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Bayesian Analysis
In Bayesian inference, the parameter is assumed to berandom with some known distribution and its estimateends up being an expected value under the posteriordistribution.
� If � is a random parameter with some known distri-bution, then according to the Bayes' rule, the pos-terior distribution is given by

p(� j y) = P (y j �)P (�)P (y) / P (y j �)P (�)
where y is the dependent random variable.
{ The �rst Bayesians, Bayes and Laplace, chose aconstant prior distribution for �.
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{ 20 years ago, one often heard the refrain thatBayesian analysis is nice conceptually; too bad it isnot possible to compute Bayesian answers in realisticsituations.
� Given an observation y, the posterior is proportionalto the product of the data likelihood and the priorprobability on the parameter �.
� The next question is: what should be the criterionfor estimating � from observed y?
{ Under the posterior probability, there are severalcost functions that can be minimized, resulting indi�erent values of the estimate.{We brie
y mention a few commonly used costfunctions. Let k � k denote the Euclidean distance
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function on Rn.1. The maximizer of the posterior density is calledthe maximum a-posterior (MAP) estimate:
�̂MAP = argmax� P (� j y):

The MAP estimate can be found using tech-niques which were described to �nd the maximum-likelihood estimate, except the posterior densityis maximized instead of the likelihood function.2. Let � be the value of the estimator. Then theexpected squared error is given byZ
�1 k� � �1k2P (�1 j y)d�1:

The value of � which minimizes this expectedsquared error is called the minimum mean squared6



error estimator (MMSE).
�̂MMSE = argmin� Expected Squared Error:

It can be shown that for Euclidean parameters,the MMSE estimator is given by the mean underthe posterior (conditional) distribution.� This estimator involves computing integral ofthe posterior density.� In case the analytical solutions are di�cult toevaluate numerical techniques for integrationcan be used.3. The disadvantage of minimizing expected squarederror is that it results in an average: the solu-tion is the average of high posterior probabilitypoints. 7



� Even the individual points may be high proba-bility, their average itself can be a low-probabilitypoint and hence a bad estimate.� Therefore, very often it is the expected errorwhich is minimized instead of the expectedsquared error.� For Euclidean parameters the minimum ex-pected absolute error criterion results in themedian of the posterior probability.
� Consider the example in motivating EM algorithm.
{ For MLE �̂,

L(� j y) / (2 + �)125(1� �)38�34:
The MLE is 0:62682115.
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{ Assume a uniform prior for � and a squared lossfunction.{ Posterior pdf is
p(� j y) / �(�)L(� j y) = L(� j y):

Not a recognizable distribution.{ The Bayes estimator is its posterior mean
E(� j y) = R 10 � � (2 + �)125(1� �)38�34d�(2 + �)125(1� �)38�34d� :

No explicit formula available, need a computerintegration routine.{Note that it is equal to0:14683870067� 10290:2357695165� 1029 = 0:6228061319:
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Slice Sampler
Consider the posterior distribution with uniform priorof the linkage model

p(� j y) / (2 + �)125(1� �)38�34:
Slice Sampler Algorithm� If

p(x) / kY
j=1

fj(x); fj(x) � 0; 1 � j � k;
then p(x) can be completed into

g(z1; z2; � � � ; zk; x) / kY
j=1

I(0 � zj � fj(x)):
� Every conditional pdf is a uniform distribution!10



� For this linkage problem, de�ne
f1(�) = (2 + �)125; f2(�) = (1� �)38; f3(�) = �34:

{ Generate z1 � U(0; (2 + �)125),{ Generate z2 � U(0; (1� �)38),{ Generate z3 � U(0; �34).{ For each z1; z2; z3 generated, �nd the range of �:
� � z1=1251 � 2; � � 1� Z1=38

2 ; � � z1=343 :
{ Generate �new � U(A;B), where

A = max(z1=1251 � 2; z1=343 ); B = 1� Z1=38
2 :

�Why does it work?
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Mixture Distribution
Suppose that we have iid observations from a mixtureof exponential distribution with density

f (x; �) = kX
j=1

pj�j exp(��jx):
Here k is assumed known.� unknown parameter � = (p1; : : : ; pk; �1; : : : ; �k)� Let � be a random variable, taking on the value �iwith probability pi.� The likelihood can be written as

