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Chapter 1. Bootstrap Method

1 Introduction

1.1 The Practice of Statistics

Statistics is the science of learning from experience, especially experience that arrives a little

bit at a time. Most people are not natural-born statisticians. Left to our own devices we are

not very good at picking out patterns from a sea of noisy data. To put it another way, we all

are too good at picking out non-existent patterns that happen to suit our purposes? Statistical

theory attacks the problem from both ends. It provides optimal methods for finding a real

signal in a noisy background, and also provides strict checks against the overinterpretation

of random patterns.

Statistical theory attempts to answer three basic questions:

1. Data Collection: How should I collect my data?

2. Summary: How should I analyze and summarize the data that I’ve collected?

3. Statistical Inference: How accurate are my data summaries?

The bootstrap is a recently developed technique for making certain kinds of statistical infer-

ences. It is only recently developed because it requires modern computer power to simplify

the often intricate calculations of traditional statistical theory.

1.2 Motivated Example

We now illustrate the just mentioned three basic statistical concepts using a front-page news

from the New York Times of January 27, 1987. A study was done to see if small aspirin

doses would prevent heart attacks in healthy middle-aged men. The data for the aspirin

study were collected in a particularly efficient way: by a controlled, randomized, double-

blind study. One half of the subjects received aspirin and the other half received a control

substance, or placebo, with no active ingredients. The subjects were randomly assigned to

the aspirin or placebo groups. Both the subjects and the supervising physicians were blind to

the assignments, with the statisticians keeping a secret code of who received which substance.

Scientists, like everyone else, want the subject they are working on to succeed. The elaborate

precautions of a controlled, randomized, blinded experiment guard against seeing benefits

that don’t exist, while maximizing the chance of detecting a genuine positive effect.
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The summary statistics in the study are very simple:

heart attacks (fatal plus non-fatal) subjects

aspirin group: 104 11,037

placebo group: 189 11,034

What strikes the eye here is the lower rate of heart attacks in the aspirin group. The

ratio of the two rates is

θ̂ =
104/11037
189/11034

= 0.55.

It suggests that the aspirin-takers only have 55% as many as heart attacks as placebo-takers.

Of course we are not interested in θ̂. What we would like to know is θ, the true ratio,

that is the ratio we would see if we could treat all subjects, and not just a sample of them.

The tough question is how do we know that θ̂ might not come out much less favorably if the

experiment were run again?

This is where statistical inference comes in. Statistical theory allows us to make the

following inference: the true value of θ lies in the interval 0.43 < θ < 0.70 with 95% confidence.

Note that

θ = θ̂ + (θ − θ̂) = 0.55 + [θ − θ̂(ω0)],

where θ and θ̂(ω0) (= 0.55) are two numbers. In statistics, we use θ − θ̂(ω) to describe

θ − θ̂(ω0). Since ω cannot be observed exactly, we instead study the fluctuation of θ − θ̂(ω)

among all ω. If, for most ω, θ − θ̂(ω) is around zero, we can conclude statistically that θ is

close to 0.55 (= θ̂(ω0). (Recall the definition of consistency.) If P (ω : |θ− θ̂(ω)| < 0.1) = 0.95,

we claim that with 95% confidence that θ − 0.55 is no more than 0.1.

In the aspirin study, it also track strokes. The results are presented as the following:

strokes subjects

aspirin group: 119 11,037

placebo group: 98 11,034

For strokes, the ratio of the two rates is

θ̂ =
119/11037
98/11034

= 1.21.

It now looks like taking aspirin is actually harmful. However, the interval for the true stroke

ratio θ turns out to be 0.93 < θ < 1.59 with 95% confidence. This includes the neutral

value θ = 1, at which aspirin would be no better or worse than placebo. In the language of

statistical hypothesis testing, aspirin was found to be significantly beneficial for preventing

heart attacks, but not significantly harmful for causing strokes.

In the above discussion, we use the sampling distribution of θ̂(ω) to develop intervals

in which the true value of θ lies on with a high confidence level. The task of data analyst



3

is to find the sampling distribution of the chosen estimator θ̂. Turn it into practice, we are

quite often on finding right statistical table to look up.

Quite often, these tables are constructed based on the model-based sampling theory

approach to statistical inference. In this approach, it starts with the assumption that the data

arise as a sample from some conceptual probability distribution, f . When f is completely

specified, we derive the distribution of θ̂. Recall that θ̂ is a function of the observed data. In

deriving its distribution, those data will be viewed as random variables (why??). Uncertainties

of our inferences can then be measured. The traditional parametric inference utilizes a

priori assumptions about the shape of f . For the above example, we rely on the binomial

distribution, large sample approximation of the binomial distribution, and the estimate of θ.

However, we sometimes need to figure out f intelligently. Consider a sample of weights

of 27 rats (n = 27); the data are

57, 60, 52, 49, 56, 46, 51, 63, 49, 57, 59, 54, 56, 59, 57, 52, 52, 61, 59, 53, 59, 51, 51, 56, 58, 46, 53.

The sample mean of these data = 54.6667, standard deviation = 4.5064 with cv = 0.0824.

For illustration, what if we wanted an estimate of the standard error of cv. Clearly, this would

be a nonstandard problem. First, we may need to start with a parametric assumption on f .

(How will you do it?) We may construct a nonparametric f estimator of (in essence) from

the sample data. Then we can invoke either Monte Carlo method or large sample method to

give an approximation on it.

Here, we will provide an alternative to the above approach. Consider the following

nonparametric bootstrap method which relies on the empirical distribution function. As a

demonstration, we apply the bootstrap method works to the stroke example.

1. Create two populations: the first consisting of 119 ones and 11037− 119 = 10918

zeros, and the second consisting of 98 ones and 11034− 98 = 10936 zeros.

2. (Monte Carlo Resampling) Draw with replacement a sample of 11037 items from

the first population, and a sample of 11034 items from the second population.

Each of these is called a bootstrap sample.

3. Derive the bootstrap replicate of θ̂:

θ̂∗ =
prop. of ones in bootstrap sample #1
prop. of ones in bootstrap sample #2

.

4. Repeat this process (1-3) a large number of times, say 1000 times, and obtain 1000

bootstrap replicates θ̂∗.

As an illustration, the standard deviation turned out to be 0.17 in a batch of 1000 replicates

that we generated. Also a rough 95% confidence interval is (0.93, 1.60) which is derived by

taking the 25th and 975th largest of the 1000 replicates.
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Remark:

1. Initiated by Efron in 1979, the basic bootstrap approach uses Monte Carlo sam-

pling to generate an empirical estimate of the θ̂’s sampling distribution.

2. Monte Carlo sampling builds an estimate of the sampling distribution by randomly

drawing a large number of samples of size n from a population, and calculating for

each one the associated value of the statistic θ̂. The relative frequency distribution

of these θ̂ values is an estimate of the sampling distribution for that statistic. The

larger the number of samples of size n will be, the more accurate the relative

frequency distribution of these estimates will be.

3. With the bootstrap method, the basic sample is treated as the population and

a Monte Carlo-style procedure is conducted on it. This is done by randomly

drawing a large number of resamples of size n from this original sample (of size n

either) with replacement. So, although each resample will have the same number

of elements as the original sample, it could include some of the original data points

more than once, and some not included. Therefore, each of these resamples will

randomly depart from the original sample. And because the elements in these

resamples vary slightly, the statistic θ̂, calculated from one of these resample will

take on slightly different values.

