
Topic 3: Tests in Parametric Models
Hypothesis Testing By Likelihood Methods

• LetH0 denote a null hypothesis to be tested. Typically, we may representH0

as a specified familyF0 of distributions for the data.

• For any test procedureT , we shall denote byTn the version based on a sample
of sizen.

• The function
βn(T, F ) = PF (Tn rejectsH0),

defined for distribution functionF , is called thepower functionof Tn (or of
T ).

– ForF ∈ F0, βn(T, F ) represents the probability of a Type I error.

– The quantity
αn(T, F ) = sup

F∈F0

βn(T, F )

is called thesizeof the test.

– For F 6∈ F0, the quantity1 − βn(T, F ) represents the probability of a
Type II error.

• Usually, attention is confined toconsistenttests: for fixedF 6∈ F0, βn(T, F ) →
0 asn→∞.

• Also, usually attention is confined tounbiasedtests: forF 6∈ F0, βn(T, F ) ≥
αn(T,F0).

A general way to compare two such test procedures is through their power func-
tions. In this regard we shall use the concept ofasymptotic relative efficiency
(ARE).

• For two test proceduresTA andTB, suppose that a performance criterion is
tightened in such a way that the respective sample sizesnA andnB for TA and
TB to perform “equivalently” tend to∞ but have rationA/nB tending to some
limit. Then the limit represents the ARE of procedureTB relative to procedure
TA and is denoted bye(TB, TA).

• The earliest approach to ARE was introduced by Pitman (1949). In this ap-
proach, two tests sequencesT = {Tn} andU = {Un} are compared as the
Type I and Type II error probabilities tend to positive limitsα and 1 − β,
respectively.



• In order thatαn → α > 0 and simultaneously1 − βn → 1 − β > 0, it is
necessary to considerβn(·) evaluated at an alternativeF (n) converging at a
suitable rate to the null hypothesisF0.

• In justification of this approach, we might argue that large sample sizes would
be relevant in practice only if the alternative of interest were close to the null
hypothesis and thus hard to distinguish with only a small sample.

To demonstrate the above point, we consider the following example.
Example 3.11LetX1, . . . , Xn be iid withX1 ∼ N(µ, 1).

• TestH0 : µ = 0 versusH1 : µ = µ0 > 0.

• Construct a test withα = 0.05 andβ = 0.2005.

• RejectH0 if
√
nX̄n > 1.645.

• Note that

β = P (
√
nX̄n ≤ 1.645|µ = µ0) = Φ(1.645−

√
nµ0).

• If n→∞ andµ0 is a fixed positive constant,β → 0.

• To ensureβ = 0.2005, it requires that

1.645−
√
nµ0 = −0.84

or µ0 = 2.485n−1/2.

• Do you notice thatµ0 will change withnwhich is no longer a fixed alternative?

Test Statistics for A Simple Null Hypothesis

Although the theory of the following three tests are of most value for composite
null hypotheses, it is convenient to begin with simple null hypothesis. Consider
testingH0 : θ = θ0 ∈ Rs versusH1 : θ 6= θ0.

Likelihood Ratio Test

• A likelihood ratiostatistic,

Λn =
L(θ0;x)

supθ∈Θ L(θ;x)

was introduced by Neyman and Pearson (1928).

• Λn takes values in the interval[0, 1] andH0 is to be rejected for sufficiently
small values ofΛn.
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• The rationale behind LR tests is that whenH0 is true,Λn tends to be close to
1, whereas whenH1 is true,Λn tends to be close to0,

• The test may be carried out in terms of the statistic

λn = −2 log Λn.

• For finiten, the null distribution ofλn will generally depend onn and on the
form of pdf ofX.

• LR tests are closely related to MLE’s.

• Denote MLE byθ̂. For asymptotic analysis, expandingλn at θ̂ in a Taylor
series, we get

λn = −2

−
n∑

i=1
log f(Xi, θ̂) +

n∑
i=1

log f(Xi,θ
0)


= 2

1

2
(θ0 − θ̂)T

− n∑
i=1

∂2

∂θj∂θk
log f(x; θ)

∣∣∣∣∣∣θ=θ
∗

 (θ0 − θ̂)

 ,
whereθ̂ lies between̂θ andθ0.

