̂n is not asserted

for all x ( or for a given n even for any x). This does not affect consistency,

which only requires θ̂n to be defined on a set S
′
n, the probability of which tends

to 1 as n→∞.

Above theorem establishes the existence of a consistent root of the likeli-

hood equation. The next theorem asserts that any such sequence is asymptot-

ically normal and efficient.

Theorem 6 Suppose that X1, . . . , Xn are iid and satisfy the assumptions (A0)-

(A3), the integral
∫
f(x, θ))dµ(x) can be twice differentiated under the integral

sign, and the existence of a third derivative satisfying∣∣∣∣∣ ∂3

∂θ3
log f(x, θ)

∣∣∣∣∣ ≤M(x) (17)

for all x ∈ A, θ0 − c < θ < θ0 + c with Eθ0 [M(X)] < ∞. Then any consistent

sequence θ̂n = θ̂n(X1, . . . , Xn) of roots of the likelihood equation satisfies

√
n(θ̂n − θ0)

d→ N

(
0,

1

I(θ0)

)
.

Proof. For any fixed x, expand L
′
(θ̂n) about θ0

L
′
(θ̂n) = L

′
(θ0) + (θ̂n − θ0)L

′′
(θ0) +

1

2
(θ̂n − θ0)

2L(3)(θ∗n)

where θ∗n lies between θ0 and θ̂n. By assumption, the left side is zero, so that

√
n(θ̂n − θ0) =

(1/
√
n)L

′
(θ0)

−(1/n)L′′(θ0)− (1/2n)(θ̂n − θ0)L(3)(θ∗n)

where it should be remembered that L(θ), L
′
(θ), and so on are functions of

(X1, . . . , Xn) as well as θ. The desired result follows if we can show that

1√
n
L

′
(θ0)

d→ N [0, I(θ0)], (18)
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that

− 1

n
L

′′
(θ0)

P→ I(θ0) (19)

and that
1

n
L(3)(θ∗n) is bounded in probabiliy. (20)

Of the above statements, (18) follows from the fact that

1√
n
L

′
(θ0) =

√
n

1

n

n∑
i=1

[
f

′
(Xi, θ0)

f(Xi, θ0)
− Eθ0

f
′
(Xi, θ0)

f(Xi, θ0)

]

since the expectation term is zero, and then from the CLT and the definition

of I(θ).

Next,

− 1

n
L

′′
(θ0) =

1

n

n∑
i=1

f
′2(Xi, θ0)− f(Xi, θ0)f

′′
(Xi, θ0)

f 2(Xi, θ0)
.

By the law of large numbers, this tends in probability to

I(θ0)− Eθ0

f
′′
(Xi, θ0)

f(Xi, θ0)
= I(θ0).

Finally,
1

n
L(3)(θ0) =

1

n

n∑
i=1

∂3

∂θ3
log f(Xi, θ)

so that by (17) ∣∣∣∣ 1nL(3)(θ∗n)
∣∣∣∣ < 1

n
[M(X1) + · · ·+M(Xn)]

with probability tending to 1. The right side tends in probability to Eθ0 [M(X)],

and this completes the proof.

Remarks. 1. This is a strong result. It establishes several major prop-

erties of the MLE in addition to its consistency. The MLE is asymptotically

normal, which is of great help for the derivation of (asymptotically valid) tests;

it is asymptotically unbiased; and it is asympotically efficient, since the vari-

ance of its limiting distribution equals the Cramer-Rao lower bound.

2. As a rule we wish to supplement the parameter estimates by an estimate of

their (asymptotic) variance. This will permit us to assess (asymptotic) t-ratios

and (asymptotic) confidence interval. Although the variance may depend on

the unknown parameter, we can just use MLE to get an estimate of variance.

The usual iterative methods for solving the likelihood equation L
′
(θ) = 0

are based on replacing L
′
(θ) by the linear terms of its Taylor expansion about

an approximate solution θ̃. Suppose we can use estimation method such as the
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method of moments to find a good estimate of θ. Denote it as θ̃. Then it is

quite natural to use θ̃ as the initial solution of the iterative methods. Denote

the MLE by θ̂. This leads to the approximation

0 = L
′
(θ̂) ≈ L

′
(θ̃) + (θ̂ − θ̃)L

′′
(θ̃),

and hence to

θ̂ = θ̃ − L
′
(θ̃)

L′′(θ̃)
.

The procedure is then iterated according to the above scheme.

The following is a justification for the use of the above one-step approxi-

mation as an estimator of θ.

Theorem 7 Suppose that the assumptions of Theorem 6 hold and that θ̃ is not

only a consistent but a
√
n-consistent estimator of θ, that is, that

√
n(θ̃− θ0) is

bounded in probability so that θ̃ tends to θ0 at least at the rate of 1/
√
n. Then

the estimator sequence

δn = θ̃ − L
′
(θ̃)

L′′(θ̃)
(21)

is asymptotically efficient.

Proof. As in the proof of Theorem 6, expand L
′
(θ̃) about θ0 as

L
′
(θ̃n) = L

′
(θ0) + (θ̃n − θ0)L

′′
(θ0) +

1

2
(θ̃n − θ0)

2L(3)(θ∗n)

where θ∗n lies between θ0 and θ̃n. Substituting this expression into (21) and

simplifying, we find

√
n(δn − θ0) =

(1/
√
n)L

′
(θ0)

−(1/n)L′′(θ̃n)
+
√
n(θ̃n − θ0)

×
[
1− L

′′
(θ0)

L′′(θ̃n)
− 1

2
(θ̃n − θ0)

L(3)(θ∗n)

L′′(θ̃n)

]
. (22)

Suppose we can show that the expression in square brackets on the right

hand side of (22) tends to zero in probability and L
′′
(θ̃n)/L

′′
(θ0) → 1 in prob-

ability. This theorem will follows accordingly. These follows from θ∗n → θ0 in

probability and use the expansion

1

n
L

′′
(θ̃n) =

1

n
L

′′
(θ0) +

1

n
(θ̃n − θ0)L

(3)(θ∗∗n )

where θ∗∗n is between θ0 and θ̃n.
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3.2 The Multi-parameter Case

We just discuss the case that the distribution depends on a single parameter

θ. When extending this theory to probability models involving several para-

meters θ1, . . . , θs, one may be interested either in simultaneous estimation of

these parameters (or certain functions of them) or with the estimation of part

of the parameters. The part of parameter is of intrinsic and the rest represents

nuisance or incidental parameters that are necessary for a proper statistical

model but of no interest in themselves. For instance, we are only interested in

estimating σ2 in Neyman-Scott problem. Then θα are called nuisance parame-

ters.