4. The central assertion of the bootstrap method is that the relative frequency dis-

tribution of these θ̂Fn ’s is an estimate of the sampling distribution of θ̂.

5. How do we determine the number of bootstrap replicates?

Assignment 1. Do a small computer experiment to repeat the above process a few

times and check whether you get the identical answers every time (with different random

seeds).

Assignment 2. Read Ch. 11.4 of Rice’s book. Comment on randomization, placebo

effect, observational studies and fishing expedition.

Assignment 3. Do problems 1, 19 and 28 in Section 11.6 of Rice’s book.

Now we come back to the cv example. First, we draw a random subsample of size

27 with replacement. Thus, while a weight of 63 appears in the actual sample, perhaps it

would not appear in the subsample; or is could appear more than once. Similarly, there are

3 occurrences of the weight 57 in the actual sample, perhaps the resample would have, by

chance, no values of 57. The point here is that a random sample of size 27 is taken from the

original 27 data values. This is the first bootstrap resample with replacement (b = 1). From

this resample, one computes µ̂, the ŝe(µ̂) and the cv and stores this in memory. Second,

the whole process is repeated B times (where we will let B = 1, 000 reps for this example).
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Thus, we generate 1000 resample data sets (b = 1, 2, 3, . . . , 1000) and from of each these we

compute µ̂, ŝe(µ̂) and the cv and store these values. Third, we obtain the standard error

of the cv by taking the standard deviation of the 1000 cv values (corresponding to the 1000

bootstrap samples). The process is simple. In this case, the standard error is 0.00917.

1.3 Odds Ratio

If an event has probability P (A) of occurring, the odds of A occurring are defined to be

odds(A) =
P (A)

1− P (A)
.

Now suppose that X denotes the event that an individual is exposed to a potentially harmful

agent and that D denotes the event that the individual becomes diseased. We denote the

complementary events as X̄ and D̄. The odds of an individual contracting the disease given

that he is exposed are

odds(D|X) =
P (D|X)

1− P (D|X)

and the odds of contracting the disease given that he is not exposed are

odds(D|X̄) =
P (D|X̄)

1− P (D|X̄)
.

The odds ratio ∆ = odds(D|X)
odds(D|X̄)

is a measure of the influence of exposure on subsequent

disease.

We will consider how the odds and odds ratio could be estimated by sampling from a

population with joint and marginal probabilities defined as in the following table:

D̄ D

X̄ π00 π01 π0.

X π10 π11 π1.

π.0 π.1 1

With this notation,

P (D|X) =
π11

π10 + π11
P (D|X̄) =

π01

π00 + π01

so that

odds(D|X) =
π11

π10
odds(D|X̄) =

π01

π00

and the odds ratio is

∆ =
π11π00

π01π10

the product of the diagonal probabilities in the preceding table divided by the product of the

off-diagonal probabilities.

Now we will consider three possible ways to sample this population to study the rela-

tionship of disease and exposure.
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• Random sample: From such a sample, we could estimate all the probabilities directly.

However, if the disease is rare, the total sample size would have to be quite large to

guarantee that a substantial number of diseased individuals was included.

• Prospective study: A fixed number of exposed and nonexposed individuals are sampled

and then followed through time. The incidences of disease in those two groups are

compared. In this case the data allow us to estimate and compare P (D|X) and P (D|X̄)

and, hence, the odds ratio. The aspirin study described in the previous section can be

viewed as this type of study.

• Retrospective study: A fixed number of diseased and undiseased individuals are sampled

and the incidences of exposure in the two groups are compared. From such data we

can directly estimate P (X|D) and P (X|D̄). Since the marginal counts of diseased

and nondiseased are fixed, we cannot estimate the joint probabilities or the important

conditional probabilities P (D|X) and P (D|X̄). Observe that

P (X|D) =
π11

π01 + π11
, 1− P (X|D) =

π01

π01 + π11
,

odds(X|D) =
π11

π01
, odds(X|D̄) =

π10

π00
.

We thus see that the odds ratio can also be expressed as odds(X|D)/odds(X|D̄).

Now we describe the study of Vianna, Greenwald, and Davies (1971) to illustrate

the retrospective study. In this study they collected data comparing the percentages of

tonsillectomies for a group of patients suffering from Hodgkin’s disease and a comparable

control group:

Tonsillectomy No Tonsillectomy

Hodgkin’s 67 34

Control 43 64

Recall that the odds ratio can be expressed as odds(X|D)/odds(X|D̄) and an estimate of

it is n00n11/(n01n10), the product of the diagonal counts divided by the product of the off-

diagonal counts. The data of Vianna, Greenwald, and Davies gives an estimate of odds ratio

is
67× 64
43× 34

= 2.93.

According to this study, the odds of contracting Hodgkin’s disease is increased by about a

factor of three by undergoing a tonsillectomy.

As well as having a point estimate 2.93, it would be useful to attach an approximate

standard error to the estimate to indicate its uncertainty. We will use simulation (parametric

bootstrap) to approximate the distribution of ∆. To do so, we need to generate random

numbers according to a statistical model for the counts in the table of Vianna, Greenwald,
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and Davies. The model is that the count in the first row and first column, N11, is binomially

distributed with n = 101 and probability π11. The count in the second row and second

column, N22, is binomially distributed with n = 107 and probability π22. The distribution

of the random variable

∆̂ =
N11N22

(101−N11)(107−N22)

is thus determined by the two binomial distributions, and we could approximate it arbitrarily

well by drawing a large number of samples from them. Since the probabilities π11 and π22

are unknown, they are estimated from the observed counts by π̂11 = 67/101 = 0.663 and

π22 = 64/107 = 0.598. A one thousand realizations generated on a computer gives the

standard deviation 0.89.

2 Bootstrap Method

The bootstrap method introduced in Efron (1979) is a very general resampling procedure for

estimating the distributions of statistics based on independent observations. The bootstrap

method is shown to be successful in many situations, which is being accepted as an alternative

to the asymptotic methods. In fact, it is better than some other asymptotic methods, such

as the traditional normal approximation and the Edgeworth expansion. However, there are

some counterexamples that show the bootstrap produces wrong solutions, i.e., it provides

some inconsistent estimators.

Consider the problem of estimating variability of location estimates by the Bootstrap

method. If we view the observations x1, x2, . . . , xn as realizations of independent random

variables with common distribution function F , it is appropriate to investigate the variability

and sampling distribution of a location estimate calculated from a sample of size n. Suppose

we denote the location estimate as θ̂. Note that θ̂ is a function of the random variables

X1, X2, . . . , Xn and hence has a probability distribution, its sampling distribution, which is

determined by n and F . We would like to know this sampling distribution, but we are faced

with two problems:

1. we don’t know F , and

2. even if we knew F , θ̂ may be such a complicated function of X1, X2, . . . , Xn that

finding its distribution would exceed our analytic abilities.

