Topic 3: Tests in Parametric Models
Hypothesis Testing By Likelihood Methods

e Let H, denote a null hypothesis to be tested. Typically, we may reprdggnt
as a specified family, of distributions for the data.

e For any test procedurE, we shall denote by, the version based on a sample
of sizen.

e The function
Bn(T, F) = Pp(T, rejectsHy),
defined for distribution functior¥, is called thepower functionof 7,, (or of
T).

— For F € Fy, B,.(T, F) represents the probability of a Type | error.

— The quantity

an(T, F) = sup 5,(T, F)
FeF,

is called thesizeof the test.

— For F' ¢ Fy, the quantityl — 3,(T, F') represents the probability of a
Type Il error.

e Usually, attention is confined tmnsistentests: for fixed? ¢ Fy, 3,(T, F') —
0 asn — oo.

e Also, usually attention is confined tmbiasedests: fort’ ¢ Fy, 6,(T, F) >
Oén(T, f())

A general way to compare two such test procedures is through their power func-
tions. In this regard we shall use the conceptasymptotic relative efficiency
(ARE).

e For two test procedures, andTz, suppose that a performance criterion is
tightened in such a way that the respective sample sizesdn g for 74 and
T to perform “equivalently” tend tec but have ratiow4 /n 5 tending to some
limit. Then the limit represents the ARE of procedigrelative to procedure
T, and is denoted by(T5,T4).

e The earliest approach to ARE was introduced by Pitman (1949). In this ap-
proach, two tests sequencés= {7, } andU = {U,} are compared as the
Type | and Type Il error probabilities tend to positive limitsand1 — /3,
respectively.



e In order thato,, — o > 0 and simultaneously — 3, — 1 — (3 > 0, itis
necessary to considet,(-) evaluated at an alternativé™ converging at a
suitable rate to the null hypothests.

¢ In justification of this approach, we might argue that large sample sizes would
be relevant in practice only if the alternative of interest were close to the null
hypothesis and thus hard to distinguish with only a small sample.

To demonstrate the above point, we consider the following example.
Example 3.11Let X3, ..., X, beiid with X; ~ N(u,1).

e TestH, : n = 0 versusH; : W= o > 0.
e Construct a test withy = 0.05 and = 0.2005.

RejectH, if /nX, > 1.645.

Note that
B = P(vnX, < 1.645|u = pg) = ®(1.645 — v/npu).

e If n — oo andyy is a fixed positive constant, — 0.

To ensure? = 0.2005, it requires that

1.645 — /nuy = —0.84
or yup = 2.485n~1/2,

Do you notice that:, will change withn which is no longer a fixed alternative?

Test Statistics for A Simple Null Hypothesis

Although the theory of the following three tests are of most value for composite
null hypotheses, it is convenient to begin with simple null hypothesis. Consider
testingH, : @ = 6° € R° versusH, : 6 # 6°.

Likelihood Ratio Test

e A likelihood ratiostatistic,

A L0%x)
" supg._g L(6;x)
was introduced by Neyman and Pearson (1928).

e A, takes values in the intervd), 1| and H, is to be rejected for sufficiently
small values of\,,.
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e The rationale behind LR tests is that whBp is true,A,, tends to be close to
1, whereas whett{; is true,A,, tends to be close 10,

e The test may be carried out in terms of the statistic
Ap = —2logA,,.
e For finiten, the null distribution of\,, will generally depend om and on the
form of pdf of X.
e LR tests are closely related to MLE's.

e Denote MLE byd. For asymptotic analysis, expanding at 8 in a Taylor
series, we get

A = —2{—Zn:10gf(X¢,9)+Xnilogf(Xi,Ho)}
=1

. no 92 .

= 2{-(08"—@)" ] ] 0’ — 6

e =0 (-5 e rwe) @ -0,
whered lies betweer® and’.

e Since@” is consistent,

R 1 n O? R
Ao =n(0 — 0T (—nzl 69-89kL(0)990) (6 —08") +op(1).

By the asymptotic normality o and

n 02
—n Y (O o 5 1(9°

A, has, underH,, a limiting chi-squared distribution ondegrees of freedom.