Let (X1, . . . , Xn) be iid with a distribution that depends on θ = (θ1, . . . , θs)

and satisfies assumptions (A0)-(A3). The information matrix I(θ) is an s × s

matrix with elements Ijk(θ), j, k = 1, . . . , s, defined by

Ijk(θ) = cov

[
∂

∂θj

log f(X, θ),
∂

∂θk

log f(X, θ)

]
.

We shall now show under regularity conditions that with probability tending

to 1 there exists solutions θ̂n = (θ̂1n, . . . , θ̂sn) of the likelihood equations

∂

∂θj

[f(x1, θ) · · · f(xn, θ)] = 0, j = 1, . . . , s,

or equivalently
∂

∂θj

[L(θ)] = 0, j = 1, . . . , s

such that θ̂jn is consistent for estimating θj and asymptotically efficient in the

sense of with asymptotic variance [I(θ)]−1
jj .

We first state some assumptions:

(A) There exists an open subset ω of Ω containing the true parameter point θ0

such that for almost all x the density f(x, θ) admits all third derivatives

(∂3/∂θj∂θk∂θ`)f(x, θ) for all θ ∈ ω.

(B) the first and second logarithmic derivatives of f satisfy the equations

Eθ

[
∂

∂θj

log f(X, θ)

]
= 0 for j = 1, . . . , s,

and

Ijk(θ) = Eθ

[
∂

∂θj

log f(X, θ) · ∂

∂θk

log f(X, θ)

]

= Eθ

[
− ∂2

∂θj∂θk

log f(X, θ)

]
.
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(C) Since the s×smatrix I(θ) is a covariance matrix, it is positive semidefinite.

We shall assume that the Ijk(θ) are finite and that the matrix I(θ) is

positive definite for all θ in ω, and hence that the s statistics

∂

∂θ1

log f(X, θ), . . . ,
∂

∂θs

log f(X, θ)

are affinely independent with probability 1.

(D) Finally, we shall suppose that there exists functions Mjk` such that∣∣∣∣∣ ∂3

∂θj∂θk∂θ`

log f(x, θ)

∣∣∣∣∣ ≤Mjk`(x) for all θ ∈ ω

where mjk` = Eθ0 [Mjk`(X)] <∞ for all j, k, `.

Theorem 8 Let X1, . . . , Xn be iid each with a density f(x, θ) (with respect

to µ) which satisfies (A0)-(A2) and assumptions (A)-(D) above. Then with

probability tending to 1 as n→∞, there exist solutions θ̂n = θ̂n(X1, . . . , Xn) of

the likelihood equations such that

(i) θ̂jn is consistent for estimating θj,

(ii)
√
n(θ̂n−θ) is asymptotically normal with (vector) mean zero and covariance

matrix [I(θ)]−1 and

(iii) θ̂jn is asymptotically efficient in the sense that
√
n(θ̂jn − θj)

L→ N(0, [I(θ)]−1
jj ).

Proof. (i) Existence and Consistency. To prove the consistence, with

probability tending to 1, of a sequence of solutions of the likelihood equations

which is consistent, we shall consider the behavior of the log likelihood L(θ)

on the sphere Qa with center at the true point θ0 and radius a. We will show

that for any sufficiently small a the probability tends to 1 that L(θ) < L(θ0)

at all points θ on the surface of Qa, and hence that L(θ) has a local maximum

in the interior of Qa. Since at a local maximum the likelihood equations must

be satisfied it will follow that for any a > 0, with probability tending to 1 as

n→∞, the likelihood equations have a solution θ̂n(a) within Qa and the proof

can be completed as in the one-dimensional case.

To obtain the needed facts concerning the behavior of the likelihood on

Qa for small a, we expand the log likelihood about the true point θ0 and divide

by n to find

1

n
L(θ)− 1

n
L(θ0) =

1

n

∑
Aj(x)(θj − θ0

j ) +
1

2n

∑∑
Bjk(x)(θj − θ0

j )(θk − θ0
k)

+
1

6n

∑
j

∑
k

∑
`

(θj − θ0
j )(θk − θ0

k)(θ` − θ0
` )

n∑
i=1

γjk`(xi)Mjk`(xi)

= S1 + S2 + S3
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where

Aj(x) =
∂

∂θj

L(θ)

∣∣∣∣∣
θ=θ0

, Bjk(x) =
∂2

∂θj∂θk

L(θ)

∣∣∣∣∣
θ=θ0

,

and where by assumption (D)

0 ≤ |γjk`(x)| ≤ 1.

To prove that the maximum of this difference for θ on Qa is negative with

probability tending to 1 if a is sufficiently small, we will show that with high

probability the maximum of S2 is negative while S1 and S3 are small compared

to S2. The basic tools for showing this are the facts that by (B) and the law of

large numbers

1

n
Aj(x) =

1

n

∂

∂θj

L(θ)

∣∣∣∣∣
θ=θ0

→ 0 in probability. (23)

and
1

n
Bjk(x) =

1

n

∂2

∂θj∂θk

L(θ)

∣∣∣∣∣
θ0

→ −Ijk(θ0) in probability. (24)

Let us begin with S1. On Qa we have

|S1| ≤
1

n
a
∑
j

|Aj(X)|.

For any given a, it follows from (23) that |Aj(X)|/n < a2 and hence that

|S1| < sa3 with probability tending to 1. Next consider

2S2 =
∑∑[

−Ijk(θ0)(θj − θ0
j )(θk − θ0

k)
]

+
∑∑{

1

n
Bjk(X)− [−Ijk(θ0)]

}
(θj − θ0

j )(θk − θ0
k).

