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Classical Uniform Variate GeneratorSimulation is used heavily when analytical study of astatistical procedure becomes intractable.� Simulation of random variables and random pro-cesses using computers is among the fastest growingareas of computational statistics.�Many statistical techniques rely on simulating ran-dom variables.{One traditional area is the use of random numbersto sample from a population.{More recent applications include simulation of high-dimensional, complex stochastic systems that arebeyond analytical studies.
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{ In many practical situations the probability dis-tributions are far too complicated to analyze andoften it is easier to simulate these distributionson computers and the resulting samples can beanalyzed instead.� The study of a random variable through simulationsis becoming a powerful tool in the hands of thestatisticians.Monte Carlo experimentation is the use of simulatedrandom numbers to estimate some functional of a prob-ability distribution.� Building block in any simulation study is non-uniformvariate generation.{Many algorithms are available.5



{ Example: Generate normal random variable.� Box-Muller method (Polar method)If X and Y are independent and standard normalrandom variables then for
� = tan�1�YX

� ; R =pX2 + Y 2
� is uniform in [0; 2�] and R2 is exponential withmean 2.(0) U1; U2 iid U(0; 1)(1) X1 = (�2 lnU1)1=2 cos(2�U2)(2) X2 = (�2 lnU1)1=2 sin(2�U2)(3) X1; X2 iid N(0; 1)� Inverse methodIf X � F , then F (X) � U(0; 1).6



{ In the above methods, it assumes that we canproduce an endless ow of a iid uniform randomvariate generators.�On the computer, we generally settle for pseudo-random numbers, that is, numbers that appearto be random but actually deterministic.� CDF transformation methodX = F�(U), U � U(0; 1) whereF�(u) = inffx j F (x) � ugis the generalized inverse of the cdf F .{ For a standard exponential random variable, thetransformation X = log(U)yields one exponential for each uniform variable.7



{How to simulate the process of ipping a coinwith probability of head p?� For a discrete random variable, although the inverseof the cdf does not exist, the inverse cdf methodcan still be used.{ The value of the discrete random variable is cho-sen as the smallest value within its countable rangesuch that the cdf is no less than the value of theuniform variate.� For a multivariate random variable, the inverse cdfmethod yields a level curve in the range of the ran-dom variable; hence, the method is not directly use-ful for multivariate random variable.{Multivariate random variates can be generated us-8



ing the inverse cdf method �rst on a univariatemarginal and then on a sequence of univariateconditionals.
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Discrete Random VariablesA discrete random variable takes only a countable num-ber of values with pre-de�ned probabilities.� A discrete random variable is characterized by itsprobability mass function de�ned as P (x1) = p1; P (x2) =p2; : : : ; P (xn) = pn; : : : such that such that for all i,0 � pi � 1, and Pi pi = 1.� Commonly used discrete random variables are bino-mial, Poisson, geometric and negative-binomial. Asan�How do we generate a Poisson random variable withparameter �?
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The probability mass function is given by:
pi = exp(��)�ii! ; i = 0; 1; 2; : : : :

Note that P (X = i + 1)P (X = i) = �i + 1:FX(i + 1) can be written in the following interativeform:
FX(i + 1) = FX(i) + P (X = i) �i + 1:The algorithm isi. Generate U according to U [0; 1].ii. Set i = 0, p = exp(��), and F = p.iii. If U < F , set X = i and stop.11



iv. Set p = �p=(i + 1), F = F + p, i = i + 1v. Go to Step (iii).De�nition For a given random variable, with a speci�ed proba-bility mass function f(xi; pi); i = 0; 1; 2; : : :g, the pro-cess of selecting a value xi with probability pi iscalled Simulation. If this selection is performed manytimes, generating a sequence fXjg, then1n
nX
j=1 IXj(fxig) ! pi:
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Uniform Random Number Generation� Use algebraic methods to generate sequences ofnumbers that mimic the behavior of a uniform ran-dom variable.{ These numbers are called pseudorandom num-bers.{ A uniform pseudorandom number generator is amapping f that, starting from an initial value x0,generates a sequencex0; f (x0); f (f (x0)); f (f (f (x0))); : : : :Since f is computed on a computer (without theuse of random number generator!!), it is a deter-ministic mapping. That is, given x0 the remaining
13