Example 3.12Consider the testing probleid, : 6 = 0, versusH; : 0 # 6
based on iidXy, .. ., X, from the uniform distributiort/ (0, 0).

o L(0o;x) = 05" Lz, <00}
= () (MLE) andsupycg L(0;x) = Ty Ly <0}
e We have o

" 0 Xn) > 9
e RejectH if X, > 0 or X(,/6y < /™.
e What is the asymptotic distribution of,?
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e What is P(nlog(X(,/0°) < c¢) wherec < 0? Itis not ax?* distribution.
(Why???)

Example 3.13Consider the testing problef, : o> = o3 versusH, : o* # o}

based on iidX;, . .., X,, from the normal distributiodV (g, o2).

L(0%x) = (2703) ™% exp {— Yi(w; — u0)2/2a(ﬂ
62 =n"1 Zz(.’L'Z — ,uo)Z (MLE) and

sup L(0; x) = (216%) ™% exp(—n/2).
60

~9\ 1/2 o 2
A, = (02) exp (n _ Zi(i 2/”LO) )
0\ 2 20'0
or underH,

oot - (5]

whereZ,, ..., Z, areiidN(0, 1).

We have

Fact: Using CLT, we have
n iyt Z2 —1
2/n

< N(0,1)

or

n 1

n 1=
Note thatin v ~ —(1—u)— (1 —u) /2 whenu is nearl andn ™' >, 72 — 1
in probability by LLN.

A common question to be asked in Taylor's series approximation is that how
many terms we should consider. In this example, it refers to the use of approx-
imationlnu ~ —(1 — u) as a contrast to the second order approximation we
use. If we do use the first order approximation, we will end up the difficulty
of finding lim,, a,,b,, whenlim,, a,, = co andlim,, b, = 0.

We conclude thah,, has a limiting chi-squared distribution withdegree of
freedom.

The Wald Test

Let 8,, denote a consistent, asymptotically normal, and asymptotically effi-
cient sequence of solutions of the likelihood equations.

\/ﬁ(én o 0) g N(07 1_1(0))

asn — oQ.
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e Becausd(#) is continuous ir9, we have
1(6,) 5 1(6)
asn — oQ.

¢ Replace the matrhé S ae 89 (9)\9:00> by 1(6,,) in large sample ap-
proximation of)\,, we get a second statistic,

W, =n(0, — 0°)'1(6,)(6, — 6°),
which was introduced by Wald (1943).
¢ By Slutsky’s theoremlV,, converges in distribution tg?.

e For the construction of confidence region, one genergiés W, < Xio)
which is an ellipsoid inRk?.

e As a remark, for the construction of confidence region basell,pone gen-
erates(8" : \, < X: o} Which is not necessary an ellipsoid fif.

The Rao Score Tests

e Both the Wald and likelihood ratio tests requires evaluatiof,of Now we
consider a test for which this is not necessary.

e Denote the likelihood score vector
q(x;0) = (q1(x;0),...,q:(x;0))"

where
0

00;
o Write Q(0) = >, q(X;; 0). By the central limit theorem,

n~2Q(6°) % N(0,1(6")).

q;(x;0) = ~--log f(x;6).

e Athird statistic,
V, = [n—l/ZQ(HO)]TI—1<90>[n—1/2Q<90>] _ n_lQ(OO)TI_l(OO)Q(OO),

was introduced by Rao (1948).
Again, it has a limitingy? distribution.

Example 3.14Consider a sampl&, . .., X,, from the logistic distribution with
density
em—@
fo(z) = e 0y
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o g(z;0) = —1+2e"7/(1 +e*%) and

n xi—eo

Q%) = —n+2%

i=1 1+ exi=0
e /() =1/3forallé.

e The Rao scores test therefore rejth)swith test statistic

\F 14 exi—t

¢ In this case, the MLE does not have an explicit expression and therefore the
Wald and likelihood ratio tests are less convenient.

The three test statistics we discuss are asymptotically equivalent Hpdeiow-
ever, they do differ in computation and ease of interpretation.

¢ All three statistics have the same limit chi-squared distribution with degree of
freedoms under the null hypothesis. The limiting distribution can be found
by the following lemma.