• Sinceθ∗ is consistent,

λn = n(θ̂ − θ0)T

−1

n

n∑
i=1

∂2

∂θj∂θk
L(θ)

∣∣∣∣∣∣θ=θ0

 (θ̂ − θ0) + oP (1).

By the asymptotic normality of̂θ and

−n−1
n∑

i=1

∂2

∂θj∂θk
L(θ)|θ=θ

0
P→ I(θ0),

λn has, underH0, a limiting chi-squared distribution ons degrees of freedom.

Example 3.12Consider the testing problemH0 : θ = θ0 versusH1 : θ 6= θ0

based on iidX1, . . . , Xn from the uniform distributionU(0, θ).

• L(θ0;x) = θ−n
0 1{x(n)<θ0}

• θ̂ = x(n) (MLE) andsupθ∈Θ L(θ;x) = x−n
(n)1{x(n)<θ}

• We have

Λn =

 (X(n)/θ
0)n X(n) ≤ θ0

0 X(n) > θ0

• RejectH0 if X(n) > θ0 orX(n)/θ0 < c1/n.

• What is the asymptotic distribution ofλn?
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• What isP (n log(X(n)/θ
0) ≤ c) wherec < 0? It is not aχ2 distribution.

(Why???)

Example 3.13Consider the testing problemH0 : σ2 = σ2
0 versusH1 : σ2 6= σ2

0
based on iidX1, . . . , Xn from the normal distributionN(µ0, σ

2).

• L(θ0;x) = (2πσ2
0)
−n/2 exp

[
−∑

i(xi − µ0)
2/2σ2

0

]
• σ̂2 = n−1 ∑

i(xi − µ0)
2 (MLE) and

sup
θ∈Θ

L(θ;x) = (2πσ̂2)−n/2 exp(−n/2).

• We have

Λn =

σ̂2

σ2
0

n/2

exp

n
2
−
∑

i(xi − µ0)
2

2σ2
0


or underH0

λn = −n
ln

1

n

n∑
i=1

Z2
i

−
1−

1

n

n∑
i=1

Z2
i

 ,
whereZ1, . . . , Zn are iidN(0, 1).

• Fact: Using CLT, we have

n−1 ∑n
i=1 Z

2
i − 1√

2/n

d→ N(0, 1)

or
n

2

1

n

n∑
i=1

Z2
i − 1

2
d→ χ2

1.

• Note thatlnu ≈ −(1−u)−(1−u)2/2 whenu is near1 andn−1 ∑n
i=1 Z

2
i → 1

in probability by LLN.

• A common question to be asked in Taylor’s series approximation is that how
many terms we should consider. In this example, it refers to the use of approx-
imation lnu ≈ −(1 − u) as a contrast to the second order approximation we
use. If we do use the first order approximation, we will end up the difficulty
of finding limn anbn whenlimn an = ∞ andlimn bn = 0.

• We conclude thatλn has a limiting chi-squared distribution with1 degree of
freedom.

The Wald Test

• Let θ̂n denote a consistent, asymptotically normal, and asymptotically effi-
cient sequence of solutions of the likelihood equations.

√
n(θ̂n − θ)

d→ N(0, I−1(θ))

asn→∞.
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• BecauseI(θ) is continuous inθ, we have

I(θ̂n)
P→ I(θ)

asn→∞.

• Replace the matrix
(
− 1

n

∑n
i=1

∂2

∂θj∂θk
L(θ)|θ=θ

0

)
by I(θ̂n) in large sample ap-

proximation ofλn, we get a second statistic,

Wn = n(θ̂n − θ0)T I(θ̂n)(θ̂n − θ0),

which was introduced by Wald (1943).

• By Slutsky’s theorem,Wn converges in distribution toχ2
s.

• For the construction of confidence region, one generates{θ0 : Wn ≤ χ2
s,α}

which is an ellipsoid inRs.

• As a remark, for the construction of confidence region based onλn, one gen-
erates{θ0 : λn ≤ χ2

s,α} which is not necessary an ellipsoid inRs.

The Rao Score Tests

• Both the Wald and likelihood ratio tests requires evaluation ofθ̂n. Now we
consider a test for which this is not necessary.

• Denote the likelihood score vector

q(x; θ) = (q1(x; θ), . . . , qs(x; θ))T

where

qj(x; θ) =
∂

∂θj
log f(x; θ).

• WriteQ(θ) =
∑n

i=1 q(Xi; θ). By the central limit theorem,

n−1/2Q(θ0)
d→ N(0, I(θ0)).