sequence is �xed everytime the sequence is com-puted.The elements of such a sequence should have thefollowing properties:1. The patterns between the numbers the appearingin a sequence should be minimized.2. The correlation between the neighboring elementsshould be reasonably small.3. The values should be distributed nearly uniformlyover the whole the range of possible values.4. The sequences should have large periods, wherea period is de�ned to be duration after which asequence repeats itself.5. There exist a set of goodness of �t tests for test-14



ing the probability distributions associated withthe observed random variables. The elements of apseudorandom sequence should provide a reason-able performance in these goodness of �t tests.�No random number generator is capable of gener-ating (a) uniform and (b) independent variates.� Slight defect in RNG may have dramatic e�ect onwhole simulation study.{Deng and Chhikara (1992){ If U1; U2; : : : ; Un iid � U(0; 1),
Zn = Pn

i=1Ui � n2pn=12 � N(0; 1):
What if the assumption of iid and/or \U(0; 1)"fail? 15



� Classical uniform variate generatorLinear congruential generator [Lehmer (1951)]{Xi = BXi�1 + A mod n.{ Ui = Xi=m{ LCG has been used in almost all computer systemsand packages.{ Popular LCG (e.g., IMSL, SAS)(a) B = 16807, A = 0, m = 231 � 1.(b) Its period is m� 1 � 2:1 � 109.{ Comments� Period (� m) depends on B;A;m;X0.� The period is too short by today's standard.Large-scale simulation study is more and morecommon. 16



� uniformity in 1-dimensional space� LCG cannot generate set of all lattice points ink space, Sk, for k � 2.� Consider S2 = f(I; J) j 0 � I; J � mg and doplots of (Ui; Ui+1), i = 0; 1; 2; : : :� Insert p7 and 8 of Deng's note.� Feedback shift register [Tausworthe (1965)]{ aj =Pk
i=1 ciaj�i(mod 2) where ai; ci 2 f0; 1g, ck =1{ The mth random variate is the d bits binary num-
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ber 0:a0a1 : : : ad�1 base 20:adad+1 : : : a2d�1 base 2...0:amdamd+1 : : : amd+d�1 base 2: : :� It can have an extremely long period, 2k� 1, (ifci's are properly selected) for a large k,� good theoretical k-space uniformity� Poor empirical performance� Combination generators:Wichmann and Hill (1982): Add three LCGs andtake its fractional part.{Xi = AXi�1 mod m1 18



{ Yi = BYi�1 mod m2{ Zi = CZi�1 mod m3{ Ui = Xi=m1 + Yi=m2 + Zi=m3 mod 1Comments:{ Period is LCM(m1 � 1;m2 � 1;m3 � 1).For m1 = 30269;m2 = 30307;m3 = 30323, its periodis 6:95� 1012.{ About 3000 times longer period than LCG-16807.{ About three times slower than LCG.{No theoretical justi�cation for uniformity provided.� Statistical justi�cation given in Deng and George(1990){ Suppose that X1 and X2 are independent r.v. over19



[0; 1] with pdfs f1(x1) and f2(x2) respectively.{ j f1(x1)� 1 j� �1, j f2(x2)� 1 j� �2{ Let Y = X1+X2 mod 1 and denote its pdf by f (y).{ Conclusion: j f (y)� 1 j� �1�2.In general, Y = Pn
i=1Xi mod 1 and denote its pdfby f (y). Then

j f (y)� 1 j� nY
i=1 �i:
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Exponential and Poisson RVsThe exponential density function is de�ned by
f (x) = � � exp(��x); if 0 � x <1,0; otherwise.Here � is any positive constant, depending on the ex-periment.� The exponential density is often used describe ex-periments involving a question of the form: Howlong until something happens?� For example, the exponential density is often used tostudy the time between emissions of particles froma radioactive source.� \Memoryless" property:Let T be an exponentially distributed random vari-21