Lemma 1 Under regularity conditions,
(i) n'/2(6,, — 6°) % N(0,171(8"));
(i) n(6, — 0°)T1(68")(6,, — 6°) L \2;
(ii)) n'Q(8")'T1(60°)Q(8") = X%,
@iv) A, — n(6,, — 6°)71(8°)(6,, — 6°) & 0.
e Both the likelihood ratio test and the Wald test require calculating an efficient

estimatord,,, while the Rao test does not and is therefore the most convenient
from the computational point of view.

e The Wald test, being based on the studentized difference

Il/Q(én)[\/ﬁ(én - Q)T]
Is more easily interpretable and has the advantage immediately yields confi-
dence regions fofl.

e The Wald test has the drawback, not shared by the other two, that it is only
asymptotically but not exactly invariant under reparametrization.
For simplicity, considers = 1 andn = g¢(0). Here we assume thatis
differentiable and strictly increasing. The Wald statistic for testing °(=

g(0")) is
[g(én) - g(%)]W — m(én . 90)9(97}) - 9(90) . 1

en - 90 9(1) (én)

The product of the second and third factor tends &s6,, — 6, but typically
will differ from 1 for finite n.
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Example 3.15Consider a sequence ofindependent trials, witk possible out-
comes for each trials.

e Let 0; denote the probability of occurrence of thi outcome in any given
trial.

¢ Let N; denote the number of occurrences of fiieoutcome in the series af
trials.

e The MLE of§,’s are N, /n.

e The three test statistics,, W, andV, for testingH, : 0 = 6° againstH, :
0 + 6° are easily seen to be

N;

Ao = QZNlog(neo),
5, (Nj — nb)*

s m T
o (Y, =y
Vo g gl

e Both I, andV,, are referred to as chi-squared goodness of fit statistics; the
latter often called the Pearson chi-squared distribution. The large sample prop-
erties was first derived by Pearson (1900).

Pearson’s chi-square statistic is easily remembered as

(Observed — Expected)?

2
= sum
X Expected

e Let us now consider the behavior ®f, W,, andV,, under “local” alternatives,
that is, for a sequenc@,, } of the form

0, =06,+ n_l/QA,
whereA = (Aq, ..., A )T,

e Suppose that the convergences expressed in the above lemma may be estab-
lished uniformly in© for 8 in a neighborhood of".

e |t then would follow that
n'?(6-6°) = n'*(6-6,)+ A% NAT ),
n2Q(6°) = 00— 6,)1(8") +opy (1) 5 N(I(6°)A,1(6")).
and

P,
A —, Bro
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¢ It then follow that the statistics,,, IW,, andV,, each converge in distribution to
X2(ATI(6°)A).

e Therefore, under appropriate regularity conditions, the statiatic$V,, and
V,, are asymptoticallgquivalenin distribution, both under the null hypothesis
and under local alternatives converging sufficiently fast.

e However, at fixed alternatives these equivalences are not anticipated to hold.
Example 3.16(Testing a Genetic Theory)

¢ In experiments on pea breading, Mendel observed the different kinds of seeds
obtained by crosses from peas with round yellow seeds and peas with wrinkled
green seeds.

e Possible types of progeny were: (1) round yellow; (2) wrinkled yellow; (3)
round green; and (4) wrinkled green.

e Assume the seeds are produced independently. We can think of each seed as
being the outcome of a multinomial trial with possible outcomes numbkred
2, 3, 4 as above and associated probabilities of occurréna®, 63, 0,.

e Mendel's theory predicted that = 9/16, 6, = 65 = 3/16, 6, = 1/16.
e Data:n = 556, n; = 315, ny = 101, ng = 108, ny = 32.
e Pearson’s chi-square statistic is

(315 — 556 x 9/16)2  (3.25)% (3.75)%  (2.75)?
312.75 104.25 ' 104.25 ' 34.75

which has @ value of(0.9 when referred to &3 table.
There is insufficient evidence to reject Mendel's hypothesis. (Why don’twe
state thatve accept Mendel’s hypothesis?)

Topic 5: Tests in Nonparametric Models

Sign, permutation, and rank tests

= 0.47,

¢ In a nonparametric problem, a UMP, UMPU, or UMPI test usually does not
exist.

e Nonparametric tests are derived using some intuitively appealing ideas. They
are commonly referred to aBstribution-freetests, since almost No assump-
tion is imposed on the population under consideration.

e Sign test:
— Let X4,..., X, be iid random variables front’, u be a fixed constant,
andp = F'(u).

25



— Consider the problem of testinf, : p < py versusH; : p > pg, Or
testingH, : p = py versusH; : p # py, Wherep, is a fixed constant in
(0,1).

—LetA;=1x,_y<0,t =1,...,n. ThenA,, ..., A, areiid binary random
variables withp = P(A; = 1).