For the second term it follows from an argument analogous to that for S1 that

its absolute value is less than s2a3 with probability tending to 1. The first term

is a negative (nonrandom) quadratic form in the variables (θj − θ0
j ). By an

orthogonal transformation this can be reduced to diagonal form
∑
λiξ

2
i with

Qa becoming
∑
ξ2
i = a2. Suppose that the λ’s that are negative are numbered

so that λs ≤ λs−1 ≤ · · · ≤ λ1 < 0. Then
∑
λiξ

2
i ≤ λ1

∑
ξ2
i = λ1a

2. Combining

the first and second terms, we see that there exist c > 0, a0 > 0 such that for

a < a0

S2 < −ca2

with probability tending to 1.

Finally, with probability tending to 1,∣∣∣∣ 1n∑Mjk`(Xi)
∣∣∣∣ < 2mjk`
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and hence |S3| < ba3 on Qa where

b =
s3

3

∑∑∑
mjk`.

Combining the three inequalities, we see that

max(S1 + S2 + S3) < −ca2 + (b+ s)a3

which is less than zero if a < c/(b+ s), and this completes the proof of (i).

The proof of part (ii) of Theorem 8 is basically the same as that of Theo-

rem 6. However, the single equation derived there from the expansion of θ̂n−θ0

is now replaced by a system of s equations which must be solved for the differ-

ences (θ̂jn−θ0
j ). In preparation, it will be convenient to consider quite generally

a set of random linear equations in s unknowns

s∑
k=1

AjknYkn = Tjn (j = 1, . . . , s). (25)

Lemma 3 Let (T1n, . . . , Tsn) be a sequence of random vectors tending weakly

to (T1, . . . , Ts) and suppose that for each fixed j and k, Ajkn is a sequence of

random variables tending in probability to constants ajk for which the matrix

A = ‖ajk‖ is nonsingular. Let B = ‖bjk‖ = A−1. Then if the distribution of

(T1, . . . , Ts) has a density with respect to Lebesgue measure over Es, the solution

of (25) tend in probability to the solutions (Y1, . . . , Ys) of
∑s

k=1 ajkYk = Tj,

1 ≤ j ≤ s, given by Yj =
∑s

k=1 bjkTk.

In generalization of the proof of Theorem 6, expand ∂L(θ)/∂θj = L
′
j(θ)

about θ0 to obtain

L
′

j(θ) = L
′

j(θ
0) +

∑
(θk − θ0

k)L
′′

jk(θ
0) +

1

2

∑∑
(θk − θ0

k)(θ` − θ0
` )L

(3)
jk`(θ

∗) (26)

where L
′′
jk and L

(3)
jk` denote the indicated second and third derivatives of L and

where θ∗ is a point on the line segment connecting θ and θ0. In this expansion,

replace θ by a solution θ̂n of the likelihood equations, which by part (i) of

this theorem can be assumed to exist with probability tending to 1 and to be

consistent. The left side of (26) is zero and the resulting equations can be

written as

√
n
∑

(θ̂k − θ0
k)
[
1

n
L

′′

jk(θ
0) +

1

2n
L

′′′

jk`(θ
∗)
]

= − 1√
n
L

′

j(θ
0). (27)

These have the form (26) with

Ykn =
√
n(θ̂k − θ0

k) (28)
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Ajkn =
1

n
L

′′

jk(θ
0) +

1

2n
(θ̂` − θ0

` )L
(3)
jk`(θ

∗) (29)

Tjn = − 1√
n
L

′

j(θ
0) = − 1√

n

[
n∑

i=1

∂

∂θj

log f(Xi, θ)

]
θ=θ0

. (30)

Since Eθ0 [(∂/∂θj) log f(Xi, θ)] = 0, the multivariate central limit theorem shows

that (T1n, . . . , Tsn) has a multivariate normal distribution with mean zero and

covariance matrix I(θ0).

On the other hand, it is easy to see-again in parallel to the proof of

Theorem 6 that

Ajkn
P→ ajk = E[L

′′

jk(θ
0)] = −Ijk(θ0).

The limit distribution of the Y ’s is therefore that of the solution (Y1, . . . , Ys) of

the equations
s∑

k=1

Ijk(θ
0)Yk = Tj

where T = (T1, . . . , Ts) is multivariate normal with mean zero and covariance

matrix I(θ0). It follows that the distribution of Y is that of [I(θ0)]−1T , which

is a multivariate distribution with zero mean and covariance matrix [I(θ0)]−1.

This completes the proof of asymptotic normality and efficiency.

3.3 Efficiency and Adaptiveness

If the distribution of the Xi depends on θ = (θ1, . . . , θs), it is interesting to

compare the estimation of θj when the other parameters are unknown with the

situation in which they are known. Such a question arises naturally in the case

that part of parameters are the nuisance parameter. For instance, consider

estimating µ̃ for a location family f(x − µ̃) or the median. µ̃, of a symmetric

density, f . Then µ̃ is the parameter of interest and f is the nuisance parameter.

If f is known and continuously differentiable, the best asymptotic mean-squared

error attainable for estimating µ̃ is (nI)−1 where

I =
∫ f

′2(x)

f(x)
dx <∞.

The question be asked is when can we estimate µ̃ as well asymptotically not

knowing f as knowing f . A necessary condition named the orthogonality con-

dition is given in Stein (1956). If there exists an estimate achieving the bound

(nI)−1 when f is unknown, it is named as an adaptive estimate of µ̃. Accord-

ing to Stein’s condition, he indicated that such an estimator does exist for this

problem. Completely definite results for this problem were obtained by Beran

(1974) and Stone (1975).
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Note that this problem is a so-called semiparametric estimation problem

in which µ̃ is the parametric component and f is the nonparametric compo-

nent. Recently, the problem of estimating and testing hypotheses about the

parametric component in the presence of an infinite dimensional nuisance pa-

rameter (nonparametric component) attracts a lot of attention. Main concerns

are whether there exists either an adaptive or efficient estimate of the paramet-

ric component and the existence of a practical procedure to find them.

