Large Sample Theory Homework 3: Probability and Conditioning Due Date: November 10th

1. Let X be a random variable with range $\{0, 1, 2, ...\}$. Show that if $E(X) < \infty$, then

$$E(X) = \sum_{n=1}^{\infty} P(X \ge n)$$

2. Let X be a random variable having a c.d.f. F(x). Show that if $X \ge 0$, then

$$E(X) = \int [1 - F_X(x)] dx;$$

in general, if E(X) exists, then

$$E(X) = \int_0^\infty [1 - F_X(x)] dx - \int_{-\infty}^0 [F_X(x)] dx$$

3. Let X_1 and X_2 be independent random variables having the standard normal distribution. Obtain the joint p.d.f. of (Y_1, Y_2) , where $Y_1 = \sqrt{X_1^2 + X_2^2}$ and $Y_2 = X_1/X_2$. (a). Are the Y_i independent?

(b). Box-Muller transformation is often used to transform a two-dimensional continuous uniform distribution to a two-dimensional bivariate normal distribution. In this algorithm, it generates X_1 and X_2 which are independent and uniformly distributed 0 and 1. Then convert X_1 and X_2 to Z_1 and Z_2 by

$$Z_1 = \sqrt{-2\pi \ln X_1} \cos(2\pi X_2), \quad Z_2 = \sqrt{-2\pi \ln X_1} \sin(2\pi X_2).$$

Use (a) to show that Z_1 and Z_2 are independent and normally distributed with mean 0 and 1.

- 4. A median of a random variable Y (or its distribution) is any value m such that $P(Y \ge m) \ge 1/2$, $P(Y \le m) \ge 1/2$.
 - (a) Show that the set of medians is a closed interval $[m_0, m_1]$.

(b) Let R(c) = E(|Y - c|). Show that either $R(c) = \infty$ for all c or $R(c) \ge R(m)$ for any median m of Y.

(c) Give a condition in terms of the density function of Y at m to ensure that R(c) is continuous at m.

5. Let (X_1, \ldots, X_n) be a sample from a Poisson $\mathcal{P}(\lambda)$ distribution and let $S_m = \sum_{i=1}^m X_i$, $m \leq n$.

(a) Show that the conditional distribution of X given $S_n = k$ is multinomial $\mathcal{M}(k, 1/n, \dots, 1/n)$. (b) Show that $E(S_m|S_n) = (m/n)S_n$.

- 6. Suppose that X has a normal N(μ, σ²) distribution and that Y = X + Z, where Z is independent of X and has a normal N(ν, τ²) distribution.
 (a) What is the conditional distribution of Y given X = x?
 - (b) Using Bayes rule find the conditional distribution of X given Y = y.
- 7. Suppose that Y has the Poisson distribution $P(\theta)$ and $P_{X|Y=y}$ has the binomial distribution Bin(y, p). Show that the marginal distribution of X is the Poisson distribution $P(p\theta)$.

- 8. Let X_1, \ldots, X_n be a sample from the exponential distribution with density e^{-u} (u > 0). Find the distribution of $\sum_{i=1}^n X_i$, and the conditional distribution of X_1 , given $\sum_{i=1}^n X_i$.
- 9. For any set of numbers x₁,..., x_n and a monotone function h(·), show that the value of a that minimizes ∑_{i=1}ⁿ[h(x_i) h(a)]² is given by a = h⁻¹(∑_{i=1}ⁿ h(x_i)/n). Find functions h that will yield the arithmetic, geometric, and harmonic means as minimizes. Recall that the geometric mean of non-negative numbers is (∏ x_i)^{1/n} and the harmonic mean is [n⁻¹∑(1/x_i)]⁻¹.
- 10. Let X_1, \ldots, X_n be i.i.d. from P with unknown P with unknown mean $\mu \in R$ and variance $\sigma^2 > 0$, and let $g(\mu) = 0$ if $\mu \neq 0$ and g(0) = 1. Find a consistent estimator of $g(\mu)$.
- 11. Let X₁,..., X_n be i.i.d. N(θ, 1) with θ ≥ 0.
 (a) Show that the MLE of θ, θ̂_n, is X̄ if X̄ > 0 and 0 otherwise.
 (b) If θ > 0, show that √n(θ̂_n − θ) → N(0, 1).
 (c) If θ = 0, the probability is 1/2 that θ̂_n = 0 and 1/2 that √n(θ̂_n − θ) → N(0, 1).
- 12. Suppose that X_1, \ldots, X_n be i.i.d. random variables from F and that F is unknown but has a Lebesgue p.d.f. f. A simple estimator of f(t), $t \in R$, is defined as the difference quotient

$$f_n(t) = \frac{F_n(t+\lambda_n) - F_n(t-\lambda_n)}{2\lambda_n}$$

Here F_n is the empirical cdf.

(a) Is f_n a density function?

(b) Suppose that f is continuously differentiable at $t, \lambda_n \to 0$, and $n\lambda_n \to \infty$. Show that

$$E[f_n(t) - f(t)]^2 = \frac{f(t)}{2n\lambda_n} + o\left(\frac{1}{n\lambda_n}\right) + O(\lambda_n^2).$$

(c) Under $n\lambda_n^3 \to 0$ and the conditions of (b), show that

$$\sqrt{n\lambda_n}[f_n(t) - f(t)] \xrightarrow{d} N\left(0, \frac{1}{2}f(t)\right).$$

(d) Suppose that f is continuous on [a, b], $-\infty < a < b < \infty$, $\lambda_n \to 0$, and $n\lambda_n \to \infty$. Show that $\int_a^b f_n(t)dt \xrightarrow{P} \int_a^b f(t)dt$.

- 13. If $a_n(Y_n c) \xrightarrow{L} H$ and $a_n \to \infty$, then $Y_n \xrightarrow{L} c$ where H is a continuous distribution.
- 14. Let X_1, \ldots, X_n be i.i.d. with $E(X_i) = \theta$, $Var(X_i) = \sigma^2 < \infty$, and let $\delta_n = \overline{X}$ with probability $1 \epsilon_n$ and $\delta_n = A_n$ with probability ϵ_n . If ϵ_n and A_n are constants satisfying

$$\epsilon_n \to 0 \quad \text{and} \quad \epsilon_n A_n \to \infty,$$

then δ_n is consistent for estimating θ , but $E(\delta_n - \theta)^2$ does not tend to zero.

- 15. Suppose X₁,..., X_n have common mean θ and variance σ², and that cov(X_i, X_j) = ρ_{i-j}. For estimating θ, show that:
 (a) X

 n is not consistent if ρ{i-j} = ρ ≠ 0 for all i ≠ j; (For this problem, you can only consider the case that (X₁,..., X_n) are multivariate normal.)
 (b) X

 _i is consistent if lo = l ≤ Ma^{j-i} with lol ≤ 1
 - (b) \bar{X}_n is consistent if $|\rho_{i-j}| \leq M \gamma^{j-i}$ with $|\gamma| < 1$.

16. Suppose that X_n is a random variable having the binomial distribution Bin(n, p), where 0 Define

$$Y_n = \begin{cases} \log(X_n/n) & X_n \ge 1\\ 1 & X_n = 0. \end{cases}$$

Show that $Y_n \stackrel{a.s.}{\to} \log p$ and $\sqrt{n}(Y_n - \log p) \stackrel{d}{\to} N(0, (1-p)/p)$.