• A third statistic,

Vn = [n−1/2Q(θ0)]T I−1(θ0)[n−1/2Q(θ0)] = n−1Q(θ0)T I−1(θ0)Q(θ0),

was introduced by Rao (1948).
Again, it has a limitingχ2

s distribution.

Example 3.14Consider a sampleX1, . . . , Xn from the logistic distribution with
density

fθ(x) =
ex−θ

(1 + ex−θ)2 .
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• q(x; θ) = −1 + 2ex−θ/(1 + ex−θ) and

Q(θ0) = −n+ 2
n∑

i=1

exi−θ0

1 + exi−θ0 .

• I(θ) = 1/3 for all θ.

• The Rao scores test therefore rejectsH0 with test statistic√√√√3

n

n∑
i=1

exi−θ0 − 1

1 + exi−θ0 .

• In this case, the MLE does not have an explicit expression and therefore the
Wald and likelihood ratio tests are less convenient.

The three test statistics we discuss are asymptotically equivalent underH0. How-
ever, they do differ in computation and ease of interpretation.

• All three statistics have the same limit chi-squared distribution with degree of
freedoms under the null hypothesis. The limiting distribution can be found
by the following lemma.

Lemma 1 Under regularity conditions,
(i) n1/2(θ̂n − θ0)

d→ N(0, I−1(θ0));

(ii) n(θ̂n − θ0)T I(θ0)(θ̂n − θ0)
d→ χ2

s;

(iii) n−1Q(θ0)T I−1(θ0)Q(θ0)
d→ χ2

s;
(iv) λn − n(θ̂n − θ0)T I(θ0)(θ̂n − θ0)

P→ 0.

• Both the likelihood ratio test and the Wald test require calculating an efficient
estimator̂θn, while the Rao test does not and is therefore the most convenient
from the computational point of view.

• The Wald test, being based on the studentized difference

I1/2(θ̂n)[
√
n(θ̂n − θ)T ]

is more easily interpretable and has the advantage immediately yields confi-
dence regions forθ.

• The Wald test has the drawback, not shared by the other two, that it is only
asymptotically but not exactly invariant under reparametrization.
For simplicity, considers = 1 and η = g(θ). Here we assume thatg is
differentiable and strictly increasing. The Wald statistic for testingη = η0(=
g(θ0)) is

[g(θ̂n)− g(θ0)]
√
nI(η̂n) =

√
nI(θ̂n)(θ̂n − θ0)

g(θ̂n)− g(θ0)

θ̂n − θ0
· 1

g(1)(θ̂n)
.

The product of the second and third factor tends to1 asθ̂n → θ0 but typically
will differ from 1 for finite n.
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Example 3.15Consider a sequence ofn independent trials, withs possible out-
comes for each trials.

• Let θj denote the probability of occurrence of thejth outcome in any given
trial.

• LetNj denote the number of occurrences of thejth outcome in the series ofn
trials.

• The MLE ofθj ’s areNj/n.

• The three test statisticsλn, Wn andVn for testingH0 : θ = θ0 againstH1 :
θ 6= θ0 are easily seen to be

λn = 2
s∑

j=1
Nj log(

Nj

nθ0
j

),

Wn =
s∑

j=1

(Nj − nθ0
j )

2

Nj
,

Vn =
s∑

j=1

(Nj − nθ0
j )

2

nθ0
j

.

• BothWn andVn are referred to as chi-squared goodness of fit statistics; the
latter often called the Pearson chi-squared distribution. The large sample prop-
erties was first derived by Pearson (1900).
Pearson’s chi-square statistic is easily remembered as

χ2 = sum
(Observed− Expected)2

Expected
.

• Let us now consider the behavior ofλn,Wn andVn under “local” alternatives,
that is, for a sequence{θn} of the form

θn = θ0 + n−1/2∆,

where∆ = (∆1, . . . ,∆s)
T .

• Suppose that the convergences expressed in the above lemma may be estab-
lished uniformly inΘ for θ in a neighborhood ofθ0.

• It then would follow that

n1/2(θ̂ − θ0) = n1/2(θ̂ − θn) + ∆
d→ N(∆, I−1(θ0)),

n−1/2Q(θ0) = n1/2(θ̂ − θn)I(θ
0) + oPθn

(1)
d→ N(I(θ0)∆, I(θ0)),

and

λn −Wn

Pθn→ 0,
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• It then follow that the statisticsλn,Wn andVn each converge in distribution to
χ2

s(∆
T I(θ0)∆).