— For testingH, : p < pg versusH; : p > py, it follows from Neymann-
Pearson lemma and monotone likelihood ratio that the test

1 Y>m
T"(Y)=< v Y=m
0 Y<m
is UMP among tests based dy’s, whereY =37 | A;.
— For testingH,, : p = py VersusH, : p # py, the test
1 Y<c orY >c
T*(Y) = Vi Y:Ci,i: 1,2,
0 <Y <o
is UMPU among tests based dn’s.

— SinceY is equal to the number of nonnegative signgwf X;)’s, tests
based orY™ are called sign tests.

— One can easily extend the sign tests to the case wher®(X; € B).
o Let (X1,Y7),...,(X,,Y,) (matched pairs) be iid random variables frdm

By using/\; = X;—Y;—u, one can obtain sign tests for hypotheses concerning
P(X1—Y1 <u).

e Permutation tests:
— Let X;1,..., X4, ¢ = 1,2, be two independent samples iid frofj,
1 = 1,2, respectively. Herd’;’s are cdf’s onR.

— Think of two-sample problem in parametric setting (normal). Such type
of problems arise from the comparison of two treatments.

— Remove the parametric assumption and assumefitsaare in t he non-
parametric familyF containing all continuous cdf’s oR.

— Consider the problem of testing
Hy: F, =F, versus H; IF17£F2.

—LetX = (Xj;,7 = 1,...,n;,7 = 1,2), n = n; + ng, anda be a given
significance level. A test’'(X) satisfying

LY Tz =a

*zem(x)
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is called a permutation test, wher¢z) is the set ofn! points obtained
fromx € R" by permuting the components »f

For rank tests, we only consider Wilcoxon rank-sum test.
Rank Tests for Comparing Two Treatments

For comparing a new treatment or procedure with the standard method,
subjects (patients, students, etc.) are divided at random into a groupwlod
will receive a new treatment and a control grouprofvho will be treated by
the standard method.

At the termination of the study, the subjects are ranked either directly or ac-
cording to some response that measures the success of the treatment such as a
test score in an educational or pyschological investigation.

The hypothesigi, of no treatment effect is rejected, and the superiority of the
new treatment acknowledged, if the ranking theeated subjects rank suffi-
ciently high. (Here it is assumed that the success of the treatment is indicated
by an increased response; if instead the aim is to decrease the regpgisse,
rejected when the treated subjects rank sufficiently low.)

Let the ranks of the treated subjects be denoteflby. ., S,,, where we shall
assume that they are numbered in increasing order. Denote the sum of the
treatmentrank®l’g = S; +--- + .5,,.

The hypothesidi, is then rejected and the treatment judged to be effective
when Wy is sufficiently large, say, whei’s > c¢. Here the constant is
determined by the equation

Py, (Wg > ¢) = a.

The test defined above is known as Weécoxon rank-sum test

Let X1,...,X,,andYy, ..., Y, beindependent, th&’s identically distributed
with distribution F' and theY’s identically distributed with distributiort.
Here theY’s are responses to a treatment.

ThenH, : F = G andH, : Y is stochastically larger thai, i.e., G(t) <
F(t) forall t butG # F.

Let the ranks of theX’s be denoted by, ..., R,,. If we substituteR’s for
X's andS’s for Y’s in the two-sample t-test statistic, we obtain

(nm>1/2 2 Sl Si— WS Ry
(N—-2)"1]

N {Zia (8 = 551)2 + Sy (B — 5502 172
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e This statistic is equivalent to the Wilcoxon statiski¢;, the sum of the ranks
of the treatment group.
— Write Wxy as the number of pairsX;, ;) with X; < Y.
— It can be shown that

1
WS — in(n + 1) = WXy.
— Wxy is usually known as the Mann-Whitney statistic.
— Let¢(X;,Y;) = 1if X; <Y}, and0 otherwise. Then
Wxy =2 Y ¢(X;,Y)) (1)

i=1j=1

— We shall prove thatVyy is asymptotically normal as: andn tend to
infinity.

e The method of proof consists in replacing the varidbig, by a sum of in-

dependent random variables, which is asymptotically equivaleitto and
to which the central limit theorem can then be applied.

e Itis natural for this purpose to try a sum of the form

S = Zl@z'(Xz‘) + _Zlbj(Yj) (2)
1= 7=
but how should one choose the functiengndb;?
e The following “projection mathod” introduced in a different context by Hajek
(1961), produces the; andb; most likely to succeed in the sense of minimiz-
ing E(WXY — 5)2

e This approach is due to Hoeffding (1948), and is applicable to a large class of
statistics, the so-called U-statistics.

