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Bayesian Analysis

In Bayesian inference, the parameter is assumed to be
random with some known distribution and its estimate
ends up being an expected value under the posterior
distribution.

o If / is a random parameter with some known distri-
bution, then according to the Bayes’ rule, the pos-
terior distribution is given by

plo|y) =Y

where y is the dependent random variable.

x P(y | 6)P(6)

— The first Bayesians, Bayes and Laplace, chose a
constant prior distribution for 6.



—20 years ago, one often heard the refrain that
Bayesian analysis is nice conceptually; too bad it is
not possible to compute Bayesian answers in realistic
situations.

e Given an observation y, the posterior is proportional
to the product of the data likelihood and the prior
probability on the parameter 6.

e The next question is: what should be the criterion
for estimating 6 from observed y?

— Under the posterior probability, there are several
cost functions that can be minimized, resulting in
different values of the estimate.

— We briefly mention a few commonly used cost
functions. Let || - || denote the Euclidean distance
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function on R".
1. The maximizer of the posterior density is called

the maximum a-posterior (MAP) estimate:

Oriap = argmax P(0 | y).

The MAP estimate can be found using tech-
niques which were described to find the maximum-
likelihood estimate, except the posterior density
is maximized instead of the likelihood function.

2. Let 6 be the value of the estimator. Then the
expected squared error is given by

/9 16 — 6,2P(0, | y)d6:.
1

The value of 6 which minimizes this expected
squared error is called the minimum mean squared
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error estimator (MMSE).

éMMSE = arg m@in Expected Squared Error.

It can be shown that for Euclidean parameters,
the MMSE estimator is given by the mean under
the posterior (conditional) distribution.

- This estimator involves computing integral of
the posterior density.

- In case the analytical solutions are difficult to
evaluate numerical techniques for integration
can be used.

. The disadvantage of minimizing expected squared
error is that it results in an average: the solu-
tion is the average of high posterior probability
points.



- Even the individual points may be high proba-
bility, their average itself can be a low-probability
point and hence a bad estimate.

- Therefore, very often it is the expected error
which is minimized instead of the expected
squared error.

- For Euclidean parameters the minimum ex-
pected absolute error criterion results in the
median of the posterior probability.

e Consider the example in motivating EM algorithm.
— For MLE 4,

L0 |y) x (2+6)'%(1 — 6)%>".
The MLE is 0.62682115.



— Assume a uniform prior for § and a squared loss
function.

— Posterior pdf is

p(0 |y) ocm(0)L(0 | y) = L(0 | y).
Not a recognizable distribution.
— The Bayes estimator is its posterior mean
f() 2 + 0 125( 9)38934d9
BO1y) = (2 +0)125(1 — 9)38934qp
No explicit formula available, need a computer
integration routine.

— Note that it is equal to

0.14683870067 x 104
0.2357695165 x 1029

= 0.6228061319.
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Slice Sampler

Consider the posterior distribution with uniform prior
of the linkage model

p(0 | y) oc (2+6)2(1 — 6)767,
Slice Sampler Algorithm
o If

OC H f] ) ] 1 S] S k?
then p(z) can be completed into

k
g<217227° " ,Zk,.%') X H](O < Z < f](x))
7=1

e Every conditional pdf is a uniform distribution!
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e For this linkage problem, define

f0) = 2+ 0, fo(0) = (1-0)%, f5(0) =07
— Generate z; ~ U(0, (2 + 6)™),
— Generate 2 ~ U(0, (1 — 6)%%),
— Generate z3 ~ U(0, 6%%).
— For each z1, 29, 23 generated, find the range of 6:

0> 0 g<1- 2P 0>
— Generate 0" ~ U(A, B), where
A = max(z i/l% — 2 21/34), B=1- Z21/38.

e Why does it work?
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Mixture Distribution

Suppose that we have iid observations from a mixture
of exponential distribution with density

k
f(z;0) = ij)\j exp(—A;m).

j=1
Here £ is assumed known.
e unknown parameter 0 = (p1,...,pr, A\, .-, A\L)

e Let A be a random variable, taking on the value )\,
with probability p;.

e The likelihood can be written as
mn mn
L(O) = | | f(zi:60) = B | | Aiexp(—Aizs).
i=1 i=1
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e The Gibbs sampler draws, given 6, vectors A =
(A]_,...,An).

e Note that the A; are iid, the Gibbs sampler just
repeatedly generates iid o), i = 1,...,N, and then
estimates the likelihood by averaging

N n
. 1 . .
L) =+ > I1 A exp(—A ;)
j=1i=1
— Rather large values of N may be needed to eval-

uate the likelihood precisely enough.