able with parameter �.It says that P (T > r + s j T > r) = P (T > s).There is a very important relationship between the ex-ponential density and the Poisson distribution.�De�ne X1; X2; : : : to be a sequence of independentexponentially distributed random variables with pa-rameter �.� Think of Xi as denoting the amount of time betweenthe ith and (i + 1)st emissions of a particle by aradioactive source.� Consider a time interval of length t, and we let Y de-note the random variable which counts the numberof emissions that occur in this time interval.� Find the distribution function of Y (clearly, Y is a22



discrete random variable).� Let Sn denote the sum X1+X2+ : : :+Xn, then it iseasy to see thatP (Y = n) = P (Sn � t and Sn+1 > t)= P (Sn � t)� P (Sn+1 � t):
� The density of Sn is given by the following formula:

gn(x) =
( �(�x)n�1(n�1)! exp(��x); if x > 0;0; otherwise.It is a gamma density with parameters � and n.� It is easy to show by induction on n that the cumu-
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lative distribution function of Sn is given by:
Gn(x) =

8<: 1� exp(��x)�1 + �x1! + � � � + (�x)n�1(n�1)!
� ; if x > 0;0; otherwise.We recognize easily that it is the probability of tak-ing on the value n by a Poisson-distributed randomvariable, with parameter �t.� The above relationship will allow us to simulate aPoisson distribution, once we have found a way tosimulate an exponential density.� To simulate a Poisson random variable W with pa-rameter �, we{ Generate a sequence of values of an exponentiallydistributed random variable with the same param-24



eter.{ Keep track of the subtotals Sk of these values.{We stop generating the sequence when the subto-tal �rst exceeds �.{ Assume that we �nd that Sn � � < Sn+1. Thenthe value n is returned as a simulated value forW .
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Simulating Poisson ProcessesA point process consisting of randomly occurring pointsin the plane is said to be a two-dimensional Poissonprocess having rate �, if1. the number of points in any given region of area Ais Poisson distributed with mean �A; and2. the number of points in disjoint regions are indepen-dent.Let O be the origin in R2 and Ri be the ith nearestPoisson point to O, i � 1 (R0 = O).It can be shown that� (�R2
i��R2

i�1) are exponentially distributed with rate�.
26



� By symmetry, the respective angles of the Poissonpoints are independent and uniform [0; 2�].The following algorithm simulates a two-dimensionalPoisson process in a ball of radius r centered at O,C(r).1. Generate independent exponentials X1; X2; : : : withrate 1, stopping at
N = min�n : X1 +X2 + � � � +Xn�� > r2�

2. if N = 1, stop, there are no points in C(r). Other-wise, for i = 1; 2; : : : ; N � 1, setRi =p(X1 +X2 + � � � +Xi)=��:3. Generate independent uniform [0; 1] random variablesU1; U2; : : : ; UN�1. 27



4. Return the N�1 Poisson points in C(r) whose polarcoordinates are (Ri; 2�Ui); i = 1; : : : ; N � 1.
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Brownian motionFinance Application:As you may know something about the celebrated Black-Scholes formula of �nance. The problem addressedby the formula is determining how much an \option"should cost. This option is called the \call" options.� A call option on a certain stock is the right to buya share of the stock at a certain �xed price (thestrike price) at a certain �xed time in the future (thematurity date).� If I buy a call option from you, I am paying you acertain amount of money in return for the right toforce you to sell me a share of the stock, if I wantit, at the strike price, K, on the maturity date, t1.29



� The problem is, what is the right amount of moneyfor me to pay for this right?{ The meaning of the term right here relates to theeconomic term arbitrage.{ An arbitrage opportunity is the opportunity tomake money instantly and without risk. That is,you get some money for sure, right now.{ Such free lunches are not supposed to exist, or atleast should be rare and short-lived.The basic reason for believing this is that manypeople are looking for such opportunities to makemoney.� If the price of commodity A were so low, for ex-ample, that some clever �nancial transaction in-
30



volving buying commodity A and perhaps sellingsome others were guaranteed to make an instan-taneous pro�t, then many eager arbitrage seek-ers would try to perform the transaction manytimes.� The resulting increased demand for commod-ity A would cause its price to increase, therebydestroying the arbitrage opportunity.� It assume that there is a �nancial instrument calledbond such that its \interest rate" or the \riskless"rate of return be r, that is, $1 in a riskless invest-ment today becomes $exp(rt) at time t.dB(t)dt = rB(t);where B(t) is the bond price at time t.31