First we address the second problem. Suppose we knew F . How could we find the

probability distribution of θ̂ without going through incredibly complicated analytic calcula-

tions? The computer comes to our rescue-we can do it by simulation. We generate many,

many samples, say B in number, of size n from F ; from each sample we calculate the value of

θ̂. The empirical distribution of the resulting values θ̂∗1 , θ̂∗2 , . . . , θ̂∗B is an approximation to the
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distribution function of θ̂, which is good if B is very large. If we wish to know the standard

deviation of θ̂, we can find a good approximation to it by calculating the standard devia-

tion of the collection of values θ̂∗1 , θ̂∗2 , . . . , θ̂∗B . We can make these approximations arbitrarily

accurate by taking B to be arbitrarily large.

Assignment 4. Explain or prove that the simulation we just described will give a

good approximation of the distribution function of θ.

All this would be well and good if we knew F , but we don’t. So what do we do? We

will consider two different cases. In the first case, F is unknown up to an unknown parameter

η, i.e. F (x|η). Without knowing η, the above approximation cannot be used. The idea of the

parametric bootstrap is to simulate data from F (x|η̂) where η̂ should be a good estimate

of η. Then it utilize the structure of F .

In the second case, F is completely unknown. The idea of the nonparametric boot-

strap is to simulate data from the empirical cdf Fn. Here Fn is a discrete probability

distribution that gives probability 1/n to each observed value x1, · · · , xn. A sample of size

n from Fn is thus a sample of size n drawn with replacement from the collection x1, · · · , xn.

The standard deviation of θ̂ is then estimated by

sθ̂ =

√√√√ 1
B

B∑
i=1

(θ∗i − θ̄∗)2

where θ∗1 , . . . , θ∗B are produced from B sample of size n from the collection x1, · · · , xn.

Now we use a simple example to illustrate this idea. Suppose n = 2 and observe

X(1) = c < X(2) = d. Then X∗
1 , X∗

2 are independently distributed with

P (X∗
i = c) = P (X∗

i = d) = 1/2, i = 1, 2.

The pairs (X∗
1 , X∗

2 ) therefore takes on the four possible pairs of values

(c, c), (c, d), (d, c), (d, d),

each with probability 1/4. Thus θ∗ = (X∗
1 + X∗

2 )/2 takes on the values c, (c + d)/2, d with

probabilities 1/4, 1/2, 1/4, respectively, so that θ∗ − (c + d)/2 takes on the values (c− d)/2,

0, (d− c)/2 with probabilities 1/4, 1/2, 1/4, respectively.

For the above example, we can easily calculate its bootstrap distribution. We can

easily imagine that the above computation becomes too complicated to compute directly if n

is large. Therefore, simple random sampling was proposed to generate bootstrap distribution.

In the bootstrap literature, a variety alternatives are suggested other than simple random

sampling.

Now we rewrite the above (generic) nonparametric bootstrap procedure into the follow-

ing steps as follows. Refer to Efron and Tibshirani (1993) for detailed discussions. Consider
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the case where a random sample of size n is drawn from an unspecified probability distribu-

tion, F . The basic steps in the bootstrap procedure are

Step 1. Construct an empirical probability distribution, Fn, from the sample by placing a

probability of 1/n at each point, x1, x2, · · · , xn of the sample. This is the empirical

distribution function of the sample, which is the nonparametric maximum likelihood

estimate of the population distribution, F .

Step 2. From the empirical distribution function, Fn, draw a random sample of size n with

replacement. This is a resample.

Step 3. Calculate the statistic of interest, Tn, for this resample, yielding T ∗n .

Step 4. Repeat steps 2 and 3 B times, where B is a large number, in order to create

B resamples. The practical size of B depends on the tests to be run on the data.

Typically, B is at least equal to 1000 when an estimate of confidence interval around

Tn is required.

Step 5. Construct the relative frequency histogram from the B number of T ∗n ’s by placing

a probability of 1/B at each point, T ∗1n , T ∗2n , . . . , T ∗Bn . The distribution obtained is the

bootstrapped estimate of the sampling distribution of Tn. This distribution can now

be used to make inferences about the parameter θ, which is to be estimated by Tn.

We now introduce notations to illustrate the bootstrap method. Assumed the data

X1, · · · , Xn, are independent and identically distributed (iid) samples from a k-dimensional

population distribution F and the problem of estimating the distribution

Hn(x) = P{Rn ≤ x},

where Rn = Rn(Tn, F ) is a real-valued functional of F and Tn = Tn(X1, · · · , Xn), a statistic

of interest. Let X∗
1 , · · · , X∗

n be a “bootstrap” samples iid from Fn, the empirical distribution

based on X1, · · · , Xn, T ∗n = Tn(X∗
1 , · · · , X∗

n), and R∗
n = Rn(T ∗n , Fn). Fn is constructed by

placing at each observation Xi a mass 1/n. Thus Fn may be represented as

Fn(x) =
1
n

n∑
i=1

I(Xi ≤ x), −∞ < x < ∞.

A bootstrap estimator of Hn is

Ĥn(x) = P∗{R∗
n ≤ x},

where for given X1, · · · , Xn, P∗ is the conditional probability with respect to the random

generator of bootstrap samples. Since the bootstrap samples are generated from Fn, this

method is called the nonparametric bootstrap. Note that Ĥn(x) will depend on Fn and hence
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itself is a random variable. To be specific, Ĥn(x) will change as the data {x1, · · · , xn} changes.

Recall that a bootstrap analysis is run to assess the accuracy of some primary statistical

results. This produces bootstrap statistics, like standard errors or confidence intervals, which

are assessments of error for the primary results.

As illustration, we consider the following three examples.

Example 1. Suppose that X1, · · · , Xn ∼ N(µ, 1) and Rn =
√

n(X̄n − µ). Consider the

estimation of

P (a) = P{Rn > a|N(µ, 1)}.

The nonparametric bootstrap method will estimate P (a) by

PNB(a) = P{
√

n(X̄∗
n − X̄n) > a|Fn}.

To be specific, we observe data x1, · · · , xn with mean x̄n. Let Y1, . . . , Yn denote a bootstrap

sample of n observations drawn independently from Fn and let Ȳn = n−1
∑n

i=1 Yi. Then

P (a) is estimated by

PNB(a) = P{
√

n(Ȳn − x̄n) > a|Fn}.

In principle, PNB(a) can be found by considering all nn possible bootstrap sample. If

all Xi’s are distinct, then the number of different possible resamples equals the number of

distinct ways of placing n indistinguishable objects into n numbered boxes, the boxes being

allowed to contain any number of objects. It is known that it is equal to C(2n − 1, n) ≈

(nπ)−1/222n−1. When n = 10(20, respect.), C(2n − 1, n) ≈ 92375(6.9 × 1010, respect.). For

small value of n, it is often feasible to calculate a bootstrap estimate exactly. However,

for large samples, say n ≥ 10, this becomes infeasible even at today’s computer technology.

Natural questions to ask are as follows:

• What are computationally efficient ways to bootstrap?

• Can we get bootstrap-like answers without Monte Carlo?

Moreover, we need to address the question of “evaluating” the performance of boot-

strap method. For the above particular problem, we need to estimate PNB(a) − P (a) or

supa |PNB(a)− P (a)|. As a remark, PNB(a) is a random variable since Fn is random. Efron

(1992) proposed to use jackknife to give the error estimates for bootstrap quantities.