— The original maximization problem can be un-
pleasant.
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Markov Chain

A Markov chain describes a system whose state changes
over time.

e The changes are not completely predictable, but
rather are governed by probability distributions.

e These probability distributions incorporate a simple
sort of dependence structure, where the conditional
distribution of future states of the system, given
some information about past states, depends only
on the most recent piece of information.

— That is, what matters in predicting the future of
the system is its present state, and not the path
by which the system got to its present state.
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e What is a Markov chain?
It is a sequence { X, X1, X9,...} of random variables

that has the “Markov property.”

¢ Think about how to simulate a Markov chain, a typ-
ical “sample path.”

e How do | tell you which particular Markov chain |
want you to simulate?

— State space S: S is a finite or countable set of

states, that is, values that the random variables
X; may take on.
For definiteness, and without loss of generality,
label the states as follows: either S§ = {1,2,... N}
for some finite N, or S = {1,2,...}, which we may
think of as the case N = oc0?
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— Initial distribution 73: This is the probability dis-
tribution of the Markov chain at time 0. For each
state i € S, we denote by (i) the probability
P{Xy = i} that the Markov chain starts out in
state : where

mo(i) > 0 for all S and Zﬂo(i) = 1.
(

— Probability transition rule: This is specified by giv-
ing a matrix P = (F;;).
If S is the finite set {1,..., N}, say, then P is an
N x N matrix.

+ The interpretation of the number P;; is the con-
ditional probability, given that the chain is in
state ; at time n, say, that the chain jumps to
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the state ;5 at time n + 1. That is,
Pij = P{Xpt1 =7 | Xn=1}.

x Note that we have written this probability as a
function of just : and j, but of course it could
depend on n as well.

x The time homogeneity restriction is just the as-
sumption that this probability does not depend
on the time n, but rather remains constant over
time.

x A probability transition matrix is an N X N ma-
trix whose entries are all nonnegative and whose
rows sum to 1.

e Simulate Markov frog.
Think of a frog hopping among three lily ponds.
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— Here state refers to those three lily ponds.
The state will change over time.

— To start, he chooses his initial position X ac-
cording to the specified initial distribution 7 =
(1/2,1/4,1/4).

We can use computer simulation to generate his
initial position by generating a uniformly distributed
random number Uy ~ Unif(0, 1), and then taking

(1if0< Uy <1/2
Xo=1¢ 2if1/2<Uy<3/4
\3if3/4<U()§1

— How does the Markov frog choose a path?
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Assume that the probability transition matrix is

0 1 O
P=|1/3 0 2/3
1/31/31/3
Suppose that Uy comes out to be 0.8419, so that

Xy = 3.

Then the frog chooses X according to the prob-
ability distribution in row 3 of P. He paws his
computer again to generate U; ~ Unif(0,1) inde-
pendently of Uj, and takes

(1if0<U; <1/3
X1=¢2if1/3<U; <2/3
\3if2/3<U1<1

Suppose he happens to get U; = 0.1234, so that
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X1 = 1. Then he chooses X5 according to row 1
of P, so that Xy = 2; there’s no choice this time.

— Next, he chooses X3 according to row 2 of P. And
so on .. ..

e The Markov property: Clearly, in the previous exam-
ple, if | told you that we came up with the values
Xg =3, Xy =1, and X9 = 2, then the conditional
probability distribution for X3 is

(1/3 for j =1
P<X3=j|XO:3,X1=1,X2=2)=<O forj:2
| 2/3 for j =3,

which is also the conditional probability distribution
for X35 given only the information that X, = 2.

e Markov chain is a particular family of discrete time
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stochastic processes.

e Denote a discrete time stochastic process as: { X;,t =
t1,t9,...}. Such a process can be characterized by
nth- order joint probability density function, for any
n > 1,

Pth,XtQ,...,th(xla Ly« - 7xn)7
Using the rule for total probability, we can factor the
joint density function as:

PXy Xty Xy (T1522, - 2n) = P, (w1) Py, x, (22| 1)

,th(xn | Ln—1,--- 7561)

where the first term on the right side is the marginal
density of the process at time ¢{, and the remaining
terms are the conditional densities.

