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Monte-Carlo Integration

Integration is fundamental to statistical inference.

e Evaluation of probabilities, means, variances, and
mean squared error can all be thought of as inte-
grals.

e Very often it is not feasible to solve for the integral
of a given function via analytical techniques and al-
ternative methods are adapted.

e The approximate answers are presented in this lec-
ture.

Suppose we wish to evaluate [ = [ f(x)dz.
¢ Riemann integral: The definition starts with

— Divide |a, b] into n-disjoint intervals Ax;, such that
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U;Ax; = |a,b] and {Ax;} is called a partition P of
a, b].

— The mesh of this partition is defined to be the
largest size of sub-intervals, mesh(P) = maxy |

A§> E
— Define a finite sum,

Sp = Z fzs) Ay,
1=1

where x; € Ax; is any point.
— If the quantity lim,,,. ., p | S, exists, then it is called

the integral of f on [a, b] and is denoted by ff f(x)dz.

e This construction demonstrates that any numerical
approximation of f;f(a:)dx will have two features:
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(i) Selection of samples points which partition the
interval
(ii) A finite number of function evaluations on these
sample points
Now consider the problem of evaluating § = [ ¢(z) f(z)dx

where f(x) is a density function.
Using the law of large numbers, we can evaluate ¢

easily.
e Sample X1, ..., X, independently from f and form



e The precision of 6 is proportion to 1/4/n.
In numerical integration, n points can achieve the
precision of O(1/n%).

e Question: We can use Riemann integral to evaluate
definite integrals. Then why do we need Monte
Carlo integration?

— As the number of dimensions d increases, the
number of points n required to achieve a fair esti-
mate of integral would increase dramatically, i.e.,

proportional to nd.

— Even when the value d is small, if the function to
integrated is irregular, then it would inefficient to
use the regular methods of integration.

e Curse of Dimensionality:



— It is known that the subefficiency of numerical
methods compared with simulation algorithms for
dimension d larger than 4 since the error is then
of order O(n—%/%).

— The intuitive reason behind this phenomenon is
that a numerical approach like the Riemann sum
method basically covers the whole space with a
grid.

When the dimension of the space increases, the
number of points on the grid necessary to obtain
a given precision increases too.



Numerical Integration

Also named as “quadrature,” it is related to the eval-
uation of the integral

- / e

It is equivalent to solving for the value I = y(b) the
differential equation

dy
dr (z)

with the boundary condition y(a) = 0.

e When f is a simple function, / can be evaluated
easily.

e The underlying idea is to approximate f by a simple
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function which can be easily integrated on [a, b| and
which agrees with f on the sampled points.

e The technique of finding a smooth curve passing
through a set of points is also called curve fitting.

— To implement this idea is to sample NV + 1 points
and find an order-N polynomial passing through
those points.

— The integral of f over that region (containing N +
1-points) can be approximated by the integral of
the polynomial over the same region.

— Given N + 1 sample points there is a unique poly-
nomial passing through these points, though there
are several methods to obtain it. We will use the
Lagrange’s method to find this polynomial, which
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we will call Lagrange’s interpolating polynomial.

e Fit a polynomial to the sample points over the whole
interval [a, b] we may end up with a high order poly-
nomial which itself might be difficult to determine
its coefficients.

e Focus on a smaller region in [a, ], lets say |z}, x}_ ],
containing the points ., Tr. 1,...,Tp1p-

o Let P, = (v}, f(x1;)) be the pairs of the sampled
points and the function values; they are called knots.

e Let p; 1. ,(z) denote the polynomial of degree less
than or equal to nn that interpolates P, Pr.{,..., P, .

Now the question becomes
Given P,..., P, find the polynomial py ;.. ,(z) such
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that

Pk k+n(@kti) = f(@k1q), 0<i<n.
To understand the construction of p; ;.. ,(7), we look
at the case n =0 first.
It is the so-called the extended midpoint rule of finding

I.
1. Pick N large.
2.Let x; = a+ (¢t —1/2)h for : = 1,..., N where h =

(b—a)/N.

3. Let f; = f(x;).
4. Then I = h) . f;.

Sample code: emr<- function(f,a,b,n=1000){
h<- (b-a)/n
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hxsum(f (seq(a+h/2,b,by=h)))
}

This is the simplest thing to do.