Suppose that additional information on F is available. Then it is reasonable to utilize

this information in the bootstrap method. For example, F known to be normally distributed

with unknown mean µ and variance 1. It is natural to use x̄n to estimate µ and then estimate

P (a) = P{Rn > a|N(µ, 1)} by

PPB(a) = P{
√

n(Ȳn − x̄n) > a|N(x̄n, 1)}.
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Since the bootstrap samples are generated from N(x̄n, 1) which utilizes the information from

a parametric form of F , this method is called the parametric bootstrap. In this case, it can be

shown that PPB(a) = P (a) for all realization of X̄n. However, if F is known to be normally

distributed with unknown mean and variance µ and variance σ2 respectively, PPB(a) is no

longer equal to P (a).

Assignment 5. (a) Show that PPB(a) = Φ(a/sn) where s2
n = (n− 1)−1

∑n
i=1(xi − x̄n)2.

(b) Prove that PPB(a) is a consistent estimate of P (a) for fixed a.

(c) Prove that supa |PPB(a)− P (a)| P→ 0.

For the question of finding PNB(a), we can in principle write down the characteristic

function and then apply the inversion formula. However, it is a nontrivial job. Therefore,

Efron (1979) suggested to approximate PNB(a) by Monte Carlo resampling. (i.e., Sample-

size resamples may be drawn repeatedly from the original sample, the value of a statistic

computed for each individual resample, and the bootstrap statistic approximated by taking

an average of an appropriate function of these numbers.)

Example 1. (cont.) Let us consider a sample containing two hundred values generated

randomly from a standard normal population N(0, 1). This is the original sample. In this

example, the sampling distribution of the arithmetic mean is approximately normal with a

mean roughly equal to 0 and a standard deviation approximately equal to 1/
√

200. Now,

let us apply the nonparametric bootstrap method to infer the result. One thousand and five

hundred resamples are drawn from the original sample, and the arithmetic mean is calculated

for each resample. These calculations are performed by using R functions as follows

Step 1. Randomly draw two hundred points from a standard normal population

gauss < −rnorm(200, 0, 1)

Step 2. Perform the nonparametric bootstrap study (1500 resamples)

bootmean < −1 : 1500

for(i in 1 : 1500) bootmean[i] < −mean(sample(gauss, replace = T ))

Step 3. Do the normalization and comparison with N(0, 1).

bootdistribution < −sqrt(200) ∗ (bootmean−mean(gauss))

hist(bootdistribution, freq = FALSE, main = ”Bootstrap Distribution”, xlab = ””)

x < −seq(−4, 4, 0.001); y < −(1/(sqrt(2 ∗ pi))) ∗ exp(−x2/2)

points(x, y, col = 2)

Now we state Levy’s Inversion Formula which is taken from Chapter 6.2 of Chung

(1974).

Theorem 1 If x1 < x2 and x1 and x2 are points of continuity of F , then we have

F (x2)− F (x1) = lim
T→∞

1
2π

∫ T

−T

e−itx1 − e−itx2

it
f(t)dt,
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where f(t) is the characteristic function.

Example 2. (Estimating the probability of success) Consider a probability distri-

bution F putting all of its mass at zero or one. Let θ(F ) = P (X = 1) = p. Consider

R(X, F ) = X̄ − θ(F ) = p̂− p. Observed X = x, the bootstrap sample

X∗
1 , · · · , X∗

n ∼ Bin(1, θ(Fn)) = Bin(1, x̄n).

Note that

R(X∗, Fn) = X̄∗
n − x̄n,

E∗(X̄∗
n − x̄n) = 0,

V ar∗(X̄∗
n − x̄n) =

x̄n(1− x̄n)
n

.

Recall that nX̄∗
n ∼ Bin(n, x̄) and nX̄n ∼ Bin(n, p). It is known that if min{nx̄n, n(1−x̄n)} ≥

5,
nX̄∗

n − nx̄n√
nx̄n(1− x̄n)

=
√

n(X̄∗
n − x̄n)√

x̄n(1− x̄n)
∼ N(0, 1);

and if min{np, n(1− p)} ≥ 5,

nX̄n − np√
nθ(1− p)

=
√

n(X̄n − p)√
p(1− p)

∼ N(0, 1).

Based on the above approximation results, we conclude that the bootstrap method works if

min{nx̄n, n(1− x̄n)} ≥ 5. The question remained to be studied is whether

P{min(nX̄n, n(1− X̄n)) ≥ 5} → 0?

Example 3. (Estimating the median) Suppose we are interested in finding the dis-

tribution of n1/2{F−1
n (1/2)− F−1(1/2)} where F−1

n (1/2) and F−1(1/2) are the sample and

population median respectively. Set θ(F ) = F−1(1/2). The normal approximation for this

distribution will be discussed in Chapter 2. In this section, we consider the bootstrap ap-

proximation of the above distribution.

Consider n = 2m − 1. Then the sample median F−1
n (1/2) = X(m) where X(1) ≤

X(2) ≤ · · · ≤ X(n). Let N∗
i denote the number of times xi is selected in the bootstrap

sampling procedure.

Set N∗ = (N∗
1 , · · · , N∗

n). It follows easily that N∗ follows a multinomial distribution

with n trials and the probability of selection is (n−1, · · · , n−1). Denote the order statistics of

x1, . . . , xn by x(1) ≤ · · · ≤ x(n). Set N∗
[i] to be the number of times of choosing x(i). Then for

1 ≤ ` < n, we have

Prob∗(X∗
(m) > x(`)) = Prob∗{N∗

[1] + · · ·+ N∗
[`] ≤ m− 1}

= Prob

{
Bin

(
n,

`

n

)
≤ m− 1

}
=

m−1∑
j=0

C(n, j)
(

`

n

)j (
1− `

n

)n−j

.
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Or,

Prob∗(T ∗ = x(`)−x(m)) = Prob

{
Bin

(
n,

`− 1
n

)
≤ m− 1

}
−Prob

{
Bin

(
n,

`

n

)
≤ m− 1

}
.

When n = 13, we have

` 2 or 12 3 or 11 4 or 10 5 or 9 6 or 8 7

probability 0.0015 0.0142 0.0550 0.1242 0.4136 0.2230

Quite often we use the mean square error to measure the performance of an estimator,

t(X), of θ(F ). Or, EF T 2 = EF (t(X)−θ(F ))2. We then can use bootstrap to estimate EF T 2.

Then the bootstrap estimate of EF T 2 is

E∗(T ∗)2 =
13∑

`=1

[x(`) − x(7)]2Prob∗{T ∗ = x(`) − x(7)}.

It is known that EF T 2 → [4nf2(θ)]−1 as n tends to infinity when F has a bounded continuous

density. A natural question to ask is whether E∗(T ∗)2 is close to EF T 2?

3 Validity of the Bootstrap Method

We now give a brief discussion on the validity of the bootstrap method. First, we state

central limit theorems and its approximation error bound which will be used in proving that

the bootstrap can provide a good approximation of distribution of n1/2(p̂− p).

3.1 Central Limit Theorem

Perhaps the most widely known version of the CLT is

Theorem 2 (Lindeberg-Levy) Let {Xi} be iid with mean µ and finite variance σ2. Then

√
n

(
1
n

n∑
i=1

Xi − µ

)
d→ N(0, σ2).

The above theorem can be generalized to independent random variables which are not

necessarily identically distributed.