XX
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e A stochastic process is called a Markov process if

(xn | Tp—1,...,21) = Pth‘th_ (xn | p—1)-

Pth ‘th— 1

e Xt

— The issue addressed by the Markov property is the
dependence structure among random variables.

— The simplest dependence structure for X, X, ...
iIs no dependence at all, that is, independence.

— The Markov property could be said to capture
the next simplest sort of dependence: in generat-
ing the process X, X1, ... sequentially, the “next”
state X, depends only on the “current” value
Xn, and not on the “past” values X, ..., X,,_1.

e The Markov property implies a simple expression for
the probability of our Markov chain taking any spec-
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ified path, as follows:
P(Xg=19, X1 =11,...,Xpn =1ip)
= P(Xo = ig)P(Xy = i1 | Xg =1i0)P(X2 =12 | X1 =11)
" ‘P(Xn = ip | Xp—1= Z.n—l)
= mo(io) Pig, i1) P(i1,12) - - - Plin—1,1n).

— The joint density function can be written as a
product of one-step conditional densities.

— If we only observe Xy = iy and X9 = 79, what is
P(Xp=1ip and X9 =1i9)?

mo(20) Z P(ig,41)P(i1,12)

Recall the matrix multiplication a;;, = } _; ajja .

e Recall that 7ny(:) = P(Xy = ¢) which describes the
initial distribution of the chain.
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Let 71, denote the distribution of the chain at time
n, that is, m,(¢1) = P(X,, =1).

— Assume that the state space is finite with V states.
— Denote the transition matrix by

P = (Pj) = (P(4,7)),
— The law of total probability gives

N
Tn41(7) = ) m(i)P(i, ).
i=1

In matrix notation, it is just the equation
Tnil = TP,

where
Tn = (mn(1), ..., mp(N)).
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By induction, we have
T = moP".

— In principle, we can find the answer to any ques-
tion about the probabilistic behavior of a Markov
chain by doing matrix algebra, finding powers of
matrices, etc.

— In practice, it is another story.
For example, the state space for a Markov chain
that describes repeated shuffling of a deck of cards
contains 52! elements.
The probability transition matrix that describes
the effect of a single shuffle is a 52! x 52! matrix.

e The joint density function is called translation in-
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variant if for any ¢ > 0, we have

Pth,XtQ,...,th(xla Ly - - - 7ajn) — Pth—I—C,Xt2+C,...,th—FC(xl7 L -
— A stochastic process is called stationary if its nth-

order joint density function is translation invari-
ance, for all n > 1.

¢ Random walk on a clock: Consider a clock with 6
numbers on it: 0,1,2,3,4,5.

— Suppose we perform a random walk by moving
clockwise, moving counterclockwise, and staying
in place with probabilities 1/3 each at every time
n. That is,

1/3if j=7—1 mod 6
P(i,j)=< 1/3if j =1
1/3if j=7+1 mod 6
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— Suppose we start out at X = 2, say. That is,
o = (0,0,1,0,0,0).

Then 7 =(0,1/3,1/3,1/3,0,0), m = (1/9,2/9,1/3,2/9,1/
and 73 = (3/27,6/27,7/27,6/27,3/27,2/27).

It is intuitively clear that 7, will approach the uni-

form distribution as n — oc.

Does the initial starting state 2 matter?

— It means that the random walk has essentially
“forgotten” that it started out in state 2 at time
0.

7, approaches a limit that does not depend upon
the initial distribution .

e Basic Limit Theorem. Let Xy, X;,... be an irre-
ducible, aperiodic Markov chain having a stationary
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distribution 7(-). Let X have the distribution 7, an
arbitrary initial distribution. Then

nl;moo (i) = w(¢) for all states ;.

—arreducible: All states communicate with each other
for the corresponding transition matrix P.

x lrreducibility implies that it is possible to visit
from any state to any state in a finite number
of steps.