— Note that
0(F,G) = [ FdG = P(X <Y).
— An unbiased estimator &f F’, G) is
1 m n

U=—2>% > I(Xi<Y)),

nm =i j=1

which is theWWxy .
— A statistic can be written in the form is called a U-statistics.

— Note that the popularity of this projection method is due to Hajek (1968),
who gives the following result.
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Lemma 2 (Hoeffding) Let7;, ..., Z, be independent random variables afd=
S(Zy,...,Z,) any statistic satisfyind’(5?) < oo. Then the random variable

5" — éE(S|Zi) — (n—1)E(S)

satisfiest'(S*) = E(S) and
E(S — 8% =Var(S) — Var(S*).
Remarks:

1. The random variableS* is called theprojectionof S on 7, ..., Z,.

2. Note that it is conveniently a sum afdependent and identically dis-
tributedrandom variables.

3. In cases thak (S — S*)* — 0 at a suitable rate as — oo, the asymptotic
normality of S may be established by applying classical theor§ 1o

Proof of Hoeffding’s Lemma.
e Without loss of generality, we can assume that) = 0.

e Consider the problem of finding the sum
T = Z ki(Z;) (3)

for which E(S — T)? is as small as possible; the minimizifigmay be con-
sidered the “projection” o5 onto the linear space formed by the functions
T.

o Let
ri(zi) = E(S]Z; = %) (4)

be the conditional expectation SfgivenZ;, = z;, and let
S* = ;m(ZZ-)- (5)

That S* is the desired minimizing function is an immediate consequence of
the following identity, which holds for all statisticE and S with mean zero
and satisfying (3) for which the required expectation exist:

E(S—T)*=FE(S— S +E(S*—T) (6)

e To prove the above identity, write
E(S—T)*=E[(S— 5"+ (S =T)).
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— Squaring the right-hand side proves (6) if it can be shown that
E[(S = 57)(5" =T)] =0. (7)

— Since the left-hand side of (7) is the sum of the expectations of
ri(Zi) — ki(Z))(S = 57) (8)

it is enough to show that the expectation of (8) givgns zero for alli.

— We shall prove this by showing that the conditional expectation of (8)
given Z; is zero.

— In the conditional expectation of this product, the first factor can be taken
out of the expectation sign since it depends only%yso that it is finally
only necessary to show that the conditional expectatiofi of S* given
Z; IS zero.

— Now
E[(S = 5Y)|Z] = E{S —ri(Z) — § ri(Zi)| i}
JF
— From the definition of;(Z;), it is seen that the conditional expectation of
S —ri(Z;) givenZ; is zero.

— On the other hand, sincg; and Z; are independent, the conditional ex-
pectation ofi;(Z;) given Z; is equal to the unconditional expectation of
r;(Z;), which by the definition of-; is equal toE(.S) and hence equal to
zero.

— This completes the proof of (7) and therefore of (6).

e A useful special case of (6) is obtained by puttiig= 0, which gives after
arrangement

E(S — 8% = E(S%) — E(S*) = Var(S) — Var(S*). (9)
e Before we apply Hoeffeding lemma to thiéy -statistic (1), we will calculate
the expectation and variance lofyy .

e Setd = (F,G),
Eylop(X,Y)] = B[X <Y]

and we obtain
Ey(Wxy) = mnp (10)

wherep = X < Y.
e Similarly, we have
Varg(Wxy) = nmp(1—p)+nm(n—1)(q —p°)+nm(m—1)(g2—p°) (11)
whereq = P[X; < min(Y;,Y3)] andg = Py[Y; > max(Xy, X,)].
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¢ Note that under, if F'is continuousp = 1/2 while ¢; = ¢» = 1/3, since,
among three independent identically distributed variables, each one is equally
likely to be the minimum or the maximum.

e We then havelly(Wxy) = mn/2 andVary(Wxy) = mn(N + 1)/12 under

H,.

e Put
Note that i . |
E[w(XCwYﬁ)‘XZ = .CU] — { 0 w(l'7 B) :f Z ; 7;

and

(3] f =7
Elp(Xa, Y)Y =y = { (])EMX Y :f g #?