We now consider the finite-dimensional case and derive the orthogonality

condition derived in Stein (1956). It was seen that under regularity conditions

there exist estimator sequences θ̂nj of θj, when the other parameters are known,

which are asymptotically efficient in the sense that

√
n(θ̂jn − θj)

d→ N(0,
1

Ijj(θ)
).

When the other parameters are unknown,

√
n(θ̂jn − θj)

d→ N(0, [I(θ)]−1
jj ).

These imply that
1

Ijj(θ)
≤ [I(θ)]−1

jj . (31)

Stein (1956) raised the question whether we can estimate θj equally well no

matter when the other parameters are known or not. This leads to the question

of efficiency and adaptiveness.

The two sides of (31) are equal if

Iij(θ) = 0 for all j 6= i, (32)

as is seen from the definition of the inverse of a matrix, and in fact (32) is also

necessary for equality in (31) by the following facts.

Fact. Let A =

 A11 A12

A21 A22

 be a partitioned matrix with A22 square and

nonsingular, and let

B =

 I −A12A
−1
22

0 I

 .
Note that

BA =

 A11 − A12A
−1
22 A21 0

A21 A22

 .
It follows easily that |A| = |A11 −A12A

−1
22 A21| · |A22|. Since A22 is nonsingular,

(A−1)11 = (A11)
−1 if A12 is a zero matrix.
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The equality in (31) implies that I(θ) is diagonal. Suppose the efficient es-

timator of θj depends on the remaining parameters and yet θj can be estimated

without loss of efficiency when these parameters are unknown. The situation

can then be viewed as a rather trivial example of the idea of adaptive estima-

tion. On the other hand, it is known that Ijj(θ) is the smallest asymptotic

mean-squared error attainable for estimating θj. If an estimator does achieve

such a bound, it is called an efficient estimator. Then Stein (1956) states that

the adaptation is not possible unless Ijk(θ) = 0 for k 6= j.

We now study the bound of [I(θ)]−1
11 . Write I(θ) as a partitioned matrix I11(θ) I1·(θ)

IT
1·(θ) I··(θ)

 ,
where I1·(θ) = (I12(θ), . . . , I1s(θ)) and I··(θ) is the lower right submatrix of I(θ)

with size (s− 1)× (s− 1). Then

[I(θ)]−1
11 =

1

I11(θ)− I1·(θ)[I··(θ)]−1IT
1·(θ)

.

Recall that

Iij(θ) = E

(
∂

∂θi

log f(X, θ) · ∂

∂θj

log f(X, θ)

)
.

Consider the minimization problem

min
aj

E

 ∂

∂θ1

log f(X, θ)−
s∑

j=2

aj
∂

∂θj

log f(X, θ)

2

.

and denote the minimizer as a0 = (a20, . . . , as0)
T . By a simple algebra, a0 is

the solution of norml equations I··(θ)a
0 = I1·(θ) or a0 = I−1

·· (θ)I1·(θ). It leads

to

E

 ∂

∂θ1

log f(X, θ)−
s∑

j=2

aj0
∂

∂θj

log f(X, θ)

2

= I11(θ)− I1·(θ)[I··(θ)]
−1IT

1·(θ).

Or

[I(θ)]−1
11 = min

aj
E

 ∂

∂θ1

log f(X, θ)−
s∑

j=2

aj
∂

∂θj

log f(X, θ)

2

.

If aj0 = 0, [I(θ)]−1
11 = 1/I11(θ). Or, adaptivation is possible.

As illustrations, we will consider three examples. The first example is on

the estimation of regression coefficients of a linear regression and the next two

examples are on the estimation of parametric component in a semiparametric

model. The two particular models we considered are the partial spline model

(Wahba, 1984) and the two-sample proportional hazard model (Cox, 1972).
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Example 1. (Linear Regression) Assume that y = β0 + β1x + ε and

ε ∼ N(0, σ2). Let (β̂0, β̂1) denote the least squares estimate. It follows easily

that

V ar

 β̂0

β̂1

 = σ2

 n
∑

iXi∑
iXi

∑
iX

2
i

−1

= σ2


∑

i
X2

i∑
i
(Xi−X̄)2

− X̄∑
i
(Xi−X̄)2

− X̄∑
i
(Xi−X̄)2

1∑
i
(Xi−X̄)2


−1

.

When β0 is known, the variance of least squares estimate of β1 is σ2/
∑

iX
2
i .

Then the necessary and sufficient condition on guaranteeing adaptiveness is that

X̄ = 0. When we write the model in matrix form, the condition X̄ = 0 can be

explained as the two vectors (1, · · · , 1)T and (X1, · · · , Xn)T are orthogonal. Note

that (1, · · · , 1)T and (X1, · · · , Xn)T are associated with β0 and β1, respectively.

On the other hand, we can use the above derivation. Observe that

∂ log f

∂θ0

=
Y − β0 − β1X

σ2
=

ε

σ2
,
∂ log f

∂θ1

=
(Y − β0 − β1X)X

σ2
=
Xε

σ2
.

Then

min
a
E

(
∂ log f

∂β1

− a
∂ log f

∂β0

)2

= min
a

1

σ2
E(X − a)2 =

1

σ2
V ar(X).

Example 2. (Partial Spline Model) Assume that Y = βX+g(T )+ ε and

ε ∼ N(0, σ2). Suppose that g ∈ L2[a, b], the set of all square integrable functions

on the interval [a, b]. By proper taking care some mathematical subtlity, g(T )

can be written as
∑∞

j=1 bjφj(T ) where {φj} is the complete bases of L2[a, b].

Observe that
∂ log f

∂θ
=
Xε

σ2

∂ log f

∂bj
=
εφj(T )

σ2
.

Then

min
aj

E

∂ log f

∂β
−
∑
j

aj
∂ log f

∂bj

2

= min
aj

E
ε2

σ4

X −−
∑
j

ajφj(T )

2

=
1

σ2
min

h
E(X − h(T ))2.

Therefore, h(T ) = E(X|T ). It means that when E(X|T ) = 0 or X and T

are uncorrelated, the adaption is possible. Otherwise, the efficient bound for

estimating β is
σ2

E(X − E(X|T ))2
=

σ2

EV ar(X|T )
.