— apertodic: An irreducible Markov chain is called
aperiodic if its period is one.

x Aperiodicity implies that the Markov chain does

not cycle around in the states with a finite pe-
riod.

— stationary distribution: Suppose a distribution 7
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on S is such that, if our Markov chain starts out
with initial distribution 73 = 7, then we also have
m = . Then 7 is called a stationary distribution
for the Markov chain.

e Stationary distribution
— If the N x N probability transition matrix P is sym-

metric, then the uniform distribution is stationary.

— The uniform distribution is stationary if the matrix
P is doubly stochastic, that is, the column-sums
of P are 1 (we already know the row-sums of P
are all 1).

— Computing stationary distributions is an algebra
problem.
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Markov Chain Monte Carlo Method

Goal: Estimate E|g(X)|, where X ~ 7(z) and g(X) is a
function of X.

o If 7(x) is a well-known distribution, one may find an
algorithm to generate iid X, Xo,..., X, ...

Blo(X)] =~ " g(Xi) = a(X),
1=1

— What if no such algorithm is available?
—e.g. pf|y) x(2+ 0)125(1 - 0)38034.
e Generate X, X1, Xo,... to form a Markov Chain.

— Markov Chain: X, depends on X, X1, Xo,..., X, 9, X,
only through X;_.
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— Under some general conditions, this Markov Chain
will converge to a stationary distribution with pdf
m(x).

where 7 is the equilibrium distribution, also called
invariant distribution, stationary distribution, or
ergodic limit of the Markov chain (assuming such
exists).

e When n is large,

Var(g(X) ~ o)

where p; is the lag 1 autocorrelation of the Markov
Chain.
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How do we pick up the right chain so that the variance
is small?

e Cause and effect of bigger p;:

— smaller movement (or lots of repeats) in the Markov
Chain.
— larger variance for its estimator

e MCMC Theory: It is just like IIDMC theory (except
MC replaces IID).

— The Markov chain law of large numbers (LLN)

says
~ .S,
[bp, — W, T — OO.

— The Markov chain central limit theorem (CLT)
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N T 2 Normal(0,6°%), n — oo

0 = Varlg(X;)] + 2 Z Covlg (Xitr)l

See Chan and Geyer (1994) for assumptions.

— We do not have to approximate the rather obnox-
ious formula for asymptotic variance.

x If b is large, then

Vb, — p) = Normal(0, 0°)

and b(jy — 1)’ ~ o’

x If b is small compared to n, then

~ ~ 2
bfiy — fin)” =~ 0”.
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«If 1 < b < n the sample average of b([y, — jin)°
over batches of length b estimates o2.

— Demo

x For a demo problem, which was a PhD take-
home exam question at Minnesota, get at

http://www.stat.umn.edu/geyer/PhD/F03/ql.pdf

x The problem is to do Bayesian logistic regres-
sion with normal prior on the parameters with
four predictor variables plus constant (five pa-
rameters).

x Geyer’s program can be downloaded at
http://www.stat.umn.edu/geyer/mcmc.

e References
— Chan, K.S. and Geyer, C.J. (1994). Discussion of
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— Green, P.J. (1995). Reversible jump Markov chain
Monte Carlo computation and Bayesian model de-
termination. Biometrika, 82, 711-732.

— Hastings, W.K. (1970), Monte Carlo sampling
methods using Markov chains and their applica-
tions. Biometrika, 57, 97-109.

— Metropolis, N., Rosenbluth, A.W., Rosenbluth,
M.N., Teller, A.H. and Teller, E. (1953). Equa-
tion of state calculations by fast computing ma-
chines. Journal of Chemical Physics, 21, 1087-
1092.
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MCMC History

MCMC is a remarkable tour de force.

e It dates back to the dawn of the computer age
(Metropolis, et al., 1953), but is highly non-obvious,
even in its original incarnation, which was calculat-
ing ergodic limits for models of physical systems.

e What is obvious is run the (model of the) physi-
cal system and average over time (that’s what an
ergodic limit is).

e The tour de force is the realization that any other

Markov process with the same ergodic limit will also
do.

e Metropolis, et al. (1953) realized this and provided
a simple algorithm for constructing a Markov chain
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having a specified equilibrium distribution (the Metropo-
lis algorithm).

