Large Sample Theory Homework 1: Bootstrap Method, CLT Due Date: October 3rd, 2004

- 1. Suppose that someone collects a random sample of size 4 of a particular measurement. The observed values are $\{2, 4, 9, 12\}$.
 - (a) Find the bootstrap mean and variance of the above sample.
 - (b) Find the relationship between sample mean and bootstrap mean.
 - (c) Find the relationship between sample variance and bootstrap variance.

(d) Consider a general problem in which we have a random sample $\{x_1, \ldots, x_n\}$. Establish the relationships you found in (b) and (c) under this setting.

- 2. Let X_1, \ldots, X_n be i.i.d. random variables and $\hat{\theta} = \bar{X}^2$.
 - (a) Derive the asymptotic distribution of $\sqrt{n}[\hat{\theta} E^2(X)]$.

(b) Show that the bootstrap variance estimator based on i.i.d. X_i^* 's from F_n is equal to

$$\bar{V}_B = \frac{4\bar{X}^2\hat{c}_2}{n} + \frac{4\bar{X}\hat{c}_3}{n^2} + \frac{\hat{c}_4}{n^3}$$

where \hat{c}_j 's are the sample central moments defined by $n^{-1} \sum_{i=1}^n (X_i - \bar{X})^j$. (c) Is \bar{V}_B a consistent estimate of the asymptotic variance derived in (a)? Hint: For (a), you can use Slutsky's theorem.

3. Let X_1, \ldots, X_n be i.i.d. from a pdf $\sigma^{-1} f((x-\mu)/\sigma)$ on R, where f is known. Let

$$H_n(t) = P\left(\frac{\sqrt{n}(\bar{X} - \mu)}{S} \le t\right)$$

and

$$\hat{H}_B(t) = P\left(\frac{\sqrt{n}(\bar{X}^* - \bar{X})}{S^*} \le t \,\middle|\, X_1, \dots, X_n\right)$$

be the bootstrap estimator of H_n , where S^2 is the sample variance, X_i^* 's are i.i.d. from $s^{-1}f((x-\bar{x})/s)$, given $\bar{X} = \bar{x}$ and S = s, and S^* is the bootstrap analogue of S. Show that $H_n(t) = \hat{H}_B(t)$.

4. Suppose $Y_i = \alpha + \beta x_i + \epsilon_i$ for i = 1, 2, ..., where the x_i are known numbers not all equal and the ϵ_j are independent random variables with mean 0 and common variances σ^2 .

(a) Show that the least-squares estimate, $\hat{\beta}_n$, of β was consistent provided $\sum_{i=1}^n (x_i - \bar{x}_n)^2 \to \infty$.

(b) Show that $\hat{\beta}_n$ is asymptotically normal when the ϵ_j are identically distributed and

$$\max_{1 \le j \le n} \frac{(x_j - \bar{x}_n)^2}{\sum_{i=1}^n (x_i - \bar{x}_n)^2} \to 0 \text{ as } n \to \infty.$$

- 5. Suppose we would like to estimate mean (θ) of a population and a random sample $\{x_1, \ldots, x_n\}$ is being taken. Consider $\hat{\theta} = \bar{X}$.
 - (a) Find the jackknife estimate of θ .
 - (b) Find the jackknife variance estimate of θ .

6. Let $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)^{\mathbf{T}}$ be an $n \times 1$ vector of random variables and let \mathbf{A} be an $n \times n$ symmetric matrix. If $E(\mathbf{X}) = \theta$ and $Var(\mathbf{X}) = \boldsymbol{\Sigma} = (\sigma_{ij})_{n \times n}$, show that

$$E[\mathbf{X}^{\mathrm{T}}\mathbf{A}\mathbf{X}] = \mathbf{tr}[\mathbf{A}\boldsymbol{\Sigma}] + \theta^{\mathrm{T}}\mathbf{A}\theta$$

and

$$Var[\mathbf{X}^{T}\mathbf{A}\mathbf{X}] = (\mu_{4} - 3\mu_{2}^{2})\mathbf{a}^{T}\mathbf{a} + 2\mu_{2}^{2}\mathbf{tr}(\mathbf{A}^{2}) + 4\mu_{2}\theta^{T}\mathbf{A}^{2}\theta + 4\mu_{3}\theta^{T}\mathbf{A}\mathbf{a},$$

where $\mu_r = E[(X_i - \theta_i)^r]$ and **a** is the column vector of the diagonal elements of **A**.

- 7. Let X_i be iid and real-valued for i = 1, ..., n; 4th moments exist. The sample variance is s^2 .
 - (a) Find the mean and variance of s^2 .

(b) How would you estimate $Var(s^2)$ from the sample by the method of moments?

(c) How would you estimate $Var(s^2)$ from the sample by the jackknife?

(d) How would you estimate $Var(s^2)$ if the parent distribution was normal? How does the normal-theory estimator behave if the parent distribution is not normal?

Hint: You can solve (a) using the results derived in last question.

8. Let X₁,..., X_n be i.i.d. N(μ, σ²). Let V = Σⁿ_{j=1}(X_j - X̄)².
(a) For what constants c₁(n) depending on n is c₁(n)V an unbiased estimator of σ²?

(b) For what constants $c_2(n)$ depending on n is the mean-square error $E_{\sigma^2}[(c_1(n)V - \sigma^2)^2]$ minimized for all $\sigma > 0$?

- 9. Find the jackknife estimate of the variance of the median. Is this estimate a good one? You can use either a simulation or an analytic method to address this question by assuming that the unknown population distribution is the uniform distribution on the interval [0, 1].
- 10. A random variable $\hat{\theta}_n$, based on a random sample of size n > 1, is said to be an *unbiased estimator* of a parameter θ if $E(\hat{\theta}_n) = \theta$ for all $\theta \in \Theta$, the parameter space. Suppose that $\hat{\theta}_n$ is unbiased for θ and that $V(\hat{\theta}_n) = O(n^{-1})$.

(a) If X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$, show that no unbiased estimator of e^{μ} can be found based on the sample mean \bar{X} .

(c) Show that $E(\exp(\bar{X})) = \exp(\mu + \sigma^2/2n)$ and $E(e^{S^2/2n}) = \exp(\sigma^2/2n) + o(n^{-1})$, where $S^2 = \sum_{i=1}^n (X_i - \mu)^2/n$. Hence find an estimator of $\exp(\mu)$ that is unbiased apart from terms of smaller order than n^{-1} .