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Bootstrapping

Bootstrapping is a general approach to statistical in-
ference based on building a sampling distribution for a
statistic by resampling from the data at hand.

e The term bootstrapping,due to Efron (AS, 1979), is
an allusion to the expression pulling oneself up by
one’s bootstraps.

e It uses the sample data as a population from which
repeated samples are drawn.

e Two R libraries for bootstrapping are associated with
extensive treatments of the subject:

— Efron and Tibshirani’s (1993) bootstrap library
— Davison and Hinkley’s (1997) boot library
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e There are several forms of the bootstrap, and, addi-
tionally, several other resampling methods that are
related to it, such as jackknifing, cross-validation, ran-
domization tests, and permutation tests.



Nonparametric Bootstrapping

Scientific question:
e Why Sample?

— Sampling can provide reliable information at far
less cost than a census.

— Samples can be collected more quickly than cen-
suses.

— Sampling can lead to more accurate estimates
than censuses (!).

+x When samples are used a small number of well-
trained interviewers can spend more time get-
ting high quality responses from a few sampled
people.



— With probability sampling, you can quantify the
sampling error from a survey.

— Sampling is necessary when a unit must be de-
stroyed to be measured (e.g., breaking apart a
Chips Ahoy! Cookie to measure the number of
chocolate chips)

e Suppose that we draw a sample S = { X, X, ..., X;;}
from a population P = {z{,29,..., 25} where N is
very much larger than n.

e Abstraction: Suppose that with any design, with
or without replacement, the probability of including
unit ¢ in the sample is 7; (> 0), for i =1,2,... N.

— The Horvitz-Thompson (1952) estimator for the



population total X is defined as
A~ Qj‘z
Yar =) —
ieS !
where S contains the distinct units only and hence

the size of S could be less than the number n of
units drawn.

— If the sampling is without replacement, the size
of S must be n.

— Under a sampling with replacement, it can be
shown that for a fixed sample size n,

mi=1—(1-p)"
where p; is the probability of selecting the :th unit
of the population on each draw.
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— Under a simple random sampling without replace-

ment, it can be shown that for a fixed sample size
n, m; =n/N.

e For simplicity, think of the elements of the popula-
tion as scalar values, but they could just as easily
be vectors (i.e., multivariate).

e Now suppose that we are interested in some statis-
tic 7' = t(S) as an estimate of the corresponding
population parameter 0 = t(P).

— 6 could be a vector of parameters and 7' the cor-
responding vector of estimates.

—In inference, we are interested in describing the
random variable ¢(S) — t(P) which varies with S.

+ Find the distribution of ¢(5) — ¢(P).
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+ How do we describe the distribution of ¢(S5) —
t(P)?
+x Chebyschev’s inequality, Asymptotic analysis, ...

Essential idea of the nonparametric bootstrap is as fol-
lows:

e Draw a sample of size n from among the elements

of S, sampling with replacement.
X X

Call the resulting bootstrap sample 57 = {X||, X7, ...

e In effect, we are treating the sample S as an esti-
mate of the population P; that is, each element X;
of S is selected for the bootstrap sample with prob-
ability 1/n, mimicking the original selection of the
sample S from the population P.

e Repeat this procedure a large number of times, P,
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selecting many bootstrap samples; the Oth such boot-
strap sample is denoted S; = { X, X5, ..., X }.
The population is to the sample as the sample is to
the bootstrap samples.

e Compute the statistic 7' for each of the bootstrap
samples; that is T = {(5}).
— Let B denote the number of times on resampling.

—In theory, we can determine the distribution of
T* —T when B — <.

— We are doing simulation essentially.
e Suppose that we observe the sample
X = X1,..., X, " pe),

indexed by unknown parameter 6 and compute the
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statistic A
0=0(Xq,...,Xn) =0X).

— Denote the empirical distribution by

— Think of the parameter 6 = 6(F') and the statistic
¢ as functionals 6(F,).
— The idea of bootstrap is to exploit the analogy

0(Fn) — O(F) - 0(F;) — 0(Fy)
where F’ denotes the empirical distribution of a
sample from Fj,.

e How do we find the sampling distribution of X —
E(X) when X1,..., X, are from exponential distri-
bution?

13



— How do | utilize the information available to me?
— Think of parametric bootstrap.

e In the parametric bootstrap, the distribution func-
tion of the population of interest, F', is assumed
known up to a finite set of unknown parameters 6.