— The Metropolis algorithm, as generalized by Hast-
ings (1970) and Green (1995), called the Metropolis-
Hastings-Green algorithm, is the only known method
of MCMC.

— Every MCMC-like method is either a special case
of the MHG algorithm, or is bogus.

e Many researchers have invented almost-but-not-quite
MCMC algorithms.

— But there is no theory about almost-but-not-quite
Markov chains or about Markov chains having
almost-but-not quite a specified equilibrium dis-
tribution.
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— If you're going to do MCMC, do real MCMC, not
bogo-MCMC.

— The first task in any MCMC project is to ver-
ify that your computer code actually implements
a Markov chain having the specified equilibrium
distribution.
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Metropolis Algorithm

It is the first Markov chain Monte carlo method intro-
duced by Metropolis et al. (1953).

Suppose that we want to generate a random variable
with density f(x).

Idea: By the Basic Limit Theorem, one way to do
this (approximately) is to find an irreducible, aperiodic
probability transition matrix P satisfying 7P = 7, and
then run a Markov chain according to P for a suffi-
ciently long time.

1. Start with any yy, Xg = yp.
2. At the (i + 1)-th stage, generate

yiv1 = Xi+s, s~ U(—a,a).
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— To run the random walk, at each time, we choose
a random neighbor and go there.

3. Generate u from U(0,1).
4. If

S (Wiv1) >

oG

then X, 1 =vy;.1, else X; | = X,.

—If r <1 go to y;.; with probability , and stay at
x; with probability 1 — r.

It generates a random walk and performs an accep-
tance/rejection based on p evaluated at successive steps
in the walk.

Under some regularity conditions,

o Xy, X1, Xo,... forms a Markov Chain.
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— The next state only depends on the previous state,
so that this is a Markov chain.

Advantages:
e No normalizing constant of f(z) needed.

e No ¢g(x) or M needed.
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Metropolis-Hastings Algorithm

One of the most popular MCMC technique used in
approximate sampling from complicated distributions
iIs the Metropolis-Hastings algorithm.

The setup is as earlier:

e We are interested in generating samples of a random
variable X distributed according to the density f(z).

e In addition to f(z), we will assume having a density
q(y | ) that satisfies the following properties:
1. It is easy to sample from ¢(- | x) for all z.
2. The support of ¢ contains the support of f(z).

3. The functional form of ¢(y | x) is known or ¢(y | x)
Is symmetric in y and z. As shown later, it is
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not necessary to know the normalizing constant
in ¢(y | z) as long as it does not depend upon z.

e Given f(z) and a choice of ¢(y | =), that satisfies
the above mentioned properties, the Metropolis-
Hastings algorithm can be stated as follows:
Choose an initial condition X in the support of f(x).
The Markov chain X, Xo,... X, is constructed iter-
atively according to the steps:

1. Generate a candidate Y ~ q(y | X}).
2. Update the state to X;,; according to:

N, Y with probability p(X:,Y)
171 X; with probability 1 — p(X;,Y)

where p(x,y) = min{ f(y)q(z | v)/[f(x)q(y | x)],1}.
q(y | x) is called the proposal density and p(z,y) is
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called the acceptance-rejection function.

Discussions on this algorithm:

e Consider first the case where the ratio

fwalz [ y)/1f(z)q(y | =)

values more than one and hence the acceptance-
rejection function takes the value one.

In this case, we set X;,; =Y with probability one.
In other words, whenever this ratio exceeds once we
change the state to the candidate.

e In case this ratio goes below one, we set X;, | to Y
with probability p(X:,Y).
Higher the value of p( Xy, Y) is, higher are the chances
of accepting Y as the new state.
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e Note that the normalizing constants in the two den-
sities f and ¢ cancel out and hence are not explicitly
needed.

— If the normalizing constant for ¢(y | =) depends
upon z, then it does not cancel out and is needed
in the expression for p.

