
Monte Carlo Methods for Statistical Inference:Variance Reduction Techniques
Hung Chen

hchen@math.ntu.edu.twDepartment of MathematicsNational Taiwan University
3rd March 2004

Meet at NS 104 On Wednesday from 9:10 to 12.1



Outline�Numerical Integration1. Introduction2. Quadrature Integration3. Composite Rules4. Richardson's Improvement Formula5. Improper integrals�Monte Carlo Methods1. Introduction2. Variance Reduction Techniques3. Importance Sampling� References:
2



{ Lange, K. (1999) Numerical Analysis for Statisti-cians. Springer-Verlag, New York{ Robert, C.P. and Casella, G. (1999). Monte CarloStatistical Methods. Springer Verlag.{ Thisted, R.A. (1996). Elements of Statistical Com-puting: Numerical Computing Chapman & Hall.{ An Introduction to R by William N. Venables, DavidM. Smith(http://www.ats.ucla.edu/stat/books/#DownloadableBooks)

3



Monte-Carlo IntegrationIntegration is fundamental to statistical inference.� Evaluation of probabilities, means, variances, andmean squared error can all be thought of as inte-grals.� Very often it is not feasible to solve for the integralof a given function via analytical techniques and al-ternative methods are adapted.� The approximate answers are presented in this lec-ture.Suppose we wish to evaluate I = R f (x)dx.� Riemann integral: The de�nition starts with{Divide [a; b] into n-disjoint intervals 4xi, such that4



[i4xi = [a; b] and f4xig is called a partition P of[a; b].{ The mesh of this partition is de�ned to be thelargest size of sub-intervals, mesh(P) = maxi j4xi j.{De�ne a �nite sum,
Sn = nX

i=1

f (xi)4xi;
where xi 2 4xi is any point.{ If the quantity limmeshP#0 Sn exists, then it is calledthe integral of f on [a; b] and is denoted by R ba f (x)dx.� This construction demonstrates that any numericalapproximation of R ba f (x)dx will have two features:5



(i) Selection of samples points which partition theinterval(ii) A �nite number of function evaluations on thesesample pointsNow consider the problem of evaluating � = R �(x)f (x)dxwhere f (x) is a density function.Using the law of large numbers, we can evaluate �easily.� Sample X1; : : : ; Xn independently from f and form
�̂ = 1n

nX
i=1

�(xi);
V ar(�̂) = 1n

Z [�(x)� �]2f (x)dx:
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� The precision of �̂ is proportion to 1=pn.In numerical integration, n points can achieve theprecision of O(1=n4).�Question: We can use Riemann integral to evaluatede�nite integrals. Then why do we need MonteCarlo integration?{ As the number of dimensions d increases, thenumber of points n required to achieve a fair esti-mate of integral would increase dramatically, i.e.,proportional to nd.{ Even when the value d is small, if the function tointegrated is irregular, then it would ine�cient touse the regular methods of integration.� Curse of Dimensionality: 7



{ It is known that the sube�ciency of numericalmethods compared with simulation algorithms fordimension d larger than 4 since the error is thenof order O(n�4=d).{ The intuitive reason behind this phenomenon isthat a numerical approach like the Riemann summethod basically covers the whole space with agrid.When the dimension of the space increases, thenumber of points on the grid necessary to obtaina given precision increases too.
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Numerical IntegrationAlso named as \quadrature," it is related to the eval-uation of the integral
I = Z b

a
f (x)dx:

It is equivalent to solving for the value I = y(b) thedi�erential equation dydx = f (x)
with the boundary condition y(a) = 0.�When f is a simple function, I can be evaluatedeasily.� The underlying idea is to approximate f by a simple9



function which can be easily integrated on [a; b] andwhich agrees with f on the sampled points.� The technique of �nding a smooth curve passingthrough a set of points is also called curve �tting.{ To implement this idea is to sample N + 1 pointsand �nd an order-N polynomial passing throughthose points.{ The integral of f over that region (containing N+1-points) can be approximated by the integral ofthe polynomial over the same region.{ Given N +1 sample points there is a unique poly-nomial passing through these points, though thereare several methods to obtain it. We will use theLagrange's method to �nd this polynomial, which10



we will call Lagrange's interpolating polynomial.� Fit a polynomial to the sample points over the wholeinterval [a; b] we may end up with a high order poly-nomial which itself might be di�cult to determineits coe�cients.� Focus on a smaller region in [a; b], lets say [xk; xk+n],containing the points xk; xk+1; : : : ; xk+n.� Let Pk+i = (xk+i; f (xk+i)) be the pairs of the sampledpoints and the function values; they are called knots.� Let pk;k+n(x) denote the polynomial of degree lessthan or equal to n that interpolates Pk; Pk+1; : : : ; Pk+n.Now the question becomesGiven Pk; : : : ; Pk+n, �nd the polynomial pk;k+n(x) such
11



that pk;k+n(xk+i) = f (xk+i); 0 � i � n:To understand the construction of pk;k+n(x), we lookat the case n = 0 �rst.It is the so-called the extended midpoint rule of �ndingI.1. Pick N large.2. Let xi = a + (i � 1=2)h for i = 1; : : : ; N where h =(b� a)=N .3. Let fi = f (xi).4. Then I � hPi fi.Sample code: emr<- function(f,a,b,n=1000){

h<- (b-a)/n
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h*sum(f(seq(a+h/2,b,by=h)))

}

This is the simplest thing to do.Extending these ideas to an arbitrary value of n, thepolynomial takes the form
pk;k+n(x) = nX

i=0

f (xk+i)Lk+i(x);
where Lk+i(x) = Y

j=0;j 6=i

x� xk+jxk+i � xk+j :
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Note that
Lk+i(x)�

8<:
1; x = xk+i0; x = xk+j; j 6= ielse; in betweenTherefore, pk;k+n(x) satis�es the requirement that itshould pass through the n + 1 knots and is an order-npolynomial.This leads tof (x) � pn(x) = f (xk)Lk(x)+f (xk+1)Lk+1(x)+� � �+f (xk+n)Lk+n(x):Approximate R xk+nxk

f (x)dx by the quantity R xk+nxk
pk;k+n(x)dx.Z xk+n

xk
f (x)dx � wkf (xk)+wk+1f (xk+1)+� � �+wk+nf (xk+n);
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where wk+i = Z xk+n

xk
Lk+i(x)dx:

calculate Calculation of these weights to derive a fewwell-known numerical integration techniques.� Assume that the sample points xk; xk+1; : : :, are uni-formly spaced with the spacing h > 0.� Any point x 2 [xk; xk+n] can now be represented byx = xk + sh, where s takes values 1; 2; 3; : : : ; n at thesample points and other values in between.� The weight is
Lk+i(xk + sh) = Y

j=0;j 6=i

s� ji� j
15



or wk+i = hZ n

0
Lk+i(xk + hs)ds:

{ For n = 1, the weights are given by wk = h R 10 sds =h=2 and wk+1 = h R 10 (1 � s)ds = h=2. The integralvalue is given byZ xk+1

xk
f (x)dx � h2[f (xk) + f (xk+1)]:

This approximation is called the Trapezoidal rule,because the integral is equal to the area of thetrapezoid formed by the two knots.
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{ For n = 2, the weights are given by
wk = hZ 2

0

12(s2 � 3s + 2)ds = h3 ;
wk+1 = hZ 2

0

12(s2 � 2s)ds = 4h3 ;
wk+2 = hZ 2

0

12(s2 � s)ds = h3 :The integral value is given byZ xk+1

xk
f (x)dx � h3[f (xk) + 4f (xk+1) + f (xk+2)]:

This rule is called the Simpson's 1=3 rule.{ For n = 3, we obtain Simpson's-3=8 rule given byZ xk+1

xk
f (x)dx � 3h8 ff (xk) + 3[f (xk+1) + f (xk+2)] + f (xk+3)g :
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Composite Rules:Considering the whole space, we will divide it into nsub-intervals of equal width.� Utilize a sliding window on [a; b] by including only asmall number of these sub-intervals at a time. Thatis, Z b

a
f (x)dx = N=nX

k=0

Z xk+n�1

xk
f (x)dx;

where each of the integrals on the right side can beapproximated using the basic rules derived earlier.� The summation of basic rules over sub-intervals toobtain an approximation over [a; b] gives rise to com-posite rules.
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� Composite Trapezoidal Rule:
I � h

0@f (a) + f (b)2 + n�1X
i=1

f (xi)
1A :

The error is this approximation is given by �112 h2f (2)(�)(b�a) for � 2 (a; b).� Composite Simpson's-1=3 Rule: The number ofsamples n + 1 should be odd, or the number of in-tervals should be even. The integral approximationis given by
I � h3

0B@f (a) + f (b)2 + 4 X
i odd f (xi) + 2 X

i even) f (xi)
1CA :
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The error associated with this approximation is�190 h4f (4)(�)(b� a)4 for � 2 (a; b):

20



Richardson's Improvement FormulaSuppose that we use F [h] as an approximation of Icomputed using h-spacing. Then,I = F [h] + Chn +O(hm);where C is a constant and m > n. An improvement ofF [h] is possible if there is a separation between n andm.� Eliminates the error term Chn by evaluating I fortwo di�erent values of h and mixing the results ap-propriately.� Assume that I is evaluated for two values of h: h1and h2.� Let h2 > h1 and h2=h1 = r where r > 1.21



� For the sample spacing given by h2 or rh,I = F [rh1] + Crnhn1 +O(hm1 ):We havernI � I = rnF [h1]� F [rh1] +O(hm1 ):Rearranging,
I = rnF [h]� F [rh]rn � 1 +O(hm):

The �rst term on the right can now be used as anapproximation for I with the error term given byO(hm).� This removal to Chn from the error using two eval-uations of f [h] at two di�erent values of h is calledRichardson's Improvement Formula.22



This result when applied to numerical integration iscalled Romberg's Integration.
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Improper IntegralsHow do we revise the above methods to handle thefollowing cases:� The integrand goes to a �nite limit at �nite upperand lower limits, but cannot be calculated right onone of the limits (e.g., sinx=x at x = 0).� The upper limit of integration is1 or the lower limitis �1.� There is a singularity at each limit (e.g., x�1=2 atx = 0.)� Commonly used techniques:1. Change of variablesFor example, if a > 0 and f (t) ! 0 faster than24



t�2 ! 0 as t ! 1, then we can use u = 1=t asfollows: Z 1

a
f (t)dt = Z 1=a

0

1u2f
�1u
� du:

This also works if b < 0 and the lower limit is �1.Refer to Lange for additional advice and examples.2. Break up the integral into pieces
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Monte-Carlo MethodThe main goal in this technique is to estimate thequantity �, where
� = Z

R
g(x)f (x)dx = E[g(X)];

for a random variable X distributed according to thedensity function f (x).g(x) is any function on R such that � and E[g2(X)] arebounded.Classical Monte Carlo approach:� Suppose that we have tools to simulate independentand identically distributed samples from f (x), callthem X1; X2; : : : ; Xn, then one can approximate � by
26



the quantity:
�̂n = 1n

nX
i=1

g(Xi):
� The variance of �̂n is given by n�1V ar(g(X)).For this approach, the samples from f (x) are generatedin an i.i.d. fashion.In order to get a good estimate, we need that thevariance goes to zero and hence the number of samplesgoes to in�nity.For practical situations, the sample size never goes toin�nity. This raises an interesting question on whethera better estimate can be obtained with a given amountcomputing constraint. Now we consider three widelyused techniques to accomplish this task.27