� Let the stock price at time t be X(t).� A little thought shows that the value of the optionat time t1 is the random variable (X(t1)�K)+, sinceit makes sense for me to exercise the option if andonly if X(t1) > K.� Let Y (t) denote the magic, no-arbitrage price for theoption that we are seeking.Assume that Y (t) may be expressed as some func-tion f (X(t); t) of X(t) and t; our goal is to determinethe function f .� Assume a simple probabilistic model for the evolu-tion of the stock price: suppose X is the geometricBrownian motion having stochastic di�erentialdX = �Xdt + �XdW:32



Thus, X is the exponential of a Brownian motionwith drift.�Note that the riskless investments change as exp(linearfunction), and stocks change as exp(Brownian mo-tion).What we are really assuming is that returns, that is,proportional changes in the stock price, are station-ary and independent over di�erent time intervals.The formulation of this process was inspired by thephysical phenomenon of Brownian motion, which is theirregular jiggling sort of movement exhibited by a smallparticle suspended in a uid, named after the botanistRobert Brown who observed and studied it in 1827.� A physical explanation of Brownian motion was given33



by Einstein, who analyzed Brownian motion as thecumulative e�ect of innumerable collisions of thesuspended particle with the molecules of the uid.� Einstein's analysis provided historically important sup-port for the atomic theory of matter, which was stilla matter of controversy at the time-shortly after1900.� The mathematical theory of Brownian motion wasgiven a �rm foundation by Norbert Wiener in 1923;the mathematical model we will study is also knownas the \Wiener process."Brownian motion and di�usions are used all the time inmodels in all sorts of �elds, such as �nance (in mod-eling the prices of stocks, for example), economics,34



queueing theory, engineering, and biology.� Just as a pollen particle is continually bu�eted bycollisions with water molecules, the price of a stockis bu�eted by the actions of many individual in-vestors.Construction of Brownian motion on the time interval[0; 1]:� Connect-the-dots approach: At each stage of theconstruction we obtain a more and more detailedpicture of a sample path.�W (0) = 0� For W (1), we generate a N(0; 1) random variable Z1and take Z1 to be W (1) since W (1) � N(0; 1).
35



� Given that the path passes through the two points(0; 0) and (1; Z1), the conditional expectation is thelinear interpolation X(0)(t) = Z1t.This will be our �rst crude approximation to a sam-ple path.�Next let's simulate a value for W (1=2).{ Given the values we have already generated forW (0) andW (1), we know thatW (1=2) � N(Z1=2; (1=2)(1=2)).{ Generate another independent standard randomvariable Z2 and take W (1=2) to be X(0)(1=2) +(1=2)Z2.{De�ne the approximation X(1) to be the piece-wise linear path joining the three points (0; 0),(1=2;W (1=2)), and (1;W (1)).36



� Simulate W (1=4) and W (3=4).{ E(W (t) j W (0);W (1=2);W (1)) = X(1)(t){ Conditional variance of both W (1=4) and W (3=4)is (1=4)(1=4)=(1=2) = 1=8.{ Generate two more independent standard randomvariables Z3 and Z4, and de�ne
W (1=4) = X(1)(1=4) + 1p8Z3;
W (3=4) = X(1)(3=4) + 1p8Z4:

{ The approximation X(2) to be the piecewise lin-ear interpolation of the simulated values we haveobtained for the times 0, 1=4, 1=2, 3=4, and 1.� In general, to get from X(n) to X(n+1), we generate37