Theorem 3 (Lindeberg-Feller) Let {Xi} be independent with mean {µi}, finite variances

{σ2
i }, and distribution functions {Fi}. Suppose that B2

n =
∑n

i=1 σ2
i satisfies

σ2
n

B2
n

→ 0, Bn →∞ as n →∞.

Then n−1
∑n

i=1 Xi is N(n−1
∑n

i=1 µi, n
−2B2

n) if and only if the following Lindeberg condition

satisfied

B−2
n

n∑
i=1

∫
|t−µi|>εBn

(t− µi)2dFi(t) → 0, n →∞ each ε > 0.
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In the theorems previously considered, asymptotic normality was asserted for a se-

quence of sums
∑n

1 Xi generated by a single sequence X1, X2, . . . of random variables. More

generally, we may consider a double array of random variables

X11, X12, · · · , X1K1 ;

X21, X22, · · · , X2K2 ;
...

...
...

...

Xn1, Xn2, · · · , XnKn
;

...
...

...
...

For each n ≥ 1, there are Kn random variables {Xnj , 1 ≤ j ≤ Kn}. It is assumed that

Kn →∞. The case Kn = n is called a “triangular” array.

Denote by Fnj the distribution function of Xnj . Also, put

µnj = EXnj ,

An = E

Kn∑
j=1

Xnj =
Kn∑
j=1

µnj ,

B2
n = V ar

Kn∑
j=1

Xnj

 .

We then have the following theorem.

Theorem 4 (Lindeberg-Feller) Let {Xnj : 1 ≤ j ≤ Kn;n = 1, 2, . . .} be a double array

with independent random variables within rows. Then the “uniform asymptotic negligibility”

condition

max
1≤j≤Kn

P (|Xnj − µnj | > τBn) → 0, n →∞, each τ > 0,

and the asymptotic normality condition
∑Kn

j=1 Xnj is AN(An, B2
n) together hold if and only

if the Lindberg condition

B−2
n

n∑
i=1

∫
|t−µi|>εBn

(t− µi)2dFi(t) → 0, n →∞each ε > 0

is satisfied.

As a note, the independence is assumed only it within rows, which themselves may be arbi-

trarily dependent.

Corollary 1 Suppose that, for some v > 2,
∑Kn

j=1 E|Xnj − µnj |v = o(Bv
n), n → ∞. Then∑Kn

j=1 Xnj is AN(An, B2
n).

3.2 Approximation Error of CLT

It is of both theoretical and practical interest to characterize the error of approximation in

the CLT. In this section, we just consider the i.i.d. case. The convergence in the Central
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Limit Theorem is not uniform in the underlying distribution. For any fixed sample size n,

there are distributions for which the normal distribution approximation to the distribution

function of
√

n(X̄n − µ)/σ is arbitrarily poor. However, there is an upper bound, due to

Berry (1941) and Esseen (1942), to the error of the Central Limit Theorem approximation

that shows the convergence is uniform for the class of distributions for which |X − µ|3/σ3 is

bounded above by a finite bound. We state this theorem without proof in one dimension.

Theorem 5 If X1, . . . , Xn are i.i.d. with distribution F and if Sn = X1 + · · · + Xn, then

there exists a constant c (independent of F ) such that for all x,

sup
x

∣∣∣∣∣P
[

Sn − ESn√
V ar(Sn)

≤ x

]
− Φ(x)

∣∣∣∣∣ ≤ c√
n

E|X1 − EX1|3

[V ar(X1)]3/2

for all F with finite third moment.

Note that c in the above theorem is a universal constant. Various authors have thought

to find the best constant c. Originally, c is set to be 33/4 but it has been sharpened to be

greater than 0.4097 and less than 0.7975. For x is sufficiently large, while n remains fixed,

the quantity P [(Sn − ESn)/
√

V ar(Sn) ≤ x] become so close to 1 that the bound given by

above is too crude. The problem in this case may be characterized as one of approximation

of large deviation probabilities, with the object of attention becoming the relative error in

approximation of

1− P [(Sn − ESn)/
√

V ar(Sn) ≤ x]

by 1− Φ(x) when x →∞.

When we have information about the third and higher moments of the underlying

distribution, we may often improve on the normal approximation by considering higher-order

terms in the expansion of the characteristic function. This leads to asymptotic expansions

known as Edgeworth Expansions. We present without proof the two next terms in the

Edgeworth Expansion.

Φ(x)− β1(x2 − 1)
6
√

n
φ(x)−

[
β2(x3 − 3x)

24n
+

β2
1(x5 − 10x3 + 15x)

72n

]
φ(x).

where β1 = E(X − µ)3/σ3 and β2 = E(X − µ)4/σ4 − 3 are the coefficient of skewness and

the coefficient of kurtosis, respectively, and where φ(x) represents the density of the standard

normal distribution. This approximation is to be understood in the sense that the difference

of the two sides when multiplied by n tends to zero as n →∞. Assuming the fourth moment

exists, it is valid under the condition that

lim sup
|t|→∞

|E(exp{itX})| < 1.

This condition is known as Cramer’s Condition. It holds, in particular, if the underlying

distribution has a nonzero absolutely continuous component. The expansion to the term
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involving 1/
√

n is valid if the third moment exists, provided only that the underlying dis-

tribution is nonlattice, and even for lattice distributions it is valid provided a correction for

continuity is made. See Feller (Vol. 2, Chap. XVI.4) for details.

Let us inspect this approximation. If we stop at the first term, we have the approxi-

mation given by the Central Limit Theorem. The next term is of order n−1/2 and represents

a correction for skewness, since this term is zero if β1 = 0. In particular, if the underlying

distribution is symmetric, the Central Limit Theorem approximation is accurate up to terms

of order 1/n. The remaining term is a correction for kurtosis (and skewness) or order 1/n.

The Edgeworth Expansion is an asymptotic expansion, which means that continuing

with further terms in the expansion with n fixed may not converge. In particular, expanding

to further terms for fixed n may make the accuracy worse. There are a number of books

treating the more advanced theory of Edgeworth and allied expansions. The review by

Bhattacharya (1990), treats the more mathematical aspects of the theory and the book of

Barndorff-Nielsen and Cox (1989) the more statistical. Hall (1992) is concerned with the

application of Edgeworth Expansion to the bootstrap.

3.3 Estimation of the Probability of Success

We now discuss whether bootstrap method will give a consistent estimate of the distribution

of n1/2(p̂n − p). For simplicity, we use an asymptotic analysis to evaluate it. Note that as

n →∞, Fn will change accordingly. This is different from some asymptotic analysis in which

the underlying distribution F never change with n.

Two different approaches are used to address this question. Since that the underlying

distribution Fn changes with n, the first approach is to use the double array CLT to handle

the case and the second approach is to use approximation result, Berry-Esseen bound.

Proof 1: Note that the bootstrap samples at sample size n as Yn1, · · · , Ynn which

come from Bin(1, x̄n). Note that Bin(1, x̄n) is the so-called Fnj in the double array CLT.

Then µnj = x̄n, An = nx̄n, Kn = n, and B2
n = nx̄n(1− x̄n).

1. Check UAN condition.

P (|Ynj − µnj | > τ
√

n[x̄n(1− x̄n)]) = 0.