• Therefore, under appropriate regularity conditions, the statisticsλn, Wn and
Vn are asymptoticallyequivalentin distribution, both under the null hypothesis
and under local alternatives converging sufficiently fast.

• However, at fixed alternatives these equivalences are not anticipated to hold.

Example 3.16(Testing a Genetic Theory)

• In experiments on pea breading, Mendel observed the different kinds of seeds
obtained by crosses from peas with round yellow seeds and peas with wrinkled
green seeds.

• Possible types of progeny were: (1) round yellow; (2) wrinkled yellow; (3)
round green; and (4) wrinkled green.

• Assume the seeds are produced independently. We can think of each seed as
being the outcome of a multinomial trial with possible outcomes numbered1,
2, 3, 4 as above and associated probabilities of occurrenceθ1, θ2, θ3, θ4.

• Mendel’s theory predicted thatθ1 = 9/16, θ2 = θ3 = 3/16, θ4 = 1/16.

• Data:n = 556, n1 = 315, n2 = 101, n3 = 108, n4 = 32.

• Pearson’s chi-square statistic is

(315− 556× 9/16)2

312.75
+

(3.25)2

104.25
+

(3.75)2

104.25
+

(2.75)2

34.75
= 0.47,

which has ap value of0.9 when referred to aχ2
3 table.

There is insufficient evidence to reject Mendel’s hypothesis. (Why don’twe
state thatwe accept Mendel’s hypothesis?)

Topic 5: Tests in Nonparametric Models

Sign, permutation, and rank tests

• In a nonparametric problem, a UMP, UMPU, or UMPI test usually does not
exist.

• Nonparametric tests are derived using some intuitively appealing ideas. They
are commonly referred to asdistribution-freetests, since almost No assump-
tion is imposed on the population under consideration.

• Sign test:

– Let X1, . . . , Xn be iid random variables fromF , u be a fixed constant,
andp = F (u).
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– Consider the problem of testingH0 : p ≤ p0 versusH1 : p > p0, or
testingH0 : p = p0 versusH1 : p 6= p0, wherep0 is a fixed constant in
(0, 1).

– Let4I = 1Xi−u≤0, i = 1, . . . , n. Then41, . . . ,4n are iid binary random
variables withp = P (4i = 1).

– For testingH0 : p ≤ p0 versusH1 : p > p0, it follows from Neymann-
Pearson lemma and monotone likelihood ratio that the test

T ∗(Y ) =


1 Y > m

γ Y = m

0 Y < m

is UMP among tests based on4i’s, whereY =
∑n

i=14i.

– For testingH0 : p = p0 versusH1 : p 6= p0, the test

T ∗(Y ) =


1 Y < c1 or Y > c2
γi Y = ci, i = 1, 2,
0 c1 < Y < c2

is UMPU among tests based on4i’s.

– SinceY is equal to the number of nonnegative signs of(u − Xi)’s, tests
based onT ∗ are called sign tests.

– One can easily extend the sign tests to the case wherep = P (X1 ∈ B).

• Let (X1, Y1), . . . , (Xn, Yn) (matched pairs) be iid random variables fromF .
By using4i = Xi−Yi−u, one can obtain sign tests for hypotheses concerning
P (X1 − Y1 ≤ u).

• Permutation tests:

– Let Xi1, . . . , Xini
, i = 1, 2, be two independent samples iid fromFi,

i = 1, 2, respectively. HereFi’s are cdf’s onR.

– Think of two-sample problem in parametric setting (normal). Such type
of problems arise from the comparison of two treatments.

– Remove the parametric assumption and assume thatFi’s are in t he non-
parametric familyF containing all continuous cdf’s onR.

– Consider the problem of testing

H0 : F1 = F2 versus H1 : F1 6= F2.

– Let X = (Xij, j = 1, . . . , ni, i = 1, 2), n = n1 + n2, andα be a given
significance level. A testT (X) satisfying

1

n!

∑
z∈π(x)

T (z) = α

26



is called a permutation test, whereπ(x) is the set ofn! points obtained
from x ∈ Rn by permuting the components ofx.