L(�) = nY
i=1

f (xi; �) = E nY
i=1

�i exp(��ixi):
12



� The Gibbs sampler draws, given �, vectors � =(�1; : : : ;�n).�Note that the �i are iid, the Gibbs sampler justrepeatedly generates iid �(i), i = 1; : : : ; N , and thenestimates the likelihood by averaging
L̂(�) = 1N

NX
j=1

nY
i=1

�(j)i exp(��(j)i xi):
{ Rather large values of N may be needed to eval-uate the likelihood precisely enough.{ The original maximization problem can be un-pleasant.
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Markov Chain
A Markov chain describes a system whose state changesover time.
� The changes are not completely predictable, butrather are governed by probability distributions.
� These probability distributions incorporate a simplesort of dependence structure, where the conditionaldistribution of future states of the system, givensome information about past states, depends onlyon the most recent piece of information.
{ That is, what matters in predicting the future ofthe system is its present state, and not the pathby which the system got to its present state.
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�What is a Markov chain?It is a sequence fX0; X1; X2; : : :g of random variablesthat has the \Markov property."
� Think about how to simulate a Markov chain, a typ-ical \sample path."
�How do I tell you which particular Markov chain Iwant you to simulate?
{ State space S: S is a �nite or countable set ofstates, that is, values that the random variablesXi may take on.For de�niteness, and without loss of generality,label the states as follows: either S = f1; 2; : : : ; Ngfor some �nite N , or S = f1; 2; : : :g, which we maythink of as the case N =1?
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{ Initial distribution �0: This is the probability dis-tribution of the Markov chain at time 0. For eachstate i 2 S, we denote by �0(i) the probabilityPfX0 = ig that the Markov chain starts out instate i where
�o(i) � 0 for all S and X

i �0(i) = 1:
{ Probability transition rule: This is speci�ed by giv-ing a matrix P = (Pij).If S is the �nite set f1; : : : ; Ng, say, then P is anN �N matrix.� The interpretation of the number Pij is the con-ditional probability, given that the chain is instate i at time n, say, that the chain jumps to
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the state j at time n + 1. That is,
Pij = PfXn+1 = j j Xn = ig:

�Note that we have written this probability as afunction of just i and j, but of course it coulddepend on n as well.� The time homogeneity restriction is just the as-sumption that this probability does not dependon the time n, but rather remains constant overtime.� A probability transition matrix is an N �N ma-trix whose entries are all nonnegative and whoserows sum to 1.
� Simulate Markov frog.Think of a frog hopping among three lily ponds.17



{Here state refers to those three lily ponds.The state will change over time.{ To start, he chooses his initial position X0 ac-cording to the speci�ed initial distribution �0 =(1=2; 1=4; 1=4).We can use computer simulation to generate hisinitial position by generating a uniformly distributedrandom number U0 � Unif (0; 1), and then taking
X0 =

8<
:

1 if 0 � U0 � 1=22 if 1=2 < U0 � 3=43 if 3=4 < U0 � 1
{How does the Markov frog choose a path?
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Assume that the probability transition matrix is
P =

0
@ 0 1 01=3 0 2=31=3 1=3 1=3

1
A

Suppose that U0 comes out to be 0:8419, so thatX0 = 3.Then the frog chooses X1 according to the prob-ability distribution in row 3 of P . He paws hiscomputer again to generate U1 � Unif (0; 1) inde-pendently of U0, and takes
X1 =

8<
:

1 if 0 � U1 � 1=32 if 1=3 < U1 � 2=33 if 2=3 < U1 � 1
Suppose he happens to get U1 = 0:1234, so that
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X1 = 1. Then he chooses X2 according to row 1of P , so that X2 = 2; there's no choice this time.{Next, he chooses X3 according to row 2 of P . Andso on : : :.
� The Markov property: Clearly, in the previous exam-ple, if I told you that we came up with the valuesX0 = 3, X1 = 1, and X2 = 2, then the conditionalprobability distribution for X3 is
P (X3 = j j X0 = 3; X1 = 1; X2 = 2) =

8<
:

1=3 for j = 10 for j = 22=3 for j = 3,
which is also the conditional probability distributionfor X3 given only the information that X2 = 2.