— Fis F with 0 replaced by its sample estimate (of
some kind).

e Algorithm of parametric bootstrap:

— Obtain estimates of the parameters that charac-
terize the distribution within the assumed family.

— Generate B random samples each of size n from
the estimated distribution, and for each sample,
compute an estimator T[;k of the same functional
form as the original estimator 7.
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— The distribution of the Tg“s is used to make in-
ferences about the distribution of 7.

e Assume that the distribution of 7} around the orig-
inal estimate 7' is analogous to the sampling dis-
tribution of the estimator I’ around the population
parameter 6.

— Consider the problem of correcting the bias of T
as an estimate of 6.

+ Let B denote the number of times of resam-

pling.
x The average of the bootstrapped statistics is
B *
_ . > T
T E*(T*) _ Zbg b .

+ Bootstrap estimate of the bias would be 7% —T.
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+ Recall that the bias is E(T) — 6.
+ Improve the estimate 7' by T — (T* — T).

—How do we estimates the sampling variance or
sampling distribution of 1?7

Note that the random selection of bootstrap samples
is not an essential aspect of the nonparametric boot-
strap:

e At least in principle, we could enumerate all boot-
strap samples of size n. Then we could calculate
E*(T*) and Var*(T*) exactly, rather than having to
estimate them.

e The number of bootstrap samples n", however, is
astronomically large unless 7 is tiny.
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Error in Bootstrap Inference

There are two sources of error in bootstrap inference:

(1) the error induced by using a particular sample S to
represent the population

(2) the sampling error produced by failing to enumerate
all bootstrap samples.

— This source of error can be controlled by making
the number of bootstrap replications R sufficiently
large.

e A traditional approach to statistical inference is to
make assumptions about the structure of the popu-
lation (e.g., an assumption of normality), and, along
with the stipulation of random sampling, to use
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these assumptions to derive the sampling distribu-
tion of 7', on which classical inference is based.

— In certain instances, the exact distribution of 7T
may be intractable, and so we instead derive its
asymptotic distribution.

— This familiar approach has three potentially im-
portant deficiencies:

1. If the assumptions about the population are wrong,
then the corresponding sampling distribution of
the statistic may be seriously inaccurate.

2. If asymptotic results are relied upon, these may
not hold to the required level of accuracy in a
relatively small sample.

3. The approach requires sufficient mathematical
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prowess to derive the sampling distribution of
the statistic of interest. In some cases, such a
derivation may be prohibitively difficult.

e Background:
Some of the theory involves functional Taylor ex-
pansions.

6 — 00 (F)(F,—F),
where F,, — F' can be approximated by a Brownian
bridge.
By the same reasoning,
0% — 0~ 0 (Fp)(F* — Fp).
Again, F;* — [}, can be approximated by a Brownian
bridge.

o If this statistics is sufficiently smooth so that the
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functional derivatives Hl(F) = Hl(Fn), then the pro-
cedure gets the right SE.

20



R-programming

In this demonstration, we consider estimating the pa-
rameter 6 of an exponential distribution.

e Data generation with 0 = 2:

options(digits=3) & x<- rexp(20,2)
print (theta<- sd(x))

e Parametric bootstrap

lambda<- 1/mean(x) & thetas<- 1:1000
for (i in 1:1000)

thetas[i]<- sd(rexp(30,lambda))
c (mean(thetas),sd(thetas))
quantile(thetas,c(0.025,0.975))
theta-rev(quantile(thetas-theta,c(0.025,0.975)))
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e Nonparametric bootstrap

thetas2<- 1:1000
for (i in 1:1000)

thetas[i]<- sd(sample(x,repl=T))
c (mean(thetas?2),sd(thetas?))

quantile(thetas2,c(0.025,0.975))
theta-rev(quantile(thetas2-theta,c(0.025,0.975)))

e Monte Carlo estimate (knowing the truth)

thetas3<- 1:10000 for (i in 1:100000)
thetas3<- sd(rexp(30,2))
c (mean(thetas3),sd(thetas3))

22



Bootstrap Confidence Intervals

There are several approaches to constructing bootstrap
confidence intervals.

e The normal-theory interval assumes that the statis-
tic 7" is normally distributed (which is often approx-
imately the case for statistics in sufficiently large
samples), and uses the bootstrap estimate of sam-
pling variance, and perhaps of bias, to construct a
100(1 — «)-percent confidence interval of the form

0 = (T — B*) £ 21_oSE (T%).
Here,

— B* and SF are the bootstrap estimate of the bias
and standard error of T'.
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—Z|_q/2 is the 1 — a/2 quantile of the standard-
normal distribution.

e Bootstrap percentile interval: It is to use the em-
pirical quantiles of Tb* to form a confidence interval
for 0.