Refer to Chen (1988) and Speckman (1988) for further references and construc-

tion of efficient estimate of β.

Example 3. Let t1, · · · , tn be fixed constants. Suppose that Xi ∼
Bin(1, F (ti)) and Yi ∼ Bin(1, F θ(ti)). We now derive a lower bound on the
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asymptotic variance of estimate of θ. Again, we assume that F (t) =
∑

i aiφi(t).

According to the above discussion, it is equivalent to solving the following min-

imization problem:

min
bj

E

∂L
∂θ

−
∞∑

j=1

bj
∂L

∂aj

2

,

where L is the log-likelihood function.

The likelihood function is

L =

(∑
i

aiφi(t)

)x (
1−

∑
i

aiφi(t)

)1−x
(∑

i

aiφi(t)

)θ
y 1−

[∑
i

aiφi(t)

]θ


1−y

.

Thus the log likelihood function is

L = logL = x log

(∑
i

aiφi(t)

)
+ (1− x) log

(
1−

∑
i

aiφi(t)

)

+θy log

[∑
i

aiφi(t)

]
+ (1− y) log

1−
[∑

i

aiφi(t)

]θ
 .

Observe that

∂L

∂θ
= log

(∑
i

aiφi(t)

)
− (1− y) log

(
1−

∑
i

aiφi(t)

)
· 1

1− [
∑

i aiφi(t)]
θ

= logF (t)− (1− y) logF (t) · 1

1− F θ(t)

and

∂L

∂aj

= x
φj(t)∑
i aiφi(t)

− (1− x)
φj(t)

1−∑
i aiφi(t)

+ θy
φj(t)∑
i aiφi(t)

−(1− y)
θφj(t)[

∑
i aiφi(t)]

θ−1

1− [
∑

i aiφi(t)]
θ

=
xφj(t)

F (t)
− (1− x)φj(t)

1− F (t)
+
θyφj(t)

F (t)
− (1− y)θF θ−1(t)φj(t)

1− F θ(t)
.

According to the above discussion, a lower bound can be derived as

min
bj

E

∂L
∂θ

−
∞∑

j=1

bj
∂L

∂aj

2

.

For notational simplicity, set

I =
∂L

∂θ
−
∑
j

bj
∂L

∂aj

and G(t) =
∑
j

biφj(t).

we then have

I = logF (t)− (1− y) logF (t) · 1

1− F θ(t)
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−
[
x

F (t)
G(t)− (1− x)

1− F (t)
G(t) +

θy

F (t)
G(t)− (1− y)θF θ−1(t)

1− F θ(t)
G(t)

]

= logF (t)− (1− y) logF (t) · 1

1− F θ(t)

−
{
− 1

1− F (t)
+

x

F (t)[1− F (t)]
+

θy

F (t)[1− F θ(t)]
− θF θ−1(t)

1− F θ(t)

}
G(t)

=
[logF (t)][y − F θ(t)]

1− F θ(t)
−
{

x− F (t)

F (t)[1− F (t)]
+

θ[y − F θ(t)]

F (t)[1− F θ(t)]

}
G(t).

Observe that

E(I2|t) =

(
logF (t)

1− F θ(t)

)2

F θ(t)(1− F θ(t)) +G2(t)

{
1

F (t)[1− F (t)]
+
θ2F θ(t)(1− F θ(t))

F 2(t)[1− F θ(t)]2

}

−2G(t)
θ(logF (t))F θ(t)(1− F θ(t))

F (t)[1− F θ(t)]2

=
F θ(t)(logF (t))2

1− F θ(t)
+G2(t)

{
1

F (t)[1− F (t)]
+

θ2F θ(t)

F 2(t)[1− F θ(t)]

}

−2G(t)
θ(logF (t))F θ(t)

F (t)[1− F θ(t)]
.

Then

min
G
E(I2) =

∫
(logF (t))2

 1
1−F θ(t)

F θ(t)

+ θ2 1− F (t)

F (t)

 dF ∗(t),

where F ∗ is the design measure of t1, · · · , tn.

4 Other Methods of Estimation

Consider the following framework that X ∼ P ∈ P, usually P = {Pθ : θ ∈ Θ}
for parametric models. More specifically, if X1, . . . , Xn

i.i.d.→ Pθ, then

Pθ = Pθ × · · · × Pθ.

Suppose that we are interested in an unknown parameters, ν(P ) or q(θ) =

ν(Pθ), which is a certain aspects of population. Recall that the empirical dis-

tribution is

P̂ [X ∈ A] =
1

n

n∑
i=1

I(Xi ∈ A) or F̂ (x) =
1

n

n∑
i=1

I(Xi ≤ x).

The substitution principle states that ν(P ) can be estimate by ν(P̂ ). As to be

seen later, most methods of estimation can be regarded as using substitution

principle, since the functional form ν is not unique.

We now demonstrate this principle through a few examples. First, we

consider X1, . . . , Xn ∼ N(µ, σ2). Then µ = EX =
∫
xdF (x) = µ(F ) and



24

σ2 =
∫
x2dF (x)− µ2. Hence,

µ̂ = µ(F̂ ) =
∫
xdF̂ (x) =

1

n

n∑
i=1

Xi

and

σ̂2 =
∫
x2dF̂ (x)− µ̂2 =

1

n

n∑
i=1

(Xi − X̄)2.

This is also a non-parametric estimator, as the normality assumption has not

been explicitly used.

Next, we consider a random sample {X1, . . . , Xn}, from a k-variate multino-

mial distribution in which there are k categories and the associated probabil-

ities p1, . . . , pk. Suppose that we are interested in parameters p1, . . . , pk and

q(p1, . . . , pk). The empirical distribution gives

pj = P (X = j) = F (j)− F (j−) = Pj(F ).

Hence,

p̂j = Pj(F̂ ) = F̂ (j)− F̂ (j−) =
1

n

n∑
i=1

I(Xi = j),

namely, the empirical frequency of getting j. Hence,

q(p1, . . . , pk) = q(P1(F ), . . . , Pk(F ))

is estimated as

q̂ = q(p̂1, . . . , p̂k)

which can be viewed as frequency substitution.