�Markov chain is a particular family of discrete time20



stochastic processes.
�Denote a discrete time stochastic process as: fXt; t =t1; t2; : : :g. Such a process can be characterized bynth- order joint probability density function, for anyn � 1, PXt1;Xt2;:::;Xtn

(x1; x2; : : : ; xn);Using the rule for total probability, we can factor thejoint density function as:
PXt1;Xt2;:::;Xtn

(x1; x2; : : : ; xn) = PXt1
(x1)PXt2jXt1

(x2 j x1)� � �PXtnjXtn�1;:::;Xt1
(xn j xn�1; : : : ; x1)

where the �rst term on the right side is the marginaldensity of the process at time t1, and the remainingterms are the conditional densities.
21



� A stochastic process is called a Markov process if
PXtnjXtn�1;:::;Xt1

(xn j xn�1; : : : ; x1) = PXtnjXtn�1
(xn j xn�1):

{ The issue addressed by the Markov property is thedependence structure among random variables.{ The simplest dependence structure for X0; X1; : : :is no dependence at all, that is, independence.{ The Markov property could be said to capturethe next simplest sort of dependence: in generat-ing the process X0; X1; : : : sequentially, the \next"state Xn+1 depends only on the \current" valueXn, and not on the \past" values X0; : : : ; Xn�1.� The Markov property implies a simple expression forthe probability of our Markov chain taking any spec-
22



i�ed path, as follows:P (X0 = i0; X1 = i1; : : : ; Xn = in)= P (X0 = i0)P (X1 = i1 j X0 = i0)P (X2 = i2 j X1 = i1)� � �P (Xn = in j Xn�1 = in�1)= �0(i0)P (i0; i1)P (i1; i2) � � �P (in�1; in):{ The joint density function can be written as aproduct of one-step conditional densities.{ If we only observe X0 = i0 and X2 = i2, what isP (X0 = i0 and X2 = i2)?�0(i0)Xi1 P (i0; i1)P (i1; i2)
Recall the matrix multiplication aik =Pj aijajk.� Recall that �0(i) = P (X0 = i) which describes theinitial distribution of the chain.23



Let �n denote the distribution of the chain at timen, that is, �n(i) = P (Xn = i).
{ Assume that the state space is �nite with N states.{Denote the transition matrix by

P = (Pij) = (P (i; j));
{ The law of total probability gives

�n+1(j) = NX
i=1

�n(i)P (i; j):
In matrix notation, it is just the equation

�n+1 = �nP;where �n = (�n(1); : : : ; �n(N)):24



By induction, we have
�n = �0Pn:

{ In principle, we can �nd the answer to any ques-tion about the probabilistic behavior of a Markovchain by doing matrix algebra, �nding powers ofmatrices, etc.{ In practice, it is another story.For example, the state space for a Markov chainthat describes repeated shu�ing of a deck of cardscontains 52! elements.The probability transition matrix that describesthe e�ect of a single shu�e is a 52!� 52! matrix.
� The joint density function is called translation in-
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variant if for any c � 0, we havePXt1;Xt2;:::;Xtn
(x1; x2; : : : ; xn) = PXt1+c;Xt2+c;:::;Xtn+c(x1; x2; : : : ; xn):{ A stochastic process is called stationary if its nth-order joint density function is translation invari-ance, for all n � 1.� Random walk on a clock: Consider a clock with 6numbers on it: 0; 1; 2; 3; 4; 5.{ Suppose we perform a random walk by movingclockwise, moving counterclockwise, and stayingin place with probabilities 1=3 each at every timen. That is,

P (i; j) =
8<
:

1=3 if j = i� 1 mod 61=3 if j = i1=3 if j = i + 1 mod 6
26



{ Suppose we start out at X0 = 2, say. That is,
�0 = (0; 0; 1; 0; 0; 0):

Then �1 = (0; 1=3; 1=3; 1=3; 0; 0), �2 = (1=9; 2=9; 1=3; 2=9; 1=9; 0),and �3 = (3=27; 6=27; 7=27; 6=27; 3=27; 2=27).It is intuitively clear that �n will approach the uni-form distribution as n!1.Does the initial starting state 2 matter?{ It means that the random walk has essentially\forgotten" that it started out in state 2 at time0.�n approaches a limit that does not depend uponthe initial distribution �0.� Basic Limit Theorem. Let X0; X1; : : : be an irre-ducible, aperiodic Markov chain having a stationary27



distribution �(�). Let X0 have the distribution �0, anarbitrary initial distribution. Then
limn!1 �n(i) = �(i) for all states i:

{ irreducible: All states communicate with each otherfor the corresponding transition matrix P .� Irreducibility implies that it is possible to visitfrom any state to any state in a �nite numberof steps.{ aperiodic: An irreducible Markov chain is calledaperiodic if its period is one.� Aperiodicity implies that the Markov chain doesnot cycle around in the states with a �nite pe-riod.{ stationary distribution: Suppose a distribution �28



on S is such that, if our Markov chain starts outwith initial distribution �0 = �, then we also have�1 = �. Then � is called a stationary distributionfor the Markov chain.
� Stationary distribution
{ If the N�N probability transition matrix P is sym-metric, then the uniform distribution is stationary.{ The uniform distribution is stationary if the matrixP is doubly stochastic, that is, the column-sumsof P are 1 (we already know the row-sums of Pare all 1).{ Computing stationary distributions is an algebraproblem.
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Markov Chain Monte Carlo Method
Goal: Estimate E[g(X)], where X � �(x) and g(X) is afunction of X.
� If �(x) is a well-known distribution, one may �nd analgorithm to generate iid X1; X2; : : : ; Xn; : : :

Ê[g(X)] = 1n
nX
i=1

g(Xi) = ĝ(X):
{What if no such algorithm is available?{ e.g. p(� j y) / (2 + �)125(1� �)38�34.

� Generate X0; X1; X2; : : : to form a Markov Chain.
{Markov Chain: Xi depends on X0; X1; X2; : : : ; Xi�2; Xi�1only through Xi�1.
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{ Under some general conditions, this Markov Chainwill converge to a stationary distribution with pdf�(x).
� = E�[g(Xi)] = limn!1 1n

nX
i=1

g(Xi):
where � is the equilibrium distribution, also calledinvariant distribution, stationary distribution, orergodic limit of the Markov chain (assuming suchexists).

�When n is large,
V ar(ĝ(X)) � 1 + �11� �1

V ar(g(X))n ;
where �1 is the lag 1 autocorrelation of the MarkovChain. 31



How do we pick up the right chain so that the varianceis small?
� Cause and e�ect of bigger �1:{ smaller movement (or lots of repeats) in the MarkovChain.{ larger variance for its estimator
�MCMC Theory: It is just like IIDMC theory (exceptMC replaces IID).
{ The Markov chain law of large numbers (LLN)says �̂n a:s:! �; n!1:
{ The Markov chain central limit theorem (CLT)
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says pn(�̂n � �) D! Normal(0; �2); n!1where
�2 = V ar[g(Xi)] + 2 1X

k=1

Cov[g(Xi); g(Xi+k)]:
See Chan and Geyer (1994) for assumptions.{We do not have to approximate the rather obnox-ious formula for asymptotic variance.� If b is large, thenpb(�̂b � �) � Normal(0; �2)and b(�̂b � �)2 � �2.� If b is small compared to n, thenb(�̂b � �̂n)2 � �2:33



� If 1 � b � n the sample average of b(�̂b � �̂n)2over batches of length b estimates �2.{Demo� For a demo problem, which was a PhD take-home exam question at Minnesota, get athttp://www.stat.umn.edu/geyer/PhD/F03/q1.pdf� The problem is to do Bayesian logistic regres-sion with normal prior on the parameters withfour predictor variables plus constant (�ve pa-rameters).� Geyer's program can be downloaded athttp://www.stat.umn.edu/geyer/mcmc.
� References
{ Chan, K.S. and Geyer, C.J. (1994). Discussion of34



the paper by Tierney. AS, 22, 1747-1758.{ Green, P.J. (1995). Reversible jump Markov chainMonte Carlo computation and Bayesian model de-termination. Biometrika, 82, 711-732.{Hastings, W.K. (1970), Monte Carlo samplingmethods using Markov chains and their applica-tions. Biometrika, 57, 97-109.{Metropolis, N., Rosenbluth, A.W., Rosenbluth,M.N., Teller, A.H. and Teller, E. (1953). Equa-tion of state calculations by fast computing ma-chines. Journal of Chemical Physics, 21, 1087-1092.
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MCMC History
MCMC is a remarkable tour de force.� It dates back to the dawn of the computer age(Metropolis, et al., 1953), but is highly non-obvious,even in its original incarnation, which was calculat-ing ergodic limits for models of physical systems.
�What is obvious is run the (model of the) physi-cal system and average over time (that's what anergodic limit is).
� The tour de force is the realization that any otherMarkov process with the same ergodic limit will alsodo.
�Metropolis, et al. (1953) realized this and provideda simple algorithm for constructing a Markov chain36



having a speci�ed equilibrium distribution (the Metropo-lis algorithm).
{ The Metropolis algorithm, as generalized by Hast-ings (1970) and Green (1995), called the Metropolis-Hastings-Green algorithm, is the only known methodof MCMC.{ Every MCMC-like method is either a special caseof the MHG algorithm, or is bogus.