Extending these ideas to an arbitrary value of n, the
polynomial takes the form

P gan(®) =Y f(@pi) Lipi(),
i—0

where

L= Lhj
Lyii(2) = H Thai — Tpos
j=0, 1 T T
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Note that
( 17 L = xkﬂ—i

Lii(z) =< 0,  x=xp 5] #1
_else, in between

Therefore, p;, ;.. () satisfies the requirement that it
should pass through the n + 1 knots and is an order-n
polynomial.

This leads to

f(@) ~ pplz) = (@) Lg(@)+ f(2pp1) Lk (@) -+ f(@ppn) Litn
Approximate ffk“” f(x)dz by the quantity ffk’ﬁn Pk Josn(2)der.

Lhtn
/ fl@)dr = wy f(og)twp f(wpe)+ - Fwpgn f(Trrn),
T,
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where

Lhk+n

Wk+i = / Ly (z)dz.
T,

calculate Calculation of these weights to derive a few

well-known numerical integration techniques.

e Assume that the sample points =,z ,..., are uni-
formly spaced with the spacing h > 0.

e Any point x € [z}, 7;.,] can now be represented by
x = 1. + sh, where s takes values 1,2, 3,... n at the
sample points and other values in between.

e The weight is

Lii(zp+sh) = ]
7=0,j#1

5=
i~
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or

n
Whyj = h/o Lz + hs)ds.

For n = 1, the weights are given by w;. = h fol sds =
h/2 and wy_ 1 = hfol(l — s)ds = h/2. The integral
value is given by
L41 h
[ e~ s + )
Xl 2
This approximation is called the Trapezoidal rule,

because the integral is equal to the area of the
trapezoid formed by the two knots.
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— For n = 2, the weights are given by

21 5 h
wp = h 5(3 —33+2)ds:§,
0

The integral value is given by

/xk+1 f(z)dr ~ %[f(xk) + 4f(gjk+1) + f<37k+2)]
T},

This rule is called the Simpson’s 1/3 rule.
— For n = 3, we obtain Simpson’s-3/8 rule given by

[ fade 5 f o)+ 3lFopen) + Flan)] + Flogs
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Composite Rules:
Considering the whole space, we will divide it into n
sub-intervals of equal width.
e Utilize a sliding window on |a, b] by including only a
small number of these sub-intervals at a time. That
N/n Lh+n—1

/bf<x>dxkz / T
a o

where each of the integrals on the right side can be
approximated using the basic rules derived earlier.

e The summation of basic rules over sub-intervals to
obtain an approximation over |a, b] gives rise to com-
posite rules.
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e Composite Trapezoidal Rule:

n—1
1=1

The error is this approximation is given by — —Lp2#(2 (S)( —
a) for & € (a,b).

e Composite Simpson’s-1=3 Rule: The number of
samples n + 1 should be odd, or the number of in-
tervals should be even. The integral approximation
iIs given by

[~ f“ +4foz+2 > fla)

1 odd , even)
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The error associated with this approximation is

— (€ b — a)! for € € (a,b).
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Richardson’s Improvement Formula

Suppose that we use F'|h] as an approximation of [
computed using h-spacing. Then,
I =F[hl+ Ch" + O(h™),

where C is a constant and m > n. An improvement of
F'|h] is possible if there is a separation between n and
m.

¢ Eliminates the error term Ch" by evaluating I for
two different values of i/ and mixing the results ap-
propriately.

e Assume that ] is evaluated for two values of h: h
and ho.

e Let hyo > hy and hy/h; = r where r > 1.
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e For the sample spacing given by hy or rh,
[ = Frhq] 4+ Cr"h7] + O(hT").
We have
"I — I = r"F[hi] — F[rhi] + O(h{").

Rearranging,

I r'""F|h| — F|rh]
rit —1

The first term on the right can now be used as an

approximation for I with the error term given by

O(h™).

e This removal to Ch" from the error using two eval-
uations of f|h] at two different values of / is called
Richardson’s Improvement Formula.

+ O(h™).
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This result when applied to numerical integration is
called Romberg’s Integration.
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Improper Integrals

How do we revise the above methods to handle the
following cases:

e The integrand goes to a finite limit at finite upper
and lower limits, but cannot be calculated right on
one of the limits (e.g., sinx/z at x = 0).

e The upper limit of integration is oo or the lower limit
Is —oo.