As an illustration, we consider the problem of sampling from a equilibrium

population with respective to a gene with two alleles A with probability θ

a with probability 1− θ
,

A with prob. three genotypes can be observed with proportion

AA Aa aa

p1 = θ2 p2 = 2θ(1− θ) p3 = (1− θ)2

This is the so-called Hardy-Weinberg formula. In this example, one can estimate

θ by
√
p̂1 or 1−

√
p̂3, etc. Thus, the representation

q(θ) = h(p1(θ), . . . , pk(θ))

is not necessarily unique, resulting in many different procedures.
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4.1 Generalized method of moment (GMM)

Given that a random sample X1, X2, . . . , Xn are drawn from a population which

is characterized by the parameter θ whose true value is θ0. Let g1(X), . . . , gr(X)

be given functions and write

µj(θ0) = Eθ0 [gj(X)],

which are generalized moments of X. We first note, if the second moment of

gj(X) exists, then law of large numbers implies

n−1
n∑

i=1

gj(Xi)
P→ Eθ0 [gj(X)].

It means that the population moment condition (11.1) can be approximated

by the sample moment condition. Set µ̂j to be n−1∑n
i=1 gj(Xi). The GMM

estimator θ̂ solves the equations

µ̂j − µj(θ) = 0, j = 1, . . . , r.

From now on, we write them as

1

n

n∑
i=1

gj(xi; θ) = 0, j = 1, . . . , r.

Suppose that the consistency of θ̂ is established. The proof of asymptotic

normality is based on Taylor expansion and the central limit theorem. Given

that θ̂ converges in probability to θ0 and that g is differentiable with respect to

θ, then for sufficiently large n the first-order Taylor expansion of

0 =
1

n

n∑
i=1

g(xi; θ̂) ≈
1

n

n∑
i=1

g(xi; θ0) +
1

n

n∑
i=1

∂g(xi; θ0)

∂θ
(θ̂ − θ0),

where g = (g1, . . . , gr). Or,

√
n(θ̂ − θ0) ≈ −

[
1

n

n∑
i=1

∂g(xi; θ0)

∂θ

]−1√
n

1

n

n∑
i=1

g(xi; θ0).

around the true value θ0 gives the following approximation

(0, . . . , 0) =
1

n

n∑
i=1

g(Xi).

Provided that the second moment of ∂g(Xi; θ0)/∂θ exists, law of large numbers

again implies
1

n

n∑
i=1

∂g(Xi; θ0)

∂θ
P→ G(θ0),
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and the central limit theorem implies

√
n

{
1

n

n∑
i=1

g(Xi; θ0)− E[g(Xi; θ0)]

}
d→ u ∼ N(0,Ω(θ0)),

where Eg(X; θ0) = 0. Consequently,

√
n(θ̂ − θ0)

d→ −G(θ0)
−1 · u ∼ N(0, [G(θ0)

−1]Ω(θ0)[G(θ0)
−1]T ).

In proving consistency and asymptotic normality of the GMM estimator,

we have used law of large numbers and the central limit theorem. Obviously,

certain assumptions are required before we can apply these theorems. We

now state a set of regularity conditions that ensure the validity of the GMM

estimation.

1. Conditions that ensure the differentiability of g(x; θ) with respect to θ. For

example, g(x; θ) is usually assumed to be twice continuously differentiable

with respect to θ.

2. Conditions that restrict the moments of g(X; θ) and its derivatives with

respect to θ. For example, the second moments of g(x; θ) and its first

derivative are usually assumed to be finite.

3. Conditions that restrict the range of the possible values which the parameter

θ can take. For example, θ is not allowed to have infinite value and the

true value θ0 may not be at the boundary of the permissible range of θ (if

θ0 is on the boundary of the permissible range of θ, then convergence to

θ0 cannot take place freely from all directions).

4. The solution to the population moment condition Eθ[g(X; θ)] = 0 must be

unique and the unique solution must be the true value θ0 of the parameter.

The first three categories of regularity conditions are somewhat technical and

are routinely assumed. They can be replaced by other formulation. However,

we do need to make special efforts to check the validity of the last one in each

application of GMM. This last condition is referred to as the identification

condition because it allows us to identify the true parameter value θ0 for esti-

mation. An obvious necessary condition for identification is that the number

of individual population moment conditions r is cannot be smaller than the

dimensionality of the parameter vector θ. Otherwise, the population moment

condition will have multiple solutions of which all but one can be the true value

so that the resulting GMM estimator does not necessarily converge to the true

parameter value. This is the so-called under-identification problem.
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The identification condition is implicitly assumed in the above analysis of

the GMM estimation. In fact, we have made a stronger assumption that r is

equal to the dimensionality of θ. We also assume that the derivative G(x; θ)

of g(x; θ) with respect to θ is a square matrix and invertible. This is the so-

called just-identification case. Refer to implicit function theorem to get ideas

on the needed minimal assumptions. The GMM Interpretation of Both the

least-squares estimation method for regression models and maximum likelihood

estimation can be viewed as GMM.

If r is greater than the number of parameters, it is not possible to solve

its sample counterpart. Instead, we can find θ that makes the sample moment

condition as close to zero as possible based on the following quadratic form:

r∑
j=1

[µ̂j − µj(θ)]
2

(this has a scale problem) or more generally

[µ̂− µ(θ)]T Σ−1[µ̂− µ(θ)].

Here Σ is some positive definite weighting matrix of constants. Sometimes we

can find Σ to optimize the performance of the estimator (GMM).

Consider a regression problem for any random sample {(Xi, Yi), i = 1, . . . , , n},
define the coefficient of the best linear prediction under the loss function d(·)
by

β(P ) = argmin
β
EPd(|Y − βTX|).

Thus, its substitution estimator is

β(P̂ ) = argmin
β

1

n

n∑
i=1

d(|Yi − βTXi|).

Thus, β(P̂ ) is always a consistent estimator of β(P ), whether the linear Y =

βTX+ ε holds or not. In this view, the least-squares estimator is a substitution

estimator.