�Many researchers have invented almost-but-not-quiteMCMC algorithms.
{ But there is no theory about almost-but-not-quiteMarkov chains or about Markov chains havingalmost-but-not quite a speci�ed equilibrium dis-tribution.
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{ If you're going to do MCMC, do real MCMC, notbogo-MCMC.{ The �rst task in any MCMC project is to ver-ify that your computer code actually implementsa Markov chain having the speci�ed equilibriumdistribution.
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Metropolis Algorithm
It is the �rst Markov chain Monte carlo method intro-duced by Metropolis et al. (1953).Suppose that we want to generate a random variablewith density f (x).Idea: By the Basic Limit Theorem, one way to dothis (approximately) is to �nd an irreducible, aperiodicprobability transition matrix P satisfying �P = �, andthen run a Markov chain according to P for a su�-ciently long time.
1. Start with any y0, X0 = y0.2. At the (i + 1)-th stage, generate

yi+1 = Xi + s; s � U(�a; a):
39



{ To run the random walk, at each time, we choosea random neighbor and go there.
3. Generate u from U(0; 1).
4. If r = f (yi+1)f (Xi) � u;
then Xi+1 = yi+1, else Xi+1 = Xi.{ If r < 1 go to yi+1 with probability r, and stay atxi with probability 1� r.

It generates a random walk and performs an accep-tance/rejection based on p evaluated at successive stepsin the walk.Under some regularity conditions,
�X0; X1; X2; : : : forms a Markov Chain.40



{ The next state only depends on the previous state,so that this is a Markov chain.
�Xn ! X � f (x).
Advantages:
�No normalizing constant of f (x) needed.
�No g(x) or M needed.
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Metropolis-Hastings Algorithm
One of the most popular MCMC technique used inapproximate sampling from complicated distributionsis the Metropolis-Hastings algorithm.The setup is as earlier:
�We are interested in generating samples of a randomvariable X distributed according to the density f (x).
� In addition to f (x), we will assume having a densityq(y j x) that satis�es the following properties:
1. It is easy to sample from q(� j x) for all x.2. The support of q contains the support of f (x).3. The functional form of q(y j x) is known or q(y j x)is symmetric in y and x. As shown later, it is
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not necessary to know the normalizing constantin q(y j x) as long as it does not depend upon x.
� Given f (x) and a choice of q(y j x), that satis�esthe above mentioned properties, the Metropolis-Hastings algorithm can be stated as follows:Choose an initial condition X0 in the support of f (x).The Markov chain X1; X2; : : : Xn is constructed iter-atively according to the steps:
1. Generate a candidate Y � q(y j Xt).2. Update the state to Xt+1 according to:

Xt+1 = � Y with probability �(Xt; Y )Xt with probability 1� �(Xt; Y ) ;where �(x; y) = minff (y)q(x j y)=[f (x)q(y j x)]; 1g.
q(y j x) is called the proposal density and �(x; y) is43



called the acceptance-rejection function.
Discussions on this algorithm:
� Consider �rst the case where the ratio

f (y)q(x j y)=[f (x)q(y j x)
values more than one and hence the acceptance-rejection function takes the value one.In this case, we set Xt+1 = Y with probability one.In other words, whenever this ratio exceeds once wechange the state to the candidate.

� In case this ratio goes below one, we set Xt+1 to Ywith probability �(Xt; Y ).Higher the value of �(Xt; Y ) is, higher are the chancesof accepting Y as the new state.
44



�Note that the normalizing constants in the two den-sities f and q cancel out and hence are not explicitlyneeded.
{ If the normalizing constant for q(y j x) dependsupon x, then it does not cancel out and is neededin the expression for �.{ q(y j xt) is the transition probability from xt to y.