• For rank tests, we only consider Wilcoxon rank-sum test.

Rank Tests for Comparing Two Treatments

• For comparing a new treatment or procedure with the standard method,N

subjects (patients, students, etc.) are divided at random into a group ofn who
will receive a new treatment and a control group ofm who will be treated by
the standard method.

• At the termination of the study, the subjects are ranked either directly or ac-
cording to some response that measures the success of the treatment such as a
test score in an educational or pyschological investigation.

• The hypothesisH0 of no treatment effect is rejected, and the superiority of the
new treatment acknowledged, if the ranking then treated subjects rank suffi-
ciently high. (Here it is assumed that the success of the treatment is indicated
by an increased response; if instead the aim is to decrease the response,H0 is
rejected when then treated subjects rank sufficiently low.)

• Let the ranks of the treated subjects be denoted byS1, . . . , Sn, where we shall
assume that they are numbered in increasing order. Denote the sum of the
treatment ranksWS = S1 + · · ·+ Sn.

• The hypothesisH0 is then rejected and the treatment judged to be effective
whenWS is sufficiently large, say, whenWS ≥ c. Here the constantc is
determined by the equation

PH0
(WS ≥ c) = α.

• The test defined above is known as theWilcoxon rank-sum test.

• LetX1, . . . , Xm andY1, . . . , Yn be independent, theX ’s identically distributed
with distributionF and theY ’s identically distributed with distributionG.
Here theY ’s are responses to a treatment.

• ThenH0 : F = G andHa : Y is stochastically larger thanX, i.e.,G(t) ≤
F (t) for all t butG 6= F .

• Let the ranks of theX ′s be denoted byR1, . . . , Rm. If we substituteR′s for
X ’s andS’s for Y ’s in the two-sample t-test statistic, we obtain

(
nm

N

)1/2 1
n

∑n
i=1 Si − 1

m

∑m
j=1Rj

(N − 2)−1
[
{∑n

i=1(Si − N+1
2 )2 +

∑m
j=1(Rj − N+1

2 )2
]
}1/2

.
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• This statistic is equivalent to the Wilcoxon statisticWS, the sum of the ranks
of the treatment group.

– WriteWXY as the number of pairs(Xi, Yj) with Xi < Yj.

– It can be shown that

WS −
1

2
n(n+ 1) = WXY .

– WXY is usually known as the Mann-Whitney statistic.

– Let φ(Xi, Yj) = 1 if Xi < Yj, and0 otherwise. Then

WXY =
m∑

i=1

n∑
j=1

φ(Xi, Yj) (1)

– We shall prove thatWXY is asymptotically normal asm andn tend to
infinity.

• The method of proof consists in replacing the variableWXY by a sum of in-
dependent random variables, which is asymptotically equivalent toWXY and
to which the central limit theorem can then be applied.

• It is natural for this purpose to try a sum of the form

S =
m∑

i=1
ai(Xi) +

n∑
j=1

bj(Yj) (2)

but how should one choose the functionsai andbj?

• The following “projection mathod” introduced in a different context by Hajek
(1961), produces theai andbj most likely to succeed in the sense of minimiz-
ingE(WXY − S)2.

• This approach is due to Hoeffding (1948), and is applicable to a large class of
statistics, the so-called U-statistics.

– Note that
θ(F,G) =

∫
FdG = P (X ≤ Y ).

– An unbiased estimator ofθ(F,G) is

U =
1

nm

m∑
i=1

n∑
j=1

I(Xi ≤ Yj),

which is theWXY .

– A statistic can be written in the form is called a U-statistics.

– Note that the popularity of this projection method is due to Hajek (1968),
who gives the following result.
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Lemma 2 (Hoeffding) LetZ1, . . . , Zn be independent random variables andS =
S(Z1, . . . , Zn) any statistic satisfyingE(S2) <∞. Then the random variable

S∗ =
n∑

i=1
E(S|Zi)− (n− 1)E(S)

satisfiesE(S∗) = E(S) and

E(S − S∗)2 = V ar(S)− V ar(S∗).

Remarks:

1. The random variablesS∗ is called theprojectionof S onZ1, . . . , Zn.

2. Note that it is conveniently a sum ofindependent and identically dis-
tributedrandom variables.

3. In cases thatE(S−S∗)2 → 0 at a suitable rate asn→∞, the asymptotic
normality ofS may be established by applying classical theory toS∗.