T(#Zower) <0< T(prer)
where T<*1>,T<*2), . ’T(*B) are the ordered bootstrap
replicates of the statistic; lower = [(B+1)a/2|; upper

= [(B+1)(1—«a/2)]; and the square brackets indicate
rounding to the nearest integer.

— Although they do not artificially assume normal-
ity, percentile confidence intervals often do not
perform well.

+ Do a transformation!
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x We have a lot of experience with approximate
transformations to normality.

* Suppose there is a monotonically increasing trans-
formation g and a constant 7 such that the ran-
dom variable

Z = clg(0%) — g(0)]
has a symmetric distribution about zero.
x Let H be the distribution function of Z. Then

Ga(t) = H(clg(t) — g(0)]),
and
97 = g Hg(6) + 217

(1-a)

where 2 is the 1 — a quantile of ~7.

— How do we employ this concept on vector-valued
parameters?
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* Do we restrict to an ellipsoidal region?

x If it is, the shape is determined by the covari-
ances of the estimators.

* How about the one-sided confidence interval?

e The bootstrap ¢ interval: Determine the following
distribution by the bootstrap method.

aS

0* — 0
s(0%)
e Bias-corrected, accelerated (or BC,) percentile in-

tervals:
Steps:
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— Calculate

y=¢ !

where &7 1(.) is the standard-normal quantile func-

tion.

— If the bootstrap sampling distribution is symmet-
ric, and if 7" is unbiased, then this proportion will
be close to 0.5, and the correction factor z will be

close to 0.
—Let T}

(—1)

"D
D> UTy <T)

bB+1

there are n of these quantities.

Let T represent the average of the Iy

27

represent the value of 1" produced when
the th observation is deleted from the sample;



Calculate
Pl — TP

N IEEIER
6 |2 i1 (T = T)°

a =

— With the correction factors z and ¢ in hand, com-
pute

_ e i}
0 = d |2+ l1—a/2

I 1 — CL(Z - 21—04/2)_

i 2+ 21_ |
a = P [z + 17a/2

I 1 — CL(Z — 21—04/2)_

— The values a; and a- are used to locate the end-
points of the corrected percentile confidence in-
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terval:
< 0 < T(

T(lower*) upper™)

where lower™ = |Baj| and upper™ = |Bas).

When the correction factors ¢ and 2 are both 0,
it corresponds to the (uncorrected) percentile in-

terval.
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Bootstrapping Regressions
Consider (x1,x9,y); for i =1,... n.

y = By + Pz + Poxo + €

with E(e) = 0 and Var(e) = o°.
Assume the ¢;s are independent.

e Parametric bootstrap:

— Obtain ﬁAO, By, 3o

—Sample ¢* ~ iid N(0,5°)

— Take y,;k A: ﬁAQ + 5:1%’1 + BQCEZ'Q + E;-k

— Obtain 3, 3], 55 and repeat many times
e Resampling residuals:

— Obtain BO, 3y, and (3.
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— Calculate residuals ¢ = y; — By — Bz — Boxo
—Sample ¢; by drawing with replacement from {¢;}
—Add € to §y+ Sixi1 + Borio.

— Obtain 33, 5, 35 and repeat many times.

— It assumes that the distribution of ¢ is the same
in all regions of the model.

— Better efficiency but is not robust to getting the
wrong model.

e Resampling cases:

—Sample (27}, 7},,y;); by drawing with replacement
from (21, 22, y);-

— Obtain ﬁo, ﬁl 62 and repeat many times.

— It is less efficient but it preserves the relationship
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between Y and (X7, X5) is better. (Think of the
case that the variance is not homogeneous.)
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Resampling Censored Data

In many practical settings, data is censored and so the
usual bootstrap is not applicable.

¢ Random right-censored data:

Such data is typically comprised of the bivariate ob-
servations (Y;, D;) where

Y; =min(X;,C;) D; =1(X; <Cj)

where X; ~ F' and C; ~ G independently and /(A)
is the indicator function of the event A.

— Example: remission times for patients with a type
of leukaemia
x The patients were divided into those who re-
ceived maintenance chemotherapy and those who
did not.
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* We are interested in the median remission time
for the two groups.

— survfit: Computes an estimate of a survival curve
for censored data using either the Kaplan-Meier or
the Fleming-Harrington method or computes the
predicted survivor function for a Cox proportional
hazards model.

