
Large Sample Theory
Homework 5: Maximum Likelihood Estimate, Testing, Asymptotic Distribution

Due Date: January 12th

1. Consider the classical Gaussian linear modelYi = µi + εi, 1 ≤ i ≤ n, whereµi = zT
i β

andεi are i.i.d. Gaussian with mean0 and varianceσ2. Herezi ared-dimensional vectors
for covariate values. Suppose that the covariates are ranked in order of importance. (It
means that the first covariate is the most important and etc.)
To entertain the possibility that the lastd − p don’t matter,βp+1 = · · · = βd = 0. Let

β̂
(p)

be the least-squares estimate withβp+1 = · · · = βd = 0 andŶ
(p)
i the corresponding

fitted value.
In this fashion, we end upd possible regression models. Now the problem is which one
to use. A natural goal to entertain is to obtain new valuesY ∗

1 , . . . , Y ∗
n at z1, . . . , zn and

evaluate the performance of̂Y
(p)
1 , . . . , Ŷ (p)

n as estimates ofY ∗
1 , . . . , Y ∗

n and, hence, the
model withβd+1 = · · · = βp = 0 by the (average) expected prediction error

EPE(p) = n−1E
n∑

i=1

(Y ∗
i − Ŷ

(p)
i )2.

HereY ∗
1 , . . . , Y ∗

n are independent ofY1, . . . , Yn andY ∗
i is distributed asYi, i = 1, . . . , n.

Let RSS(p) =
∑n

i=1(Yi − Ŷ
(p)
i )2 be the residual sum of squares. Suppose thatσ2 is

known.

(a.) Show that

EPE(p) = σ2
(
1 +

p

n

)
+

1

n

n∑
i=1

(µi − µ
(p)
i )2

whereµ
(p)
i = zT

i β̂
(p)

andβ̂
(p)

= (β1, . . . , βp, 0, . . . , 0)T .
(b). Show that

E[RSS(p)] = σ2
(
1− p

n

)
+

1

n

n∑
i=1

(µi − µ
(p)
i )2.

(c). Show thatRSS(p) + (2p/n)σ2 is an unbiased estimate ofEPE(p).
(d). Mallow (1973,Technometrics) suggested a model selection rule in whichp is se-

lected to be the one minimizesRSS(p) + (2p/n)σ2 and then usingŶ(p̂) as a
predictor. Supposep = 2 andd = 3. Find the probability thatP (p̂ = 3) and
P (p̂ ≤ 1) when n goes to infinity. (You can assume that those covariates are
realized values of3 independentUNIF (0, 1) random variables. For example,
µi = β1zi1 + β2zi2 + β3zi3 wherezi1, zi2, andzi3 are independentUNIF (0, 1)
random variables.

2. Consider modelY = Xβ + ε whereE(ε) = 0 andV ar(ε) = σ2Jn. Let Ŷi = Xiβ̂ and
hii = Xi(X

TX)−1XT
i .

(a) Show that for anyε > 0,

P (|Ŷi − E(Ŷi)| ≥ ε) ≥ min[P (εi ≥ ε/hii), [P (εi ≤ −ε/hii)].

(Hint: for independent random variablesX andY , P (|X+Y | ≥ ε) ≥ P (X ≥ ε)P (Y ≥
0) + P (X ≤ −ε)P (Y < 0).)

(b) Show that̂Yi − E(Ŷi)
P→ 0 if and only if hii → 0.
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3. Let (Xi, Yi), 1 ≤ i ≤ n, be iid withXi andYi independent,N(θ1, 1), N(θ2, 1), respec-
tively. Supposeθ1 ≥ 0 andθ1 ≥ θ2 ≥ 0. Consider testingH0 : θ1 = θ2 = 0 versus
H1 : θ1 > 0 or θ2 > 0. Show that whatever ben, underH0, λn is distributed as a mixture
of point mass at0, χ2

1 andχ2
2 with probabilities3/8, 1/2, 1/8, respectively.

4. Let (X11, X12), . . . , (Xn1, Xn2) be i.i.d. from a bivariate normal distribution with un-
known mean and covariance matrix. For testingH0 : ρ = 0 versusH1 : ρ 6= 0, where
ρ is the correlation coefficient, show that the test rejectingH0 when|W | > 0 is an LR
test, where

W =
n∑

i=1

(Xi1 − X̄1)(Xi2 − X̄2)/

[
n∑

i=1

(Xi1 − X̄1)
2 +

n∑
i=1

(Xi2 − X̄2)
2

]
.

Find the distribution ofW underH0.