—q(y | +) is the transition probability from z; to .
e In the algorithm, one generates samples from the
proposal ¢ at every step independently but the el-
ements of the chain are not independent of each

other. In fact, many times it is possible to have X;
and X, be identical.

e Popular choices of ¢(y | x4):

1. Independence chain: In cases where the proposal
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density ¢(y | x+) is independent of the current state

zt, i.e. q(y | 1) = q(y).
. Random walk chain: In some applications, it is
useful to generate proposals using a random walk.
That is, the proposal is obtained using the equa-
tion:

Y = X+ ¢,
where ¢ has density g(¢) that is symmetric and
unimodal at zero.
The proposal density is symmetric:

q(y | zt) = gy — x)

and the algorithm simplifies.
Common choices are the uniform, normal, and ¢
distributions.
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Gibbs Sampler

Gibbs sampler is another commonly used tool for gen-
erating Markov chains with suitable asymptotic prop-
erties.

e By construction, Gibb’s sampler applies only to the
problem of sampling from multivariate densities.

— Recall the difficulty of generating multivariate ran-
dom variable by rejection method.

— It uses a sequence of univariate random num-
bers from conditional univariate distributions that
combine to yield the desired multivariate distribu-
tion.

o Let X = (X1, X»,...,X,) € RP be a vector of random
variables with the joint density function given by

47



f(x1,29,. .., 2p).
e Our goal is to generate samples from f and we will
do so by constructing a Markov chain on RP”.

¢ In order to use Gibbs sampling we make the follow-
ing assumption: we know the conditional densities

f](xz | x]?]#2)7?:: 1727°°°7p7

and have method(s) to sample from each of these.
These conditional densities are called the full con-
ditionals and have the simplicity of univariate den-
sities.

An algorithm for Gibbs sampler is as follows:

0. Let X = (x\ x1V . X!y € RP be the value of
Markov chain at time ¢.
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Following steps describe an update from X1 to
X(?H—l)_

1. Generate Xftﬂ) ~ f1(xq XQ(t),X?St), . ,X](f)).

2. Generate Xétﬂ) ~ fo(x9 XftH),Xét), . ,X](p).

3. Generate X](?Hl) ~ fp(zp | X{tH),XQ(Hl), . ,Xz(ﬁrll)).

The p-dim random vector X(O), X(l),X(Q), ... form a
Markov Chain with limiting distribution f(x1,z9,...,xp).

e An important property of the Gibbs sampler is that
even for large values of p, one samples from a uni-
variate density at each step. This makes Gibbs sam-
pler very attractive for large dimensional problems
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such as image analysis. Consider the Ising model in
Geman and Geman (1984).

e Gibbs sampler is most useful when its full condition-
als are easy to find and simulate.

— multivariate normal distribution, multivariate ex-
ponential distribution

Consider a specific case of Gibbs sampler for p = 2
which is called the bivariate Gibbs sampler.

elLet X and Y be two scalar random variables with
the joint density function f(z,y) and the full condi-

tionals: fi(x | y) and fo(y | x).

e Gibbs sampler can be constructed as follows:
Start with some initial condition (z(,yy) and iterate
according to:
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1. Generate x4 ~ f1<£lj | yt).

2. Generate y;1 ~ fo(y | T+1)-
3.Sett=t+1 and go to Step 1.

e Example: Consider generating a bivariate normal
random vector with density

wo-n(0)14])

with the full conditionals:

filz,y) = N(py,1 — p*), foly | x) = N(pz,1— p°).

Given y;, generate

Xt [y ~ Nlpyt, 1 - p2),2
Yitr | w1 ~ N(pzigr, 1= p7).
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e Gibbs sampler by construction applies only to mul-
tivariate densities.
What if we are interested in sampling from a uni-
variate density f(x) with p =17

— We can complete it to a d-dimensional problem and
then apply Gibbs sampler.

—g(x, z) is called a completion of pdf p(x), if

/Z 9(z, 2)dz = f(x)

— There are many choices of g, we choose ¢ such
that Gibbs algorithm is easy to implement on g.

e Example: Generate a truncated normal distribution
f(x) o< exp|—(x — ,u)2/202]]{x26}.
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It is inefficient to use standard generator when z is
large.
Consider Gibbs sampler with the completion

9(@, 2) < Lig> ey o< cenp|— (w2 207}
— Show that the marginal of g is indeed f(z).
~Z | X =2~ U(0,exp(—(z — p)?/20?))
- X | Z =2z ~ Ula,b), with a = c and b = u +
v/ —202log(2)

¢ Recall Slice Sampler!
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