1/2

e There is a singularity at each limit (e.g., 27 /< at

r =0.)
e Commonly used techniques:

1. Change of variables
For example, if a > 0 and f(t) — 0 faster than
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t=2 — 0 as t — oo, then we can use v = 1/t as

follows:
00 l/a q 1

This also works if b < 0 and the lower limit is —oo.
Refer to Lange for additional advice and examples.

2. Break up the integral into pieces
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Monte-Carlo Method

The main goal in this technique is to estimate the
quantity 0, where

g - /R g(x) f(x)dz = Elg(X)]

for a random variable X distributed according to the
density function f(z).

g(z) is any function on R such that ¢ and E[¢*(X)] are
bounded.

Classical Monte Carlo approach:

e Suppose that we have tools to simulate independent
and identically distributed samples from f(z), call
them X, X5, ..., X,, then one can approximate 6 by
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the quantity:
1 Z

e The variance of 0,, is given by n ™ 1Var(g(X)).

For this approach, the samples from f(z) are generated
in an i.i.d. fashion.

In order to get a good estimate, we need that the
variance goes to zero and hence the number of samples
goes to infinity.

For practical situations, the sample size never goes to
infinity. This raises an interesting question on whether
a better estimate can be obtained with a given amount
computing constraint. Now we consider three widely
used techniques to accomplish this task.
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Using Antithetic Variables

This method depends on generating averages from
the samples which have negative covariance between
them, causing overall variance to go down.

e Let Y| and Y5 be two identically distributed random
variables with mean 6. Then,

Var Y1 +Y5 _ Var(Y7) N Cov(Yl,Yg)'
2 2 2
—If Y7 and Y5> are independent, then the last term
IS zero.

— If Y7 and Y5 are positively correlated then the vari-
ance of Var((Y1 +Y9)/2) > Var(Y1/2).

— If they are negatively correlated, the resulting vari-
ance reduces.
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e Question: How to obtain random variables Y| and Y5
with identical distribution but negative correlation?

e lllustration:

—Let X{, X9,...,X,, be independent random vari-

ables with the distribution functions given by F7, F5, . ..

— Let ¢ be a monotonous function.

— Using the inverse transform method, the X;'s can
be generated according to X; = F,L-_l(UZ-), for U; ~
UNIF|0,1].

— Define

Yl — g(F1_1<U1>7 FQ_l(U2>7 SR Fn_l(Un))

Since U and 1 — U are identically distributed and
negatively correlated random variables, if we de-
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fine
Yo = g(Fy (1= U), Fy H(1=Uy),... Fy (1= Up)).

— For monotonic function g, Y7 and Y5 are negatively
correlated.

— Utilizing negatively correlated functions not only
reduces the resulting variance of the sample av-
erage but also reduces the computation time as
only half the samples need to be generated from
UNIFI0,1].

e Estimate 6 by

0 = % > loUi) +g(1—=Uy)].
i—1

e Other possible implementation:
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—If f is symmetric around 1, take Y, = 2 — X.

— See Geweke (1988) for the implementation of this
idea.
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Variance Reduction by Conditioning:

Let Y and Z be two random variables. In general, we
have

Var[E(Y | Z)] =Var(Y) = EVar(Y | Z)] < Var(Y).

e For the two random variables Y and E(Y | Z), both

have the same mean.
Therefore E(Y | Z) is a better random variable to
simulate and average to estimate 6.

e How to find an appropriate Z such that E(Y | 2)
has significantly lower variance than Y?

e Example: Estimate 7.

32



—Wecandoitby V,=2U;, -1, 1=1,2, and set
. 2 2
7_ Lif Vie+ Vg <1
0 otherwise.

— Improve the estimate E(]) by using E(I | V}).
Note that
E[l|Vi=v]=PVi+VE<1|Vi=v)
= PV <1—2%)=(1-0)V2

— The conditional variance equals to
Var|(1 — VA2 ~ 0.0498,
which is smaller than Var(l) ~ 0.1686.
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Variance Reduction using Control Variates:

Estimate 6 which is the expected value of a function g
of random variables X = (X, Xo,..., X},).

e Assume that we know the expected value of another
function / of these random variables, call it ..

e For any constant a, define a random variable W,
according to

Wo = g(X) + alh(X) — ul.

e We can utilize the sample averages of W/, to esti-
mate 6 since F(W,) = 6.

e Observe that
Var(W,) = Var(g(X))+a*Var(h(X))+2aCov(g(X), h(X)).
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It follows easily that the minimizer of Var(WW,) as a
function of a is