5. Suppose you are studying the number of visitations of a pollinator to a flower. Your
hypothesis is that yellow flowers are better than red flowers (in terms of pollinator at-
traction). Previous studies have found that the number of visitors to red flowers follows
a normal distribution with a mean of200 visits per flower and a variance of50. Suppose
in a sample of20 yellow flowers that the mean number of visits is202 with a known
variance (of visits per flower) of50. Again, assume the number of visitors is normally
distributed.

a. What is the probability of this data under the null hypothesis (yellow and red flowers
are equivalent)?

b. What is the critical value for a (one-sided) test of the null hypothesis at theα = 0.05
level?

c. What are the values for (a) and (b) when the variance for yellow flowers (50) is
instead a SAMPLE variance (i.e., an estimate of the true variance)? Hint: Would
you now use a normal or at distribution?

d. Suppose that yellow flowers are indeed better. Given the sample size (20) and as-
suming the variance (50) is the true value, how small an effect can we detect using
a (one-sided) test of significance ofα = 0.05 with 80% power?

e. Repeat the calculation in (d) assuming that the variance (50) is now an estimated
value, not necessarily the true value.

f. Suppose the true mean and variance for yellow flowers are201 and10. How large
a sample size is required to have a power of80 percent of detecting a difference be-
tween red and yellow using a test of significance with levelα = 0.05? Compute this
for both the normal (variance assumed know) andt (variance estimated) settings.

g. If the true variance for yellow is35, what is the probability that we observe a sample
variance of50 (or larger) given our sample size of20.

6. LetX1, X2, . . . , Xn be a random sample from theunif(0, θ) distribution for someθ >
0. Suppose we wish to test

H0 : θ = θ0 versus Ha : θ < θ0

at level (size)α. Suppose that we use test statisticX(n).

a. Derive the test with the probability of a Type I errorα.
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b. What is the probability of a type Type II error for any particularθ = θ1 whereθ1 is
some fixed number less thanθ0?

c. What is the power function of this test?

d. What sample size is necessary in order to getβ(θ1) = β whereβ is a fixed number
between0 and1 andθ1 is a fixed value between0 andθ0?

7. Let X1, . . . , Xn be the times in months until failure ofn similar pieces of equipment.
Since the equipment is subject to wear, we often modelX1, . . . , Xn as a random sample
of sizen from a Weibull distribution with densityf(x, λ) = λcxc−1 exp(−λxc), x > 0.
Herec is a known positive constant andλ > 0.

a. Find an optimal test for testingH0 : 1/λ ≤ 1/λ0 versusHa : 1/λ > 1/λ0.

b. Suppose that the only table you have is a normal probability table. Can you use this
table to carry out the test derived in (a)? Give reasons to justify your answer.

8. Let Xn be a random variable having the Poisson distributionP (nθ), whereθ > 0,

n = 1, 2, . . .. Show that(Xn − nθ)/
√

nθ
d→ N(0, 1).

9. Let U1, . . . , Un be i.i.d. random variables having the uniform distribution on[0, 1] and

Yn = (
∏n

i=1 Ui)
−1/n. Show that

√
n(Yn − e)

d→ N(0, e2).

10. Set̂σ =
√

n−1
∑n

i=1(Xi − X̄)2. Show that
√

n(σ̂ − σ)
d→ N(0, σ2/2).

11. LetX1, . . . , Xn be i.i.d.N(θ, 1) with θ ≥ 0.
(a) Show that the MLE ofθ, θ̂n, is X̄ if X̄ > 0 and0 otherwise.
(b) If θ > 0, show that

√
n(θ̂n − θ)

L→ N(0, 1).

(c) If θ = 0, the probability is1/2 that θ̂n = 0 and1/2 that
√

n(θ̂n − θ)
L→ N(0, 1).

12. If X1, . . . , Xn are i.i.d. according toU(0, θ) andTn = X(n), the limiting distribution of
n(θ − Tn) is exponential with densityθ−1 exp(−x/θ). Use this result to determine the
limit distribution of
(a)n[f(θ)− f(Tn)], wheref is any function withf (1)(θ) 6= 0;
(b) [f(θ)− f(Tn)] is suitably normalized iff (1)(θ) = 0 butf (2)(θ) 6= 0.

13. LetX1, . . . , Xn be i.i.d.N(θ, σ2) and consider the estimation ofθ2.
(a) Find the maximum likelihood estimator.
(b) Obtain the limit distribution of the estimators obtained in (a). (Hint: You may need
to considerθ 6= 0 andθ = 0 separately.)

14. LetX1, . . . , Xn be i.i.d. withE(Xi) = θ, V ar(Xi) = σ2 < ∞, and letδn = X̄ with
probability1− εn andδn = An with probabilityεn. If εn andAn are constants satisfying

εn → 0 and εnAn →∞,

thenδn is consistent for estimatingθ, butE(δn − θ)2 does not tend to zero.

15. Suppose thatXn is a random variable having the binomial distributionBin(n, p), where
0 < p < 1, n = 1, 2, . . .. Define

Yn =

{
log(Xn/n) Xn ≥ 1
1 Xn = 0.

Show thatYn
a.s.→ log p and

√
n(Yn − log p)

d→ N(0, (1− p)/p).
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16. LetX1, . . . , Xn be iid random variables withV ar(X1) < ∞. Show that

2

n(n + 1)

n∑
j=1

jXj
P→ EX1.

17. Let(Y1, Z1), . . . , (Yn, Zn) be i.i.d. with the Lebesgue pdf

λ−1µ−1e−y/λe−z/µI(0,∞)(y)I(0,∞)(z),

whereλ > 0 andµ > 0.
(a) Find the MLE of(λ, µ).
(b) Suppose that we only observeXi = min(Yi, Zi) andδi = 1 if Xi = Yi andδi = 0 if
Xi = Zi. Find the MLE of(λ, µ).

18. LetX beN(0, θ), 0 < θ < ∞. Find the Fisher informationI(θ).
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