� In the algorithm, one generates samples from theproposal q at every step independently but the el-ements of the chain are not independent of eachother. In fact, many times it is possible to have Xtand Xt+1 be identical.
� Popular choices of q(y j xt):1. Independence chain: In cases where the proposal45



density q(y j xt) is independent of the current statext, i.e. q(y j xt) = q(y).2. Random walk chain: In some applications, it isuseful to generate proposals using a random walk.That is, the proposal is obtained using the equa-tion: Y = Xt + �;where � has density g(�) that is symmetric andunimodal at zero.The proposal density is symmetric:
q(y j xt) = g(y � x)

and the algorithm simpli�es.Common choices are the uniform, normal, and tdistributions.
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Gibbs Sampler
Gibbs sampler is another commonly used tool for gen-erating Markov chains with suitable asymptotic prop-erties.
� By construction, Gibb's sampler applies only to theproblem of sampling from multivariate densities.
{ Recall the di�culty of generating multivariate ran-dom variable by rejection method.{ It uses a sequence of univariate random num-bers from conditional univariate distributions thatcombine to yield the desired multivariate distribu-tion.

� Let X = (X1; X2; : : : ; Xp) 2 Rp be a vector of randomvariables with the joint density function given by47



f (x1; x2; : : : ; xp).�Our goal is to generate samples from f and we willdo so by constructing a Markov chain on Rp.
� In order to use Gibbs sampling we make the follow-ing assumption: we know the conditional densities

fj(xi j xj; j 6= i); i = 1; 2; : : : ; p;
and have method(s) to sample from each of these.These conditional densities are called the full con-ditionals and have the simplicity of univariate den-sities.

An algorithm for Gibbs sampler is as follows:
0. Let X(t) = (X(t)

1 ; X(t)
2 ; : : : ; X(t)p ) 2 Rp be the value ofMarkov chain at time t.48



Following steps describe an update from X(t) toX(t+1).
1. Generate X(t+1)

1 � f1(x1 j X(t)
2 ; X(t)

3 ; : : : ; X(t)p ).
2. Generate X(t+1)

2 � f2(x2 j X(t+1)
1 ; X(t)

2 ; : : : ; X(t)p )....
3. Generate X(t+1)p � fp(xp j X(t+1)

1 ; X(t+1)
2 ; : : : ; X(t+1)p�1 ).

The p-dim random vector X(0);X(1);X(2); : : : form aMarkov Chain with limiting distribution f (x1; x2; : : : ; xp).� An important property of the Gibbs sampler is thateven for large values of p, one samples from a uni-variate density at each step. This makes Gibbs sam-pler very attractive for large dimensional problems
49



such as image analysis. Consider the Ising model inGeman and Geman (1984).
� Gibbs sampler is most useful when its full condition-als are easy to �nd and simulate.
{multivariate normal distribution, multivariate ex-ponential distribution

Consider a speci�c case of Gibbs sampler for p = 2which is called the bivariate Gibbs sampler.� Let X and Y be two scalar random variables withthe joint density function f (x; y) and the full condi-tionals: f1(x j y) and f2(y j x).� Gibbs sampler can be constructed as follows:Start with some initial condition (x0; y0) and iterateaccording to: 50



1. Generate xt+1 � f1(x j yt).2. Generate yt+1 � f2(y j xt+1).3. Set t = t + 1 and go to Step 1.
� Example: Consider generating a bivariate normalrandom vector with density

(X; Y ) � N �� 00
� ; � 1 �� 1

�� ;
with the full conditionals:
f1(x; y) = N(�y; 1� �2); f2(y j x) = N(�x; 1� �2):

Given yt, generateXt+1 j yt � N(�yt; 1� �2);Yt+1 j xt+1 � N(�xt+1; 1� �2):
51



� Gibbs sampler by construction applies only to mul-tivariate densities.What if we are interested in sampling from a uni-variate density f (x) with p = 1?
{We can complete it to a d-dimensional problem andthen apply Gibbs sampler.{ g(x; z) is called a completion of pdf p(x), ifZ

Z g(x; z)dz = f (x):
{ There are many choices of g, we choose g suchthat Gibbs algorithm is easy to implement on g.

� Example: Generate a truncated normal distribution
f (x) / exp[�(x� �)2=2�2]Ifx�cg:
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It is ine�cient to use standard generator when x islarge.Consider Gibbs sampler with the completion
g(x; z) / Ifx�cgIf0�z�exp[�(x��)2=2�2]g:{ Show that the marginal of g is indeed f (x).{ Z j X = x � U(0; exp(�(x� �)2=2�2)){X j Z = z � U(a; b), with a = c and b = � +p�2�2 log(z)

� Recall Slice Sampler!
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