4.2 Minimum Contrast Estimator and Estimating Equations

Let ρ(X, θ) be a contrast (discrepancy) function. Define

D(θ0, θ) = Eθ0ρ(X, θ),

where θ0 is the true parameter. Suppose that D(θ0, θ) has a unique minimum

θ0. Then, the minimum contrast estimator for a random sample is defined as
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the minimizer of

D̂(θ) =
1

n

n∑
i=1

ρ(Xi, θ).

Under some regularity conditions, the estimator satisfies the estimating equa-

tions

D̂
′
(θ) =

1

n

n∑
i=1

ρ
′
(Xi, θ).

In general, the method applies to general situation:

θ̂ = argmin
θ
ρ(X, θ),

as long as θ0 minimizes

D(θ, θ0) = Eθ0ρ(X, θ).

Usually, ρ(X, θ) → D(θ, θ0) as n→∞.

Similarly, estimating equation method solves the equations

φj(X, θ) = 0, j = 1, . . . , r

as long as

Eθ0φj(X, θ0) = 0, j = 1, . . . , r.

We now use a regression problem to demonstrate that these two ap-

proaches are closely related. Let (Xi, Yi) be i.i.d. from

Yi = g(Xi, β) + εi (εi ∼ N(0, σ2))

= XT
i β + εi linear model.

Then, by letting

ρ(Xi, β) =
n∑

i=1

[Yi − g(Xi, β)]2

be a contrast function, we have

D(β0, β) = Eβ0ρ(X, β) = nE[Y − g(X, β)]2

= nE{g(X, β0)− g(X, β)}2 + nσ2,

which is indeed minimized at β = β0. Hence, the minimum contrast estimator

is

β̂ = argmin
β

n∑
i=1

[Yi − g(Xi, β)]2.

It satisfies the system of equations

n∑
i=1

[Yi − g(Xi, β̂)]
∂g(Xi, β̂)

∂βj

= 0, j = 1, . . . , d,
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under some mild regularity conditions. One can easily check that

ψj(β) = [Yi − g(Xi, β)]
∂g(Xi, β)

∂βj

satisfies

Eβ0ψj(β)|β=β0 = E

{
[g(Xi, β0)− g(Xi, β0)]

∂g(Xi, β0)

∂βj

}
= 0.

Thus, it is also an estimator based on the estimating equations.

Now we consider L1-regression. Let Y = XTβ0 + ε. Consider

ρ(X,Y, β) = |Y −XTβ|.

Then,

D(β0, β) = Eβ0|Y −XTβ| = E|XT (β − β0) + ε|.

For any a, define

f(a) = E|ε+ a|.

Then,

f
′
(a) = E[sgn(ε+ a)] = P (ε+ a > 0)− P (ε+ a < 0)

= 2P (ε+ a > 0)− 1.

If median(ε) = 0, then f
′
(0) = 0. In other words, f(a) is minimized at a = 0,

or D(β0, β) is minimized at β = β0! Thus, if median(ε) = 0, then

1

n

n∑
i=1

|Yi −XT
i β|.

is a minimum contrast estimator.

5 The EM algorithm

In order to deal with missing data, Dempster, Laird and Rubin(1977) and

Baum, Petrie, Soules, and Weiss(1970) devised general algorithm for such a

problem. Suppose that we have a situation in which the full likelihood X ∼
p(x, θ) is easy to compute and to maximize. Unfortunately, we only observe the

partial information S = S(X) ∼ q(s, θ). But q(s, θ) itself is hard to compute

and to maximize. The algorithm is to maximize q(s, θ).

Consider lumped Hardy-Weinberg data. If we can observe {X1, . . . , Xn},
MLE leads to

log p(x, θ) = n1 log θ2 + n2 log 2θ(1− θ) + n3 log(1− θ)2.
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However, we only observe partial information:

Si = (Xi1, Xi2, Xi3), i = 1, . . . ,m

Si = (Xi1 +Xi2, Xi3), i = m+ 1, . . . , n.

The likelihood of the available data is

log q(s, θ) = m1 log θ2+m2 log 2θ(1−θ)+m3 log(1−θ)2+n∗12 log(1−(1−θ)2)+n∗3 log(1−θ)2,

where n∗12 =
∑n

i=m+1(Xi1 +Xi2) and n∗3 =
∑n

i=mXi3. For many other problems,

this log-likelihood can be hard to compute.

Intuitively, the E-M algorithm attempts to guess the full likelihood using

the available and maximum the conjectured likelihood.

EM algorithm: Given an initial value θ0,

E-step: Compute `(θ, θ0) = Eθ0 [`(x, θ)|S(X) = s],

M-step: θ̂ = argmax `(θ, θ0),

and iterate.

Rationale: p(x, θ) = q(s, θ)Pθ(X = x|S = s)I(S(X) = s). Let r(x|s, θ) =

Pθ(X = x|S = s)I(S(x) = s). Then,

`(θ, θ0) = log q(s, θ) + Eθ0{log r(X|s, θ)|S(X) = s}.

Hence

0 = `(θ̂, θ0)
′
= (log q(s, θ))

′|θ=θ̂ + Eθ0

{
(log r(X|s, θ))′|θ=θ̂|S = s

}
.

If the algorithm converges to θ1, then

(log q(s, θ))
′|θ=θ1 + Eθ1

{
(log r(X|s, θ))′|θ=θ1

∣∣∣S = s
}
.

Noticing that for any regular function f ,

Eθ(log f(x, θ))
′
=
∫ f

′
(x, θ)

f(x, θ)
f(x, θ)dx = 0.

Hence

{log q(s, θ1)}
′
= 0,

which solves the likelihood equation based on the (partial) data. In other words,

the EM algorithm converges to the true likelihood.

Theorem 9

log q(s, θnew) ≥ log q(s, θold),

namely, each iteration always increases the likelihood.
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Proof. Note that

`(θn, θ0) = log q(s, θn) + Eθ0 {log r(X|s, θn)|S(X) = s}

≥ log q(s, θ0) + Eθ0{log r(X|s, θ0)|S(X) = s}.