— data(aml, package="boot")
fit<- survfit(Surv(time,group) “cens,data=aml)
plot (fit)

e Algorithm 1:

— Nonparametric estimates of /" and G are given by
the Kaplan-Meier estimates F' and G, the latter
being obtained by replacing d; by 1 — d,.
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—0=F;'0.5) — F;'(0.5)

—Sampling X7,... X from F' and independently
sampling C;, ..., C; from G.

— (Y, D7) can then be found from (X, C7) in the
same way as for the original data.

— Efron (1981) showed that this is identical to re-
sampling with replacement from the original pairs.

aml . fun<- function(data){
surv<-survfit (Surv(time,group) “cens,data=data)
out<- NULL
st <- 1
for (s in 1:length(surv$strata)) {
inds <- st:(st+surv$stratals]-1)
md<-min(surv$time[inds [1-surv$surv[inds]>=0.5].
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st <- st+surv$stratals]
out<- c(out,md)

}
}

aml .case<- censboot(aml,aml.fun,R=499,strata
=aml$group)

— Refer to the R function censboot.
e Conditional bootstrap:

— This approach conditions the resampling on the
observed censoring pattern since this is, in effect,
an ancillary statistic.

—Sample X7, ..., X} from [ as before.
— If the :th observation is censored then we set
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C;, = y; and if it is not censored we sample an
observation from the estimated conditional distri-
bution of C; given that C; > y;.

— Having thus obtained X/,..., X} and C7,... C}
we proceed as before.

— Technical problem: Suppose that the maximum
value of y{,...,yn, y; say, is a censored observa-
tion. Then X <y, and C; = y;. so the bootstrap
observation will always be uncensored.
Alternatively, if the the maximum value is uncen-
sored, the estimated conditional distribution does
not exist.

In order to overcome these problems we add one
extra point to the data set which has an observed
value greater than max{yj, ..., yn} and has the op-
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posite value of the censoring indicator to the max-
imum.

— R-program
aml . s1<-survfit (Surv(time,cens) “group,data=aml)
aml . s2<-survfit (Surv(time-0.001*cens,1l-cens) "1,
data=aml)
aml . cond<-censboot (aml,aml.fun,R=499,strata=

aml$group,F.surv=aml.sl,G.surv=aml.s2,
sim="cond")
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Bootstrap Hypothesis Tests

It is also possible to use the bootstrap to construct an
empirical sampling distribution for a test statistic.

e To be added later on.
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Permutation Tests

Randomization Methods:
When an hypothesis of interest does not have an obvi-
ous test statistic, a randomization test may be useful.

e Compare an observed configuration of outcomes with
all possible configurations.

e The randomization procedure does not depend on
assumptions about the data generating process, so
it is usable in a wide range of applications.

¢ In most situations the null hypothesis for the test is
that all outcomes are equally likely, and the null hy-
pothesis is rejected if the observed outcome belongs
to a subset that has a low probability under the null
hypothesis, but a relatively higher probability under
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the alternative hypothesis.

e Suppose that we want to test whether the means of
two data generating processes are equal.

— The decision would be based on observations of
two samples of results using the two treatments.

— There are several statistical tests for this null hy-
pothesis, both parametric and nonparametric, that
might be used.

— Most tests would use either the differences in the
means of the samples, the numbers of observa-
tions in each sample that are greater than the
overall mean or median, or the overall ranks of
the observations in one sample.

— Any of these test statistics could be used as a test
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statistic in a randomization test.
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Test the difference in the two sample means

Consider two samples, v, 29,...,2m,m and y{,y9, ..., Yn.

The chosen test statistic is t)g =1 — ¥.

e Without making any assumptions about the distri-
butions of the two populations, the significance of
the test statistic (that is, a measure of how extreme
the observed difference is) can be estimated by con-
sidering all configurations of the observations among

the two treatment groups.

— This is done by computing the same test statistic
for each possible arrangement of the observations,
and then ranking the observed value of the test
statistic within the set of all computed values.

— Consider a different configuration of the same set

43



of observations, y{,r9,.... 2y and x1,y9,...,y, IN
which an observation from each set has been in-
terchanged with one from the other set.

The same kind of test statistic, namely the differ-
ence in the sample means, is computed. Let ¢ be
the value of the test statistic for this combination.