° Put¢10($) = E’y(ﬂ(x, Y) andwm(y) = EX¢(X, y)

e The projection ofiVxy — mnp by Hoeffeding Lemma is 31" ; 119(X;) +
m > _; Po1(Y;). Consider

0 =i [ 8 ) + 1 (1)

andsS = /m|[(mn) "Wy — p).
e Note that
Var(S) — q — P>+ 7:(6]2 — p2)7
Var(U) = Var(g(X)) + > Var(o (V)
E(S—U)? = Var(S)—Var(U).

Observe that foy # k, Var(i0(X)) = ¢ — p? andVar (¢ (Y) = g2 — p*.
(i.e. By (w1, Vi) (1, Yi) = [h10(1)]* and

Ex[1o(X)]? = Bv(X, Y))b(X, Vi) = Cou(d(X, Y)), (X, Y3)).
We then conclude that (S — U)? — 0.

Theorem 1 Suppose that’ and G are continuous and that < (X < Y] < 1.

Then
S — Ey(5)

Vars(S) 4, N(0,1) asmin(n,m) — oo.
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Remark. RejectH, when

WXY — %nm

\/ﬁnm(N +1)

> z(1 — «).

Pitman efficiency of the Wilcoxon rank-sum test to the two-sample t-test

We turn now to the comparison of the performance of the Wilcoxon and two-sample
t tests. At first sight it would appear that a good reason for using the Wilcoxon is
that it has a guaranteed probability of type | error and a good reason against using
the Wilcoxon is its inefficient use of the data.

e We assume that th&’s andY’s have the same varianeé and meang; and
H2-

e Although the t test does not have a guaranteed probability of type | error, if
n andm are moderately largd{, is true, andF’ has a finite second moment,

then the probability of type | error of the t test is fairly close to that specified
by the normal model.

¢ Recall that the two-sample t statistic is given by

nmY — X
T=,—— 13
N 5 (13)
where Y _ %) v 72
Sy = i (X = X)7 4 55, (Y — ). (14)

N —2
¢ \We start by obtaining an approximation to the critical value and power of the
t test. Note that? - o2 asmin(n,m) — oo. It follows from Slutsky’s

theorem and central limit theorem that when= ., 7' converges in law to a
N(0, 1) random variable asin(n, m) — oo.

e Then the t test that rejectd, whenT > tn_o(1 — «) has approximately level
« regardless of the shape gfandG andz(1 — «) is an approximate critical
value as we claimed above.

o If py # po, letd = (us — p1)/o. Then, arguing as above,{;fnm/N(S stays
boundedl” — \/nm/N§ has approximately & (0, 1) random distribution for
all F andG with 02 < oo. We then can approximate the probability(T >

tn—2(1 —«)) by
fBr=FlT > z(1—-a)] = 1-P(2(1—a)—/nm/No) = ®(z(a)+/nm/NJ).
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e For Wilcoxon test,

' 1 1
Oy = By |Wxy > gnm + 2(1— a)J Enm(N +1)

_ p, Wxy — Es(Wxy) - nm(3 —p) + z2(1 — a)/Hnm(N + 1)]
- Jvare(Wxy) varg(WXy)

_ @(nm( p)—|—zl—oc\/12nmN—|—1)>

- varg(Wxy) '

e Consider the case that ~ N(u1,0%),Y ~ N(uz,0%),n = m anda = 0.05.
Note thatd = (u2 — p1)/0 = 0.5.

e Suppose we want to haye= 0.9.

For t-test, solve
NN
—1.645 22(05=1.282
+ J N

and getNV = 16 - (2.927)? ~ 140.
For Wilcoxon test:

— A A
p:PQ(X<Y):q)<M2\/§MU>> q1:P<Z1<\/§,Zg<\/§>,
A A
=Pl|4i<—=,23< —=
q2 <1 \/57 3 \/§>7

whereZ, = [X1 — Y1 — (i1 — p2)]/V20, Zy = [X1 — Yo — (11 — p2)]/ V20,
Zy = [Xo = Y1 — (11 — p2)]/v/20.

e Note that(Z,, Z,) ~ N(0,0,1,1,1/2), (Z1,Z5) ~ N(0,0,1,1,1/2). When
A =05 p = 0638 ¢ = ¢ = 0483, we havey ~ O(—1.720 +
0.355/N/2) = 0.9. Hence,N ~ 144.
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