Proof of Hoeffding’s Lemma.

• Without loss of generality, we can assume thatE(S) = 0.

• Consider the problem of finding the sum

T =
n∑

i=1
ki(Zi) (3)

for whichE(S − T )2 is as small as possible; the minimizingT may be con-
sidered the “projection” ofS onto the linear space formed by the functions
T .

• Let
ri(zi) = E(S|Zi = zi) (4)

be the conditional expectation ofS givenZi = zi, and let

S∗ =
n∑

i=1
ri(Zi). (5)

ThatS∗ is the desired minimizing function is an immediate consequence of
the following identity, which holds for all statisticsT andS with mean zero
and satisfying (3) for which the required expectation exist:

E(S − T )2 = E(S − S∗)2 + E(S∗ − T )2. (6)

• To prove the above identity, write

E(S − T )2 = E[(S − S∗) + (S∗ − T )]2.
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– Squaring the right-hand side proves (6) if it can be shown that

E[(S − S∗)(S∗ − T )] = 0. (7)

– Since the left-hand side of (7) is the sum of the expectations of

[ri(Zi)− ki(Zi)](S − S∗) (8)

it is enough to show that the expectation of (8) givenZi is zero for alli.

– We shall prove this by showing that the conditional expectation of (8)
givenZi is zero.

– In the conditional expectation of this product, the first factor can be taken
out of the expectation sign since it depends only onZi, so that it is finally
only necessary to show that the conditional expectation ofS − S∗ given
Zi is zero.

– Now
E[(S − S∗)|Zi] = E{S − ri(Zi)−

∑
j 6=i

rj(Zj)|Zi}.

– From the definition ofri(Zi), it is seen that the conditional expectation of
S − ri(Zi) givenZi is zero.

– On the other hand, sinceZi andZj are independent, the conditional ex-
pectation ofrj(Zj) givenZi is equal to the unconditional expectation of
rj(Zj), which by the definition ofrj is equal toE(S) and hence equal to
zero.

– This completes the proof of (7) and therefore of (6).

• A useful special case of (6) is obtained by puttingT = 0, which gives after
arrangement

E(S − S∗)2 = E(S2)− E(S∗2) = V ar(S)− V ar(S∗). (9)

• Before we apply Hoeffeding lemma to theWXY -statistic (1), we will calculate
the expectation and variance ofWXY .

• Setθ = (F,G),
Eθ[φ(X, Y )] = Pθ[X < Y ]

and we obtain
Eθ(WXY ) = mnp (10)

wherep = Pθ[X < Y ].

• Similarly, we have

V arθ(WXY ) = nmp(1−p)+nm(n−1)(q1−p2)+nm(m−1)(q2−p2) (11)

whereq1 = Pθ[X1 < min(Y1, Y2)] andq2 = Pθ[Y1 > max(X1, X2)].
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• Note that underH0, if F is continuous,p = 1/2 while q1 = q2 = 1/3, since,
among three independent identically distributed variables, each one is equally
likely to be the minimum or the maximum.

• We then haveEθ(WXY ) = mn/2 andV arθ(WXY ) = mn(N + 1)/12 under
H0.

• Put
ψ(x, y) = φ(x, y)− p. (12)

Note that

E[ψ(Xα, Yβ)|Xi = x] =

 Eψ(x, Yβ) if α = i
0 if α 6= i

and

E[ψ(Xα, Yβ)|Yj = y] =

 Eψ(Xα, y) if β = j

0 if β 6= j

• Putψ10(x) = EYψ(x, Y ) andψ01(y) = EXψ(X, y).

• The projection ofWXY − mnp by Hoeffeding Lemma isn
∑m

i=1 ψ10(Xi) +
m
∑n

j=1 ψ01(Yj). Consider

U =
√
m

 1

m

m∑
i=1

ψ10(Xi) +
1

n

n∑
j=1

ψ01(Yj)


andS =

√
m[(mn)−1WXY − p].

• Note that

V ar(S) → q1 − p2 +
m

n
(q2 − p2),

V ar(U) = V ar(ψ10(X)) +
m

n
V ar(ψ01(Y )),

E(S − U)2 = V ar(S)− V ar(U).