Using Antithetic VariablesThis method depends on generating averages fromthe samples which have negative covariance betweenthem, causing overall variance to go down.� Let Y1 and Y2 be two identically distributed randomvariables with mean �. Then,
V ar�Y1 + Y22

� = V ar(Y1)2 + Cov(Y1; Y2)2 :
{ If Y1 and Y2 are independent, then the last termis zero.{ If Y1 and Y2 are positively correlated then the vari-ance of V ar((Y1 + Y2)=2) > V ar(Y1=2).{ If they are negatively correlated, the resulting vari-ance reduces. 28



�Question: How to obtain random variables Y1 and Y2with identical distribution but negative correlation?� Illustration:{ Let X1; X2; : : : ; Xn be independent random vari-ables with the distribution functions given by F1; F2; : : : ; Fn.{ Let g be a monotonous function.{ Using the inverse transform method, the Xi's canbe generated according to Xi = F�1i (Ui), for Ui �UNIF [0; 1].{De�neY1 = g(F�11 (U1); F�12 (U2); : : : ; F�1n (Un)):Since U and 1� U are identically distributed andnegatively correlated random variables, if we de-
29



�neY2 = g(F�11 (1� U1); F�12 (1� U2); : : : ; F�1n (1� Un)):{ For monotonic function g, Y1 and Y2 are negativelycorrelated.{ Utilizing negatively correlated functions not onlyreduces the resulting variance of the sample av-erage but also reduces the computation time asonly half the samples need to be generated fromUNIF [0; 1].� Estimate � by
~� = 12n

nX
i=1

[g(Ui) + g(1� Ui)]:
�Other possible implementation:30



{ If f is symmetric around �, take Yi = 2��Xi.{ See Geweke (1988) for the implementation of thisidea.

31



Variance Reduction by Conditioning:Let Y and Z be two random variables. In general, wehaveV ar[E(Y j Z)] = V ar(Y )� E[V ar(Y j Z)] � V ar(Y ):� For the two random variables Y and E(Y j Z), bothhave the same mean.Therefore E(Y j Z) is a better random variable tosimulate and average to estimate �.�How to �nd an appropriate Z such that E(Y j Z)has signi�cantly lower variance than Y ?� Example: Estimate �.
32



{We can do it by Vi = 2Ui � 1, i = 1; 2, and set
I = � 1 if V 2

1 + V 2
2 � 10 otherwise.{ Improve the estimate E(I) by using E(I j V1).Note thatE[I j V1 = v1] = P (V 2

1 + V 2
2 � 1 j V1 = v)= P (V 2

2 � 1� v2) = (1� v2)1=2:{ The conditional variance equals toV ar[(1� V 2
1 )1=2] � 0:0498;which is smaller than V ar(I) � 0:1686.
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Variance Reduction using Control Variates:Estimate � which is the expected value of a function gof random variables X = (X1; X2; : : : ; Xn).� Assume that we know the expected value of anotherfunction h of these random variables, call it �.� For any constant a, de�ne a random variable Waaccording to Wa = g(X) + a[h(X)� �]:
�We can utilize the sample averages of Wa to esti-mate � since E(Wa) = �.�Observe thatV ar(Wa) = V ar(g(X))+a2V ar(h(X))+2aCov(g(X); h(X)):
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It follows easily that the minimizer of V ar(Wa) as afunction of a isa = �Cov(g(X); h(X))V ar(h(X)) :
{ Estimate � by averaging observations of

g(X)� Cov(g(X); h(X))V ar(h(X)) [h(X)� �]:
{ The resulting variance of W is given by

V ar(W ) = V ar(g(X))� [Cov(f (X); g(X))]2V ar(f (X)) :
� Example: Use \sample mean" to reduce the vari-ance of estimate of \sample median."{ Find median of a Poisson random variable X with� = 11:5 using a set of 100 observations.35