_Cov(g(X), h(X))
Var(h(X))
— Estimate 0 by averaging observations of
g(x) - S ) -
— The resulting variance of IV is given by
[Cov(f(X), g(X)
Var(f(X))

e Example: Use “sample mean” to reduce the vari-
ance of estimate of “sample median.”

a =

Var(W)=Var(g(X)) —

— Find median of a Poisson random variable X with
A = 11.5 using a set of 100 observations.
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— Note that ¢ = 11.5.
— Modify the usual estimate as

corr(median, mean)

7 —11.5),
" ( )

T —

where z and = are the median and mean of sam-
pling data, and s is the sample variance.
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Example on Control Variate Method

In general, suppose there are p control variates 117, ... W)
and 7 generally varies with each W, i.e.,

p
0=2- BilW;— E(W,)].
i—1

e Multiple regression of Z on W/7,... W).

¢ How do we find the estimates of correlation coeffi-
cients between 7 and W’s?
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Importance Sampling

Another technique commonly used for reducing vari-
ance in Monte Carlo methods is importance sampling.
Importance sampling is different from a classical Monte
Carlo method is that instead of sampling from f(z) one
samples from another density h(x), and computes the
estimate of # using averages of g(x)f(z)/h(x) instead
of g(x) evaluated on those samples.

e Rearrange the definition of ¢ as follows:

9:/9(:1:)]”(:17)6[33:/g(iiigaj)h(x)daj.

h(z) can be any density function as long as the sup-
port of h(z) contains the support of f(z).

e Generate samples X7, ..., X, from the density h(x)
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and compute the estimate:

- 1= (X)) (X))
Hn—E; h(Xi)

It can be seen that the mean of én is 6 and its
variance is

2
Var(6,) = % (Eh [g()ffgf(()Xq - 92> .

e Recall that the variance associated with the classical
Monte Carlo estimator differs in the first term.
In that case, the first term is given by Ef[g(X)Q].

e It is possible that a suitable choice of i can reduce
the estimator variance below that of the classical
Monte Carlo estimator.
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e By Jensen’s inequality, we have a lower bound on
the first term:

9*(X) ()
E( h2(X) )

'V
&y
R
=
s
Py
s’
~
DO

- (/ g(w)f<af)dév>2-

In practice, for importance sampling, we generally
seek a probability density h that is nearly propor-
tional to f.

e Example taken from Robert and Casella:

—Let X be a Cauchy random variable with param-
eters (0,1), i.e. X is distributed according to the
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density function:

1
f(il?) T 7T<1 —|—332>7
and g(z) = 1(xz > 2) be an indicator function.
— Estimate
b= Pr(X >2) =~ — ™2 _ 1476,
2 7
— Method 1:
x Generate X, Xo,...,X,, as a random samples
from f(z).
% Oy, is just the frequency of sampled values larger
than 2

n

~ 1
O == 1(X;>2).

n 4
1=1
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+ Variance of this estimator is simply 6(1 —6)/n or
0.126/n.

— Method 2:

+ Utilize the fact that the density f(x) is symmet-
ric around 0, and @ is just half of the probability
Pr{| X |> 2}.

x Generating X;’s as i.i.d. Cauchy, one can esti-
mate 0 by

A 1 <
0y = %;m X; > 2).
1=

+ Variance of this estimator is 6(1—26)/n or 0.052/n.
— Method 3:
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x Write 0 as the following integral:

1 2 1
9:——/ dx.
2 0 7T<1—|—.732>

x Generate X, Xo,...,X,, as a random samples
from UNIF(0,2).

x Define

én:

1 1 1

5_52;m1+xﬁ'
 Its variance is given by 0.0092/n.

—Let y = 1/2 and write 6 as the integral

1/2 9
/ ‘ dx.
0 7T(1 + 513_2)

Using i.i.d. samples from UNIF|0,1/2] and evalu-
ating average of the function g(z) = 1/[27(1 + 2?)]
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once can further reduce the estimator variance.
e Importance sampling:

— Select h so that its support is {X > 2}.

—For x > 2, .
@)= v
Is closely matched by
2
hiz) =—.
(@) =

— Note that the cdf associated with i is 1 — 2/z.
—Sampling X =2/U, U ~ U(0,1), and let

Plo) =1(X >2)- {LEZ - 27 (1 Jlr %)
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~ By ), = n=1 3, 4(z;), this is equivalent to Method
3.
—Var(d),) ~ 9.3 x 1079 /n.
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