2. Check Lindberg condition.∫
|t−µnj |>εBn

(t− µnj)2dFnj(t) = 0.

These imply that
∑n

j=1 Ynj is AN(nx̄n, nx̄n(1− x̄n)).

It is well known that
√

n(p̂ − p) is asymptotically normally distributed with mean 0

and variance p(1− p). If, for all realizations, X̄n converges to p with probability 1, we then



17

conclude that the bootstrap distribution of p̂ will also converge to normal with mean 0 and

variance p(1 − p). This gives a justification that the bootstrap method is consistent. As a

remark, the bootstrap method is most powerful when we don’t know how to do asymptotic

analysis. In such a case, how do we justify that the bootstrap method is consistent is a

challenging problem.

Proof 2: Using the Berry-Esseen bound, we have

sup
x

∣∣∣∣∣P
[

nȲn − nx̄n√
x̄n (1− x̄n)

≤ x

]
− Φ(x)

∣∣∣∣∣ ≤ c√
n

E(Y − x̄n)3

[x̄n(1− x̄n)]3/2
.

If x̄n(1− x̄n) is bounded away from zero, the right hand side will tend to zero. This gives a

justification that the bootstrap method is consistent.

3.4 Statistical Functionals

Many statistics including the sample mean, the sample median and the sample variance, are

consistent estimators of their corresponding population quantity: the sample mean X̄ of the

expectation E(X), the pth sample quantile of the pth population quantile F−1(p), the kth

sample moment
∑

(Xi− X̄)k/n of the kth population moment E[X −E(X)]k, etc. Any such

population quantity is a function of the distribution F of the Xi and can therefore be written

as h(F ), where h is a real-valued function defined over a collection F of distributions F . The

mean h(F ) = EF (X), for example, is defined over the class F of all F with finite expectation.

Statistics which are representable as functionals h(F ) are so-called statistical functionals.

To establish the connection between the sequence of sample statistics and functional

h(F ) that it estimates, define the sample cdf F̂n by

F̂n(x) =
Number of Xi ≤ x

n
.

This is the cdf of a distribution that assigns probability 1/n to each of the n sample values

X1, X2, . . . , Xn. For the examples mentioned so far and many others, it turns out that the

standard estimator of h(F ) based on n observations is equal to h(F̂n), the plug-in estimator

of h(F ). When h(F ) = E[X − E(X)]k, it is seen that

h(F̂n) =
1
n

(X1 − X̄)k + · · ·+ 1
n

(Xn − X̄)k.

Note that
∑

(Xi − X̄)k/n can be viewed as a function of n variables or as a function of F̂n.

Suppose we want to evaluate the performance of an estimator θ̂n of some parameter θ

or functional h(F ). As an example, the sample median θ̂n as an estimator of the population

median. We can use the following as a measure

λn(F ) = PF

{√
n[θ̂n − h(F )] ≤ a

}
.
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Note that population median can be written as F−1(0.5) and then the sample median can

be viewed as a plug-in estimate F̂−1
n (0.5). Again, we can estimate λn(F ) by the plug-in

estimator λn(F̂n) in which the distribution F of the X’s by the distribution F̂n. In addition,

the subscript F , which governs the distribution of θ̂n, must also be changed to F̂n. To see

what this last step means, write

θ̂n = θ(X1, . . . , Xn), (1)

that is, express θ̂n not as a function of F̂n but directly as a function of the sample (X1, . . . , Xn).

The dependence of the distribution of θ̂n on F results from the fact that X1, . . . , Xn is a sam-

ple from F . To replace F by F̂n in the distribution governing θ̂n, we must therefore replace

(1) by

θ̂∗n = θ(X∗
1 , . . . , X∗

n), (2)

where X∗
1 , . . . , X∗

n is a sample from F̂n. With this notation, λn(F̂n) can now be written

formally as

λn(F̂n) = PF̂n

{√
n[θ̂∗n − h(F̂n)] ≤ a

}
. (3)

When λn(F̂n) is too complicated to compute directly, we can approximate λn(F̂n) by λ∗B,n

as suggested in Efron (1979). Here

λ∗B,n =
1
n

B∑
1

EF̂n
θ̂n − h(F̂n). (4)

Here we don’t give any discussion of theoretical properties of the plug-in estimator

λn(F̂n), such as consistency and asymptotic normality. In much of the bootstrap literature,

the bootstrap is said to work if λn(F̂n) is consistent for estimating λn(F ) in the sense that

λn(F̂n) → λn(F ) for all F under consideration.

4 Inconsistent Bootstrap Estimator

Bickel and Freedman (1981) and Loh (1984) showed that the bootstrap estimators of the

distributions of the extreme-order statistics are inconsistent. Let X(n) be the maximum of

i.i.d. random variables X1, . . . , Xn from F with F (θ) = 1 for some θ, and let X∗
(m) be the

maximum of X∗
(1), . . . , X

∗
(m) which are i.i.d. from the empirical distribution Fn. Although

X(n) → θ, it never equals θ. But

P∗{X∗
(n) = X(n)} = 1− (1− n−1)n → 1− e−1,

which leads to the inconsistency of the bootstrap estimator.

The reason for the inconsistency of the bootstrap is that the bootstrap samples are

drawn from Fn which is not exactly F . Therefore, the bootstrap may fail due to the lack



19

of “continuity.” We now illustrate that the bootstrap can produce wrong solutions, i.e., it

provides some inconsistent estimators. Refer to Shao (1994) for further references. We focus

on the case where the data X1, . . . , Xn are i.i.d. samples from a k-dimensional population

distribution F and the problem of estimating the distribution

Hn(x) = P{Rn ≤ x}, (5)

where Rn = Rn(Tn, F ) is a real-valued functional of F and Tn = Tn(X1, . . . , Tn), a statistic

of interest. A bootstrap estimator of Hn is

Ĥn(x) = P∗{R∗
n ≤ x}, (6)

where R∗
n = Rn(T ∗n , Fn). Let µ = EX1; θ = g(µ), where g is a function from Rk to

R; X̄n = n−1
∑n

i=1 Xi be the sample mean; and Tn = g(X̄n). Under the conditions that

V ar(X1) = Σ < ∞ and g is first-order continuously differentiable at µ,

sup
x

∣∣P {√n(T ∗n − Tn) ≤ x
}
− P

{√
n(Tn − θ) ≤ x

}∣∣→ 0 a.s., (7)

where T ∗n = g(X̄∗
n) and X̄∗

n = n−1
∑n

i=1 X∗
i .

Consider the situation where g is second-order continuously differentiable at µ with

52g(µ) 6= 0 but 5g(µ) = 0. Using the Taylor expansion and 5g(µ) = 0, we obtain that

Tn − θ =
1
2
(X̄n − µ)

′
52 g(µ)(X̄n − µ) + oP (n−1). (8)

This implies

n(Tn − θ) d→ 1
2
Z

′

Σ 52 g(µ)ZΣ, (9)

where ZΣ is a random k-vector having normal distribution with mean 0 and covariance matrix

Σ. From (9),
√

n(Tn − θ) P→ 0, and, therefore, result (7) is not useful when 5g(µ) = 0 and

we need to consider the bootstrap estimator of the distribution of n(Tn − θ) in this case.