2n new standard normal random variables Z2n+1; Z2n+2; : : : ; Z2n+1,multiply these by the appropriate conditional stan-dard deviation p2�n�2 = 2�(n=2)�1, and add to thevalues X(n)(1=2n+1); X(n)(3=2n+1); : : : ; X(n)(1�1=2n+1)to get the new values X(n+1)(1=2n+1); X(n+1)(3=2n+1); : : : ; X(n+1)(1� 1=2n+1).� Claim. With probability 1, the sequence of functionsX(1); X(2); : : : converges uniformly over the interval[0; 1].{ The limit of a uniformly convergent sequence ofcontinuous functions is a continuous function.{ To appreciate the need for uniformity of conver-gence in order to be guaranteed that the limitfunction is continuous, recall the following stan-
38



dard example.For n = 1; 2; : : :, consider the function tn for t 2[0; 1]. Then as n ! 1, this converges to 0 for allt < 1 whereas it converges to 1 for t = 1, so thatthe limit is not a continuous function.{De�ne the maximum di�erenceMn between X(n+1)and X(n) byMn = max
t2[0;1] j X(n+1)(t)�X(n)(t) j :

{Note that if PMn < 1, then the sequence offunctions X(1); X(2); : : : converges uniformly over[0; 1].{ It is su�cient to show that PfPMn <1g = 1.
39



{Observe thatMn = 2�n=2�1maxfj Z2n+1 j; j Z2n+2 j; : : : ; j Z2n+1 jg:{Note that1X
n=1Pfj Zn j>

pc log ng � 2 1p2�
1X
n=1

e�(1=2)c log npc log n
= 2pc�

1X
n=1

1nc=2(log n)1=2which is �nite for c > 2.{ By the Borel-Cantelli lemma,Pfj Zn j>pc log n in�nitely ofteng = 0:{ Taking c > 2, the fact implies that with probability1, Mn � 2�n=2�1qc log(2n+1)40



holds for all su�ciently large n.We have PMn < 1 with probability 1, whichcompletes the proof of the above claim.
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Acceptance/Rejection MethodThis method assumes that we have a method for sim-ulating from some density function g and our task isutilize samples from g to simulate from a given densityfunction f .g can be fairly arbitrary except for one condition men-tioned below.� The basic idea is to simulate from g and accept thesamples with probability proportional to the ratiof=g.{ Requirement: Let C be a constant such thatf (Y )g(Y ) � C; for all Y :
� Simulation procedure: 42



(1) Simulate Y from the density g and simulate Ufrom uniform [0; 1].(2) If U � f (Y )=[Cg(Y )] then X = Y else go to step1.

43



Validity of Acceptance/Rejection Method� Let X be the value obtained and n be the numberof iterations required to reach this value.
P (X � x) = P (Yn � x) = P �Y � x j U � f (Yn)Cg(Yn)

�

= P �Y � x; U � f (Yn)
Cg(Yn)�P �Y � x; U � f (Yn)
Cg(Yn)�

= R x�1 R f (y)=Cg(y)0 1dugY (y)dudyR1�1 R f (y)=Cg(y)0 1dugY (y)dudy
= R x�1 f (y)

Cg(y)gY (y)dyR1�1 f (y)
Cg(y)gY (y)dy;44



since Y and U are independent random variables.(Their joint density function is the product of themarginals g(y)� 1)� As x ! 1, the left side goes to 1 and the integralon the right side also goes to 1.Therefore,
C Z 1�1 f (y)Cg(y)gY (y)dy = 1

and P (X � x) = R x�1 f (Y )dY . We conclude that Xis random with probability density f .E�ciency: For a given value of Y we accept Y by gen-erating a uniform U and comparing U with f (Y )=Cg(Y ).� Accept Y with probability f (Y )=Cg(Y ).
45



� Each iteration in the loop involves independent real-izations, we can compute the probability of accept-ing Y as X according to
P �U � f (Y )Cg(Y )

� = K = 1C:If C is large then the process, of generating samplesfrom f using this method, will be slow.�What is the distribution of n?Illustration: Use acceptance/rejection method to gen-erate sample from standard normal density function.� Find g with support on (�1;1).{ Sampling from the standard exponential densityfunction (g(x) = exp(�x)) can be done quickly.
46