{Note that � = 11:5.{Modify the usual estimate as
~x� corr(median;mean)s2 (�x� 11:5);

where ~x and �x are the median and mean of sam-pling data, and s2 is the sample variance.
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Example on Control Variate MethodIn general, suppose there are p control variatesW1; : : : ;Wpand Z generally varies with each Wi, i.e.,
�̂ = Z � pX

i=1

�i[Wi � E(Wi)]:
�Multiple regression of Z on W1; : : : ;Wp.�How do we �nd the estimates of correlation coe�-cients between Z and W 's?
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Importance SamplingAnother technique commonly used for reducing vari-ance in Monte Carlo methods is importance sampling.Importance sampling is di�erent from a classical MonteCarlo method is that instead of sampling from f (x) onesamples from another density h(x), and computes theestimate of � using averages of g(x)f (x)=h(x) insteadof g(x) evaluated on those samples.� Rearrange the de�nition of � as follows:
� = Z g(x)f (x)dx = Z g(x)f (x)h(x) h(x)dx:

h(x) can be any density function as long as the sup-port of h(x) contains the support of f (x).� Generate samples X1; : : : ; Xn from the density h(x)38



and compute the estimate:
�̂n = 1n

nX
i=1

g(Xi)f (Xi)h(Xi) :
It can be seen that the mean of �̂n is � and itsvariance is

V ar(�̂n) = 1n
 Eh

�g(X)f (X)h(X)
�2 � �2! :

� Recall that the variance associated with the classicalMonte Carlo estimator di�ers in the �rst term.In that case, the �rst term is given by Ef [g(X)2].� It is possible that a suitable choice of h can reducethe estimator variance below that of the classicalMonte Carlo estimator. 39



� By Jensen's inequality, we have a lower bound onthe �rst term:
E g2(X)f2(X)h2(X)

! � �E �g(X)f (X)h(X)
��2

= �Z g(x)f (x)dx�2 :
In practice, for importance sampling, we generallyseek a probability density h that is nearly propor-tional to f .� Example taken from Robert and Casella:{ Let X be a Cauchy random variable with param-eters (0; 1), i.e. X is distributed according to the
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density function:
f (x) = 1�(1 + x2);and g(x) = 1(x > 2) be an indicator function.{ Estimate� = Pr(X > 2) = 12 � tan 2� = 0:1476:

{Method 1:� Generate X1; X2; : : : ; Xn as a random samplesfrom f (x).� �̂n is just the frequency of sampled values largerthan 2 �̂n = 1n
nX
i=1

1(Xi > 2):
41



� Variance of this estimator is simply �(1��)=n or0:126=n.{Method 2:� Utilize the fact that the density f (x) is symmet-ric around 0, and � is just half of the probabilityPrfj X j> 2g.� Generating Xi's as i.i.d. Cauchy, one can esti-mate � by
�̂n = 12n

nX
i=1

1(j Xi j> 2):
� Variance of this estimator is �(1�2�)=n or 0:052=n.{Method 3:
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�Write � as the following integral:
� = 12 �

Z 2

0

1�(1 + x2)dx:� Generate X1; X2; : : : ; Xn as a random samplesfrom UNIF (0; 2).�De�ne �̂n = 12 � 1nX
i

1�(1 +X2
i ):� Its variance is given by 0:0092=n.{ Let y = 1=x and write � as the integralZ 1=2

0

x�2�(1 + x�2)dx:Using i.i.d. samples from UNIF [0; 1=2] and evalu-ating average of the function g(x) = 1=[2�(1 + x2)]43



once can further reduce the estimator variance.� Importance sampling:{ Select h so that its support is fX > 2g.{ For x > 2, f (x) = 1�(1 + x2)is closely matched by
h(x) = 2x2:{Note that the cdf associated with h is 1� 2=x.{ Sampling X = 2=U , U � U(0; 1), and let

 (x) = 1(X > 2) � f (x)h(x) = 12�(1 + x�2):
44



{ By �̂h = n�1Pi (xi), this is equivalent to Method3.{ V ar(�̂h) � 9:3� 10�5=n.
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