Let Rn = n(Tn − θ), R∗
n = n(T ∗n − Tn), and Hn and Ĥn be given by (5) and (6),

respectively. Babu (1984) pointed out that Ĥn is inconsistent in this case. Similar to (8),

T ∗n − Tn = 5g(X̄n)
′
(X̄∗

n − X̄n) +
1
2
(X̄∗

n − X̄n)
′
52 g(X̄n)(X̄∗

n − X̄n) + oP (n−1) a.s. (10)

B the continuity of 52g and Theorem 2.1 of Bickel and Freedman (1981), for almost all given

sequences X1, X2, . . .,

n

2
(X̄∗

n − X̄n)
′
52 g(X̄n)(X̄∗

n − X̄n) d→ 1
2
Z

′

Σ 52 g(µ)ZΣ. (11)

From 5g(µ) = 0,

√
n5 g(X̄n) =

√
n52 g(µ)(X̄n − µ) + oP (1) d→52g(µ)ZΣ. (12)

Hence, for almost all given X1, X2, . . ., the conditional distribution of n5 g(X̄n)
′
(X̄∗

n − X̄n)

does not have a limit. It follows from (10) and (11) that for almost all given X1, X2, . . ., the
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conditional distribution of n(T ∗n − Tn) does not have a limit. Therefore, Ĥn is inconsistent

as an estimator of Hn.

The symptom of this problem in the present case is that 5g(X̄n) is not necessarily

equal to zero when 5g(µ) = 0. As a result, the expansion in (10), compared with the

expansion in (8), has an extra nonzero term 5g(X̄n)
′
(X̄∗

n − X̄n) which does not converge to

zero fast enough, and, therefore, Ĥn cannot mimic Hn.

5 Bias Reduction via the Bootstrap Principle

In this section, we will use an example to illustrate the bias reduction via the Bootstrap

principle. Consider θ0 = θ(F0) = µ3, where µ =
∫

xdF0(x). Set θ̂ = θ(Fn) = X̄3. Elementary

calculations show that

E{θ(Fn)|F0} = E{µ + n−1
n∑

i=1

(Xi − µ)}3 (13)

= µ3 + n−13µσ2 + n−2γ,

where γ = E(X1−µ)3 denotes population skewness. Using the nonparametric bootstrap, we

obtain in direct analogy to (13)

E{θ(F ∗
n)|Fn} = X̄3 + n−13X̄σ̂2 + n−2γ̂,

where σ̂2 = n−1
∑

(Xi− X̄)2 and γ̂ = n−1
∑

(Xi− X̄)3 denote sample variance and skewness

respectively. Using the bootstrap principle, E{θ(F ∗
n)|Fn}−θ(Fn) is used to estimate θ(Fn)−

θ(F0). Note that θ0 = θ(Fn)−(θ(Fn)−θ0). Or, θ0 can be estimated by θ(Fn)−[E{θ(F ∗
n)|Fn}−

θ(Fn)] or 2θ(Fn) − E{θ(F ∗
n)|Fn}. Therefore the bootstrap bias-reduced estimate is 2X̄3 −

(X̄3 + n−13X̄σ̂2 + n−2γ̂). Or, θ̂NB = X̄3 − n−13X̄σ̂2 − n−2γ̂.

Now we check whether θ̂NB really reduces bias. Observe that for general distributions

with finite third moments,

E(X̄3) = µ3 + n−13µσ2 + n−2γ,

E(X̄σ̂2) = µσ2 + n−1(γ − µσ2)− n−2γ,

E(γ̂) = γ(1− 3n−1 + 2n−2).

It follows that

E(θ(Fn))− θ0 = n−23(µσ2 − γ) + n−36γ − n−42γ

for general distributions.

6 Jackknife

One of the central goals of data analysis is an estimate of the uncertainties in fit parameters.

Sometimes standard methods for getting these errors are unavailable or inconvenient. In that
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case we may resort to a couple of useful statistical tools that have become popular since the

advent of fast computers. One is called the “jackknife” (because one should always have this

tool handy) and the other the “bootstrap”. One of the earliest techniques to obtain reliable

statistical estimators is the jackknife technique. Here we describe the jackknife method, which

was invented in 1949 by Quenouille and developed further by Tukey in 1958. As the father

of EDA, John Tukey attempted to use Jackknife to explore how a model is influenced by

subsets of observations when outliers are present. The name Jackknife was coined by Tukey

to imply that the method is an all-purpose statistical tool.

Quenouille (1949) introduced a technique for reducing the bias of a serial correlation

estimator based on splitting the sample into two half-samples. In his 1967 paper he general-

ized this idea into splitting the sample into g group of size h each, n = gh, and explore its

general applicability. It requires less computational power than more recent techniques such

as bootstrap method.

Suppose we have a sample x = (x1, x2, . . . , xn) and an estimator θ̂ = s(x). The

jackknife focuses on the samples that leaves out one observation at a time:

x(i) = (x1, x2, . . . , xi−1, xi+1, . . . , xn)

for i = 1, 2, . . . , n, called jackknife samples. The ith jackknife sample consists of the data set

with the ith observation removed. Let θ̂(i) = s(x(i)) be the ith jackknife replication of θ̂.

The jackknife estimate of standard error defined by

ŝejack =

[
n− 1

n

∑
i

(θ̂(i) − θ̂(·))2
]1/2

,

where θ̂(·) =
∑n

i=1 θ̂(i)/n.

The jackknife only works well for linear statistics (e.g., mean). It fails to give accurate

estimation for non-smooth (e.g., median) and nonlinear (e.g., correlation coefficient) cases.

Thus improvements to this technique were developed. Now we consider Delete-d jackknife.

Instead of leaving out one observation at a time, we leave out d observations. Therefore,

the size of a delete-d jackknife sample is n− d, and there are C(n, d) jackknife samples. Let

θ̂(s) denote θ̂ applied to the data set with subset s removed. The formula for the delete-d

jackknife estimate of s.e. is [
n− d

dC(n, d)

∑
i

(θ̂(s) − θ̂(·))2
]1/2

,

where θ̂(·) =
∑

s θ̂(s)/C(n, d) and the sum is over all subsets s of size n − d chosen without

replacement for x1, x2, . . . , xn. It can be shown that the delete-d jackknife is consistent for

the median if
√

n/d → 0 and n − d → ∞. Roughly speaking, it is preferrable to choose a d

such that
√

n < d < n for the delete-d jackknife estimation of standard error.
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We just describe how to obtain standard error estimate of an estimator θ̂ based on the

sample of size n. Now we demonstrate that the jackknife can be used to reduce the biasd

estimate θ̂. If the bias of θ̂ is of the order n−1, we write

E(θ̂)− θ =
a1

n
+

a2

n2
+ · · · .

Hence,

EF (θ̂(·)) = θ +
a1(F )
n− 1

+
a2(F )

(n− 1)2
+ · · · .

To estimating the bias, the jackknife gives

ˆBiasjack = (n− 1)(θ̂(·) − θ̂).

Then the jackknife estimate of θ is

θ̃ = θ̂ − ˆBiasjack.

Note that

θ̃ = nθ̂ − (n− 1)θ̂(·).

We can show easily that the bias of jackknife estimate θ̃ is of the order n−2.