— Consider all possible different configurations, in

which other values of the original samples have
been switched.
Compute the test statistic. Continuing this way
through the full set of z’s, we would eventually
obtain C(n + m,n) different configurations, and a
value of the test statistic for each one of these
artificial samples.

e Consider the set of computed values to be a real-
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ization of a random sample from that distribution
under the null hypothesis.

— The empirical significance of the value correspond-
ing to the observed configuration could then be
computed simply as the rank of the observed value
in the set of all values.

— Because there may be a very large number of all
possible configurations, we may wish to sample
randomly from the possible configurations rather
than considering them all.

—When a sample of the configurations is used, the
test is sometimes called an approxrimate random-
1zation test.

¢ Randomization tests have been used on small data
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sets for a long time. Refer to Fisher’s famous lady
tasting tea experiment in which a randomization test

IS used.

e Refer to Fisher (1935). Because such tests can
require very extensive computations, their use has

been limited until recently.

e Fisher's randomization test: Fisher (1935) gave a
permutation justification for the usual test for n

paired observations.
— In his example (Darwin’s Zea data) y; and d; =|

r; — vy; | were real numbers representing plant
height for treated and untreated plants.

— Darwin conducted an experiment to examine the
superiority of cross-fertilized plants over self-fertilized
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plants.

x 15 pairs of plants were used. Each pair con-
sisted of one cross-fertilized plant and one self-
fertilized plant which germinated at the same
time and grew in the same pot.

x The plants were measured at a fixed time after
planting and the difference in heights between
the cross- and self-fertilized plants are recorded
in eighths of an inch.

x This data can be found in the package of boot
with name darwin.

— Darwin had calculated the mean difference.
— Fisher gave a way of calibrating this by calculating

Sp=e€1d] + -+ endp
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and considering all 2""1 possible sums ¢ = +1 with
Sp-

e Manly, B.F.J. (1997) Randomization, bootstrap and

Monte Carlo method in biology, 2nd ed. Chapman &
Hall, London.
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The Jackknife

Jackknife methods make use of systematic partitions
of a data set to estimate properties of an estimator
computed from the full sample.

e Quenouille (1949, 1956) suggested the technique to
estimate (and, hence, reduce) the bias of an esti-
mator 0,,.

e Tukey coined the term jackknife to refer to the method,
and also showed that the method is useful in esti-
mating the variance of an estimator.

e Suppose, we have a random sample, X, X5, ... X,,
from which we compute a statistic 7' as an estimate
of a parameter 6 in the population from which the
sample was drawn.
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In the jackknife method,

— Partition the given data set into r groups each of
size k. (For simplicity, we will assume that the
number of observations n is kr.)

— Remove the jth group from the sample, and com-
pute the estimate, 7_; from the reduced sample.

— Consider T]* = rT'—(r—1)T_; which is called pseu-
dovalues. The mean of the pseudo values, J(T)), is
called the jackknife estimator corresponding to 1"

.
LT
J(T)=rT — (r — 1)2]_1 L
r
— In most applications, it is common to take £ =1

or r =n.

e J(T') can provide information about the variance of
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the bias of the estimator 7.
e The Jackknife Bias Correction:

— Suppose that we can express the bias of én as a

power series in n~1L.

A a a a
R LS. S
mn T T

where the numerators are unknowns depending on
the real distribution F'.
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—For J(T'), we have

> a > a
q q
qg=1 qg=1
> a
—(n—1 4 0
(n —1) ;(n—l)qu

- <n<n1— 1>> o (é T (n . 1>2>

— The bias of jackknife estimate J(T) is in n 2.
— Jackknife gives an estimate of the bias by:

Biasjqe, = (n — 1)(J(T) = T).
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e The Jackknife Variance Estimate

2
> (T =T)
r(r—1) '
— Monte Carlo studies that it is often conservative;

that is, it often overestimates the variance (see
Efron, 1982).

e Refer to Gentle (2002) for higher-order bias correc-

tion, the generalized jackknife, and the delete-k jack-
knife.

Var]-ack =

93



Cross Validation and Model Selection

Cross-validation and bootstrapping are both methods
for estimating generalization error based on resampling

(Efron and Tibshirani, 1993).
e Cross validation is useful in model building.

e In regression model building the standard problem
is, given a set of potential regressors, choose a rel-
atively small subset that provide a good fit to the
data.

— Standard techniques include stepwise regression
and all best subsets.

— If all the data are used in fitting the model, how-
ever, we have no method to validate the model.