Observe that forj 6= k, V ar(ψ10(X)) = q1 − p2 andV ar(ψ01(Y ) = q2 − p2.
(i.e.Eψ(x1, Yj)ψ(x1, Yk) = [ψ10(x1)]

2 and

EX [ψ10(X)]2 = Eψ(X, Yj)ψ(X, Yk) = Cov(ψ(X, Yj), ψ(X, Yk)).

We then conclude thatE(S − U)2 → 0.

Theorem 1 Suppose thatF andG are continuous and that0 < Pθ[X < Y ] < 1.
Then

S − Eθ(S)√
V arθ(S)

d→ N(0, 1) asmin(n,m) →∞.
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Remark. RejectH0 when

WXY − 1
2nm√

1
12nm(N + 1)

≥ z(1− α).

Pitman efficiency of the Wilcoxon rank-sum test to the two-sample t-test

We turn now to the comparison of the performance of the Wilcoxon and two-sample
t tests. At first sight it would appear that a good reason for using the Wilcoxon is
that it has a guaranteed probability of type I error and a good reason against using
the Wilcoxon is its inefficient use of the data.

• We assume that theX ’s andY ’s have the same varianceσ2 and meansµ1 and
µ2.

• Although the t test does not have a guaranteed probability of type I error, if
n andm are moderately large,H0 is true, andF has a finite second moment,
then the probability of type I error of the t test is fairly close to that specified
by the normal model.

• Recall that the two-sample t statistic is given by

T =

√
nm

N

Ȳ − X̄

s2
(13)

where

s2 =

∑m
i=1(Xi − X̄)2 +

∑n
j=1(Yj − Ȳ )2

N − 2
. (14)

• We start by obtaining an approximation to the critical value and power of the
t test. Note thats2

2
P→ σ2 asmin(n,m) → ∞. It follows from Slutsky’s

theorem and central limit theorem that whenµ1 = µ2, T converges in law to a
N(0, 1) random variable asmin(n,m) →∞.

• Then the t test that rejectsH0 whenT ≥ tN−2(1−α) has approximately level
α regardless of the shape ofF andG andz(1− α) is an approximate critical
value as we claimed above.

• If µ1 6= µ2, let δ = (µ2 − µ1)/σ. Then, arguing as above, if
√
nm/Nδ stays

boundedT −
√
nm/Nδ has approximately aN(0, 1) random distribution for

all F andG with σ2 < ∞. We then can approximate the probabilityPθ(T ≥
tN−2(1− α)) by

βT = Pθ[T ≥ z(1−α)] = 1−Φ(z(1−α)−
√
nm/Nδ) = Φ(z(α)+

√
nm/Nδ).

32



• For Wilcoxon test,

βN = Pθ

WXY ≥
1

2
nm+ z(1− α)

√√√√ 1

12
nm(N + 1)


= Pθ

WXY − Eθ(WXY )√
varθ(WXY )

≥
nm(1

2 − p) + z(1− α)
√

1
12nm(N + 1)√

varθ(WXY )



≈ Φ

nm(1
2 − p) + z(1− α)

√
1
12nm(N + 1)√

varθ(WXY )

 .
• Consider the case thatX ∼ N(µ1, σ

2), Y ∼ N(µ2, σ
2), n = m andα = 0.05.

Note thatδ = (µ2 − µ1)/σ = 0.5.

• Suppose we want to haveβ = 0.9.
For t-test, solve

−1.645 +

√√√√N
2

N
2

N
0.5 = 1.282

and getN = 16 · (2.927)2 ≈ 140.
For Wilcoxon test:

p = Pθ(X < Y ) = Φ

(
µ2 − µ1√

2
σ

)
, q1 = P

(
Z1 <

∆√
2
, Z2 <

∆√
2

)
,

q2 = P

(
Z1 <

∆√
2
, Z3 <

∆√
2

)
,

whereZ1 = [X1 − Y1 − (µ1 − µ2)]/
√

2σ, Z2 = [X1 − Y2 − (µ1 − µ2)]/
√

2σ,
Z3 = [X2 − Y1 − (µ1 − µ2)]/

√
2σ.

• Note that(Z1, Z2) ∼ N(0, 0, 1, 1, 1/2), (Z1, Z3) ∼ N(0, 0, 1, 1, 1/2). When
∆ = 0.5, p = 0.638, q1 = q2 = 0.483, we haveβW ≈ Φ(−1.729 +
0.355

√
N/2) = 0.9. Hence,N ≈ 144.
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