{Note that the support of g is on [0;1) and fis symmetric at 0. Convert the problem to thegeneration of half-normal variate.� Generate X =j Z j with density function
f (x) = 2p2� exp �x22

! ; x � 0:
�Determine C.{ The bound on the ratio of f to g:f (x)g(x) =r2e� exp �(x� 1)22

! �r2e� = C:
{ f (x)=Cg(x) = exp(�(x� 1)2=2).� Algorithm 1 47



1. Generate Y , an exponential random variable withmean 1, and U , a uniform [0; 1] random variable.2. If U � exp(�(Y � 1)2=2) set X = Y , otherwisereturn to (1).� Algorithm 2Observe that � log(U) � (Y � 1)2=2 and log(U) isexponential with rate 1.1. Generate Y1 and Y2, two samples from exponentialrandom variable with mean 1.2. If Y2 � (Y1� 1)2=2 set X = Y1, otherwise return to(1).Having generated a random variable which is the ab-solute value of a standard normal, we can generatesample from standard normal.48



1. Generate U a uniform random variable the algo-rithm described above.2. If U 2 (0; 1=2] set Z = X, else set Z = �X.Example on R-programming:Generate deviates from a beta distribution with param-eters � and �.
f (x) = 1B(�; �)x��1(1� x)��1:

� It has a �nite support [0; 1].� Choose g as a uniform.�Need to �nd the mode f . Solve�� 1x � � � 11� x = 0
and obtain xmode = (�� 1)=(� + � � 2).49



� C = (xmode)��1(1� xmode)��1�(� + �)=(�(�)�(�))R-program� alpha<- 2; beta<- 7; nsimu<- 1000� xmode<- (alpha -1)/(alpha+ beta -2)� dmax<- xmode^(alpha -1)*(1-xmode)^(beta-1)*

gamma(alpha+beta)/(gamma(alpha)*gamma(beta))� y<- runif(nsimu)� x<- na.omit(ifelse(runif(nsimu)<=dbeta(y,alpha,

beta)/dmax,y,NA))Note that dmax� 3:18 in this case, we expect to getaround 1000=3:18 deviates.Remarks�No clear rule to �nd g. 50



{ g(y) should be similar and dominate f (y).� The constant C maynot be easy to �nd.{ As an example, how do we determine C for theposterior distributionp(� j y) / (2 + �)125(1� �)38�34If it is hard to apply rejection method, what can beused?
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Simulating Multivariate Random VariatesWith multivariate distributions, one is often faced withenormous problems for random variate generation.� Von Neumann's rejection method [von Neumann1963] requires a case-by-case study.{ It is di�cult to determine a usable majorizing den-sity.� The conditional method (generate one random vari-ate; generate the next one conditional on the �rstone, and so forth) requires often di�cult-to-computemarginal densities.Consider the generation of multivariate normal withmean 0 and variance-covariance matrix � = (�ij)p�p.
52



{ Xp�1 has a multivariate normal distribution i� Xcan be written as X = � +AZwhere �p�p, A are constant andX = (X1; : : : ; Xp)Twhere the Zj are independent standard normalvariables.{ � = AATA is nonsingular i� � is positive de�nite.{ By the spectral decomposition theorem, there ex-ists P orthogonal such that � = PTDP.Here D is the diagonal matrix whose diagonal en-tries are nonnegative eigenvalues of �.{ If rank(�) = p, �1=2 = PD1=2PT .Useful R-command: 53



� solve: Solve a system of equations.� eigen: Computes eigenvalues and eigenvectors.� backsolve: Solve an upper or lower TriangularSystem.� chol: Compute the Cholesky factorization of areal symmetric positive-de�nite square matrix.� qr: The QR decomposition of a matrix{Write X = ((X(1))T ; (X(2))T )T , the conditional dis-tribution of X(2) given X(1) = x(1) is normal withmean �(2) +�21��111 (x(1)� �(1)) and variance �22��21��111 �21.{X1 is generated as N(�1; �11),
{X2 is generated as N(�2+�12X1=�11; �22��212=�11),54



and so on,� Generate multivariate random variates by use of ei-ther iid univariates followed by a transformation.
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