54



— A simple method to select potential regressors is
to divide the sample into half, to fit the model us-

ing one half, and to check the fit using the second
half.

x The regressors to include in the model can be
based on comparisons of the predictions made
for the second half with the actual data.

— Instead of dividing the sample into half, we could
form multiple partial data sets with overlap.

+* One way would be to leave out just one obser-
vation at a time.

+x The method of variable selection called PRESS,
suggested by Allen (1971), does this. (See also
Allen, 1974.)
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e Cross validation is a common method of selecting
smoothing parameters.

— Think of choosing window width for window esti-
mate in regression.

e The resulting estimates of generalization error are
often used for choosing among various models.

e Apparent Error and True Error:
Consider the problem of predicting Y using some
function of X such that E[Y — ¢(X)]? is as well as

possible.

— Usually, g(X) is determined be a training sample
(@i, yi)'s.

—For a new point, (zg,yp), how well does §(x)
match y,?

56



—Let L(y,g) be a measure of the error between an
observed value y and the predicted value g(z).
(Usually, L is the square, [y — g(z)]%.)

e For prediction error,

— Recall the residual of sum squares we learned in
regression analysis.

+ Can we use RSS to do model selection?

+x RSS is typically smaller than the true error be-
cause the fit was chosen so as to minimize it.

* RSS is the so-called apparent error.

e Define the excess error as the random variable
D(Y,Pxy) =E L(Y0, 9(X0))|—Ep _ [L(Yo, 9(X0))],

Fixy) Pixy)
where P(X y) is the estimated cumulative distribu-
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tion function of (X,Y).

—If 15< x.y) is the empirical CDF the density is just
1/n at the sample points, so

E - L(Y] X L
p(ij){ < Og 0 Z

— This quantity, which is easy to compute, is the
apparent error.

e Cross validation methods (and other resampling meth-
ods) can be used to estimate the true error.
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Cross Validation

Consider model selection.

e In k-fold cross-validation, you divide the data into £
subsets of (approximately) equal size v.

e Train the model £ times, each time leaving out one
of the subsets from training (estimating unknown
parameters etc.), but using only the omitted subset
to compute whatever chosen error criterion.

o If k equals the sample size, this is called leave-one-
out.

— Leave-one-out cross-validation is also easily con-
fused with jackknifing since both involve omitting
each training case in turn.
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— Jackknifing can be used to estimate the bias of
the training error and hence to estimate the gen-
eralization error, but this process is more compli-
cated than leave-one-out cross-validation

e Leave-v-out is a more elaborate and expensive ver-
sion of cross-validation that involves leaving out all
possible subsets of v cases.

e For an insightful discussion of the limitations of cross-

validatory choice among several learning methods,
see Stone (1977).

— Leave-one-out cross-validation often works well
for estimating generalization error for continuous
error functions such as the mean squared error,
but it may perform poorly for discontinuous er-
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ror functions such as the number of misclassified
cases.

— In the latter case, k-fold cross-validation is pre-
ferred.

— But if £ gets too small, the error estimate is pes-
simistically biased because of the difference in
training-set size between the full-sample analysis
and the cross-validation analysis.

— A value of 10 for £ is popular for estimating gen-
eralization error.

e Refer to Chapter 7.11 of HTF book on bootstrap
method.

Shao (1993, JASA) obtained the surprising result that
for selecting subsets of inputs in a linear regression, the
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probability of selecting the best does not converge to 1
(as the sample size n goes to infinity) for leave-v-out

cross-validation unless the proportion v/n approaches
1.

e To obtain an intuitive understanding, let's review
what is generalization error.

e Generalization error can be broken down into three
additive parts,
— noise variance
— estimation variance
— squared estimation bias

e Noise variance is the same for all subsets of inputs.

e Bias is nonzero for subsets that are not good, but
it’s zero for all good subsets, since we are assuming
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that the function to be learned is linear.
Hence the generalization error of good subsets will
differ only in the estimation variance.

e The estimation variance is (2p/t)s> where p is the
number of inputs in the subset, ¢ is the training set
size, and s is the noise variance.

— The best subset is better than other good subsets
only because the best subset has (by definition)
the smallest value of p.

— But the ¢ in the denominator means that differ-
ences in generalization error among the good sub-
sets will all go to zero as ¢ goes to infinity.

— Therefore it is difficult to guess which subset is
best based on the generalization error even when
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t is very large.

e It is well known that unbiased estimates of the gen-
eralization error, such as those based on A/C, FPE,
and (), do not produce consistent estimates of the
best subset (e.g., see Stone, 1979).
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