This implies

log q(s, θn) ≥ log q(s, θ0) + Eθ0

{
log

r(X|s, θ0)

r(X|s, θn)

∣∣∣∣∣S(X) = s

}
≥ log q(s, θ0).

Example. Let X1, . . . , Xn+4 be i.i.d. N(µ, 1/2). Suppose that we observe

S1 = X1, . . . , Sn = Xn, Sn+1 = Xn+1+2Xn+2, and Sn+2 = Xn+3+Xn+4. Use the

EM algorithm to find the maximum likelihood estimator based on the observed

data.

Solution. Note that the full likelihood is

log p(X, µ) = −
n+4∑
i=1

(Xi − µ)2

= −
n+4∑
i=1

X2
i + 2µ

n+4∑
i=1

Xi − (n+ 4)µ2.

At the E-step, we compute

Eµ0{log p(X, µ)|S} = a(µ0)− 2µ

{
n∑

i=1

Xi + Eµ0{Xn+1 +Xn+2|Sn+1}+ Sn+2

}
−(n+ 4)µ2.

To compute Eµ0{Xn+1|Sn+1}, we note that 2Xn+1 −Xn+2 is uncorrelated with

Sn+1. Hence, we have

Eµ0{2Xn+1 −Xn+2|Sn+1} = µ0

Eµ0{Xn+1 + 2Xn+2|Sn+1} = Sn+1.

Solving the above two equations gives

Eµ0(Xn+1|Sn+1) = (Sn+1 + 2µ0)/5, Eµ0{Xn+2|Sn+1} = (2Sn+1 − µ0)/5.

and that

Eµ0{Xn+1 +Xn+2|Sn+1} = (3Sn+1 + µ0)/5.

Hence, the conditional likelihood is given by

`(µ, µ0) = a(µ0)− 2µ

{
n∑

i=1

Xi + 0.6Sn+1 + 0.2µ0 + Sn+2

}
− (n+ 4)µ2.
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At the M -step, we maximize `(µ, µ0) with respect to µ, resulting in

µ̂ = (n+ 4)−1

{
n∑

i=1

Xi + 0.6Sn+1 + 0.2µ0 + Sn+2

}
.

The EM algorithm is to iterate the above step. When the algorithm converges,

the estimate solves

µ̂ = (n+ 4)−1

{
n∑

i=1

Xi + 0.6Sn+1 + 0.2µ̂+ Sn+2

}
.

or

µ̂ = (n+ 3.8)−1

{
n∑

i=1

Xi + 0.6Sn+1 + Sn+2

}
.

This is the maximum likelihood estimator for the missing data. the observed

data.

Now we come back to the lumped Hardy-Weinberg data. The observed

data likelihood is

log p(x, θ) = n1 log θ2 + n2 log 2θ(1− θ) + n3 log(1− θ)2.

E-step:

`(θ, θ0) = Eθ0(n1|S) log θ2 + Eθ0(n2|S) log 2θ(1− θ) + n3 log(1− θ)2.

Eθ0(n1|S) = m1 + n∗12

θ2
0

θ2
0 + 2θ0(1− θ0)

,

and

Eθ0(n2|S) = m2 + n∗12
2θ0(1− θ0)

θ2
0 + 2θ0(1− θ0)

.

M-step:

θ̂ =
2Eθ0(n1|S) + Eθ0(n2|S)

2 [Eθ0(n1|S) + Eθ0(n2|S) + n3]
=
n12 + Eθ0(n1|S)

2n
,

where n12 is the number of data points for genotypes 1 and 2. When the

algorithm converges, it solves the following equation:

2nθ = n12 +m1 + n∗12θ/(2− θ).

Example. (Mixture normal distribution)

Assume that

S1, . . . , Sn
i.i.d.∼ λN(µ1, σ

2
1) + (1− λ)N(µ2, σ

2
2)

. The likelihood of S1, . . . , Sn is easy to write down, but hard to compute. We

turn to EM algorithm to overcome the challenge in computing. Thinking of the
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full information as Xi = (4i, Si), in which 4i tells the population under which

it is drawn from, but missing.

P (4i = 1) = λ,

P (Si|4i) ∼

 N(µ1, σ
2
1), 4i = 1

N(µ2, σ
2
2), 4i = 0

Then, the full likelihood is

p(x, θ) = λ
∑

4i(1− λ)n−
∑

4i
∏
4i=1

[
1√

2πσ1

exp

(
−(Si − µ1)

2

2σ2
1

)]

×
∏
4i=0

[
1√

2πσ2

exp

(
−(Si − µ2)

2

2σ2
2

)]
.

It follows that

p(x, θ) =
∑
4i log λ+

∑
(1−4i) log(1− λ)

+
∑
4i=1

{
log σ1 −

(Si − µ1)
2

2σ2
1

}
+
∑
4i=0

{
log σ2 −

(Si − µ2)
2

2σ2
2

}

To find the E-step, we need to find the conditional distribution of 4i|S. Note

that

Pθ0{4i = 1|S = s} = P{4i = 1|Si ∈ si ± ε}

=
P{4i = 1,Si ∈ si ± ε}

P (Si ∈ si ± ε)

=
λ0σ

−1
10 φ

(
si−µ10

σ10

)
λ0σ

−1
10 φ

(
si−µ10

σ10

)
+ (1− λ0)σ

−1
20 φ

(
si−µ20

σ20

)
= pi

Then,

`(θ, θ0) =
∑

i

pi log λ+
∑

i

(1− pi) log(1− λ)

+
∑

i

pi

{
log σ1 −

(Si − µ1)
2

σ2
1

}
+
∑

i

(1− pi) · · · .

The M-step is to maximize the above quantity with respective to, λ, σ1, µ1, σ2, µ2,

which can be explicitly found. e.g.∑n
i=1 pi

λ
−
∑n

i=1(1− pi)

1− λ
= 0 → λ̂ =

∑n
i=1 pi

n
n∑

i=1

pi(si − µ) = 0 → µ̂ =

∑n
i=1 pisi∑n
i=1 pi

.

The EM algorithm is to iterate these two steps.
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