7 Resampling Methods

The term “resampling” has been applied to a variety of techniques for statistical inference,

among which stochastic permutation and the bootstrap are the most characteristic. There are

at least four major types of resampling methods which include the randomization exact test,

cross-validation, jackknife, and bootstrap. Although today they are unified under a common

theme, it is important to note that these four techniques were developed by different people

at different periods of time for different purposes. In this chapter, we already discuss two of

them. In this section, we will describe the randomization exact test and cross-validation.

For the randomization exact test, it is also known as the permutation test. This test

was developed by R.A. Fisher (1935), the founder of classical statistical testing. Both noted

that with a large sample the exact Fisher test is not feasible because of the computational

difficulty (before the age of powerful computers). Hence, in his later years Fisher lost interest

in the permutation method because there were no computers in his days to automate such a

laborious method. As a remedy, people suggested that a randomly-generated selected subset

of the possible permutations could provide the benefits of the permutation test without

excessive computational cost.

Randomization exact test is a test procedure in which data are randomly re-assigned so

that an exact p-value is calculated based on the permutated data. Let’s look at the following
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example. Assume that in an experiment comparing Web-based and text-based instructional

methods, subjects obtained the following scores:

{99, 90, 93, . . .} versus {87, 89, 97, . . .}.

After the researcher has run a two-sample t-test, the test returns a t-value of 1.55. If the

classical procedure is employed, the researcher can check this tobserved against the tcritical

in the t-distribution to determine whether the group difference is significant. However, in

resampling, instead of consulting a theoretical t-distribution, the researcher keeps swapping

observations across the two groups, many more t-values will be returned. The purpose of

this procedure is to artificially simulate “chance.” Sometimes the t is large, but other times

it is small. After exhausting every possibility, say 100, the inquirer can put these t-values

together to plot an empirical distribution curve, which is built on the empirical sample data.

When the t-value of 1.55 occurs only 5 times out of 100 times, the researcher can conclude

that the exact p-value (the probability that this difference happens by chances alone) is 0.05.

The underlying idea was to use the power of sampling, in a fashion similar to the way

it is used in empirical samples from large universes of data, in order to approximate the ideal

test based on the complete set of permutations. So the idea was to gain the benefits of the

classical array of methods - though not a parametric test in this case - by the technical device

of simulation sampling. It raises a challenge question on whether the approximation would

be satisfactory.

For cross-validation, it separates the available data into two or more segments, and

then tests the model generated in one segment against the data in the other segment(s). The

goal is to find out whether the result is replicable or just a matter of random fluctuations.

Take regression as an example. In the process of implementing a cross-validation, the first

sub-sample is usually used for deriving the regression equation while another sub-sample

is used for generating predicted scores from the first regression equation. Next, the cross-

validity coefficient is computed by correlating the predicted scores and the observed scores

on the outcome variable. Refer to Stone (1974) on using cross-validation to assess statistical

predictions. Clearly there is no re-use of the same data, nor is there any use of repeated

simulation trials.

Bootstrap means that one available sample gives rise to many others by resampling

(a concept reminiscent of pulling yourself up by your own bootstrap). While the original

objective of cross-validation is to verify replicability of results and that of Jackknife is to

detect outliers, Efron developed bootstrap with inferential purposes. The principles of cross-

validation, Jackknife, and bootstrap are very similar, but bootstrap overshadows the others

for it is a more thorough procedure in the sense that it draws many more sub-samples than

the others. Through simulations, it is found that the bootstrap technique provides less biased
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and more consistent results than the Jackknife method does. Nevertheless, Jackknife is still

useful in EDA for assessing how each sub-sample affects the model.

Supporters of resampling have raised a number of reasons to justify the aforementioned

techniques.

• Empirical: Classical procedures rely on theoretical distributions, which requires strong

assumptions of both the sample and the population. For example, we may need to

start with the assumption that the data conform to a bell-shaped curve and the need

to focus on statistical measures whose theoretical properties can be analyzed mathemat-

ically. But the inferential leap form the sample to the population may be problematic,

especially when the population is ill-defined. If one is skeptical of the use of theoretical

distributions, empirical-based resampling is a good alternative (Diaconis and Efron,

1983).

• Clarity: Conceptually speaking, resampling is clean and simple. Sophisticated mathe-

matical background is not required to comprehend resampling. Thus, the researchers

can pay attention to the content of their research rather than worrying about which test

procedure could reduce the family-wise error from 0.06 to 0.05 in multiple comparison.

• Distribution: Classical procedures require distributional assumptions, which are usually

met by a large sample size. When the sample size is small and does not conform to the

parametric assumptions, resampling is recommended as a remedy (Diaconis and Efron,

1983). However, Good (2000) stated that permutation tests are still subject to the

Behrens-Fisher problem, in which estimation is problematic when population variances

are unknown. To be specific, permutation tests still assume equal variances as what is

required in classical tests.

• Small sample size: Even if the data structure meets the parametric assumptions, a

study with small sample size will be crippled by the low power level. Bootstrapping

could treat a small sample as the virtual population to ”“generate” more observations.

• Large sample size: Usually resampling is a remedy for small sample size, however, the

same technique can also be applied to the situation of overpowering, in which there are

too many subjects. Given a very large sample size, one can reject virtually any null

hypothesis. When the researcher obtains a large sample size, he/she could divide the

sample into subsets, and then apply a cross-validation.

• Replications: Classical procedures do not inform researchers of how likely the results

are to be replicated. Repeated experiments in resampling such as cross-validation and

bootstrap can be used as internal replications. Replications are essential to certain

classical procedures such as multiple regression.
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Despite these justifications, some methodologists are skeptical of resampling for the

following reasons:

• Assumption: Stephen E. Fienberg mocked resampling by saying, “You’re trying to get

something for nothing. You use the same numbers over and over again until you get

an answer that you can’t get any other way. In order to do that, you have to assume

something, and you may live to regret that hidden assumption later on.” Every theory

and procedure is built on certain assumptions and requires a leap of faith to some degree.

Indeed, the classical statistics framework requires more assumptions than resampling

does.

• Generalization: Some critics argued that resampling is based on one sample and there-

fore the generalization cannot go beyond that particular sample. One critic even went

further to say, “I do wonder, though, why one would call this (resampling) inference?”

• Bias and bad data: It asserted that confidence intervals obtained by simple bootstrap-

ping are always biased though the bias decreases with sample size. If the sample comes

from a normal population, the bias in the size of the confidence interval is at least

n/(n − 1), where n is the sample size. Nevertheless, one can reduce the bias by more

complex bootstrap procedures. Some critics challenged that when the collected data

are biased, resampling would just repeat and magnify the same mistake. However, if

one asserts that the data are biased, one must know the attributes of the underlying

population. As a matter of fact, usually the population is infinite in size and unknown

in distribution. Hence, it is difficult to judge whether the data are bad. Further, if

the data were biased, classical procedures face the same problem as resampling. While

replications in resampling could partially alleviate the problem, classical procedures do

not provide any remedy.

• Accuracy: Some critics question the accuracy of resampling estimates. If the researcher

doesn’t conduct enough experimental trials, resampling may be less accurate than con-

ventional parametric methods. However, this doesn’t seem to be a convincing argument

because today’s high-power computers are capable of running billions of simulations.

For example, in StatXact, a software program for exact tests, the user could configure

the resampling process to run with maximum RAM for 1 billion samples with no time

limit.
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