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Classical Uniform Variate Generator

Simulation is used heavily when analytical study of a
statistical procedure becomes intractable.

e Simulation of random variables and random pro-
cesses using computers is among the fastest growing
areas of computational statistics.

e Many statistical techniques rely on simulating ran-
dom variables.

— One traditional area is the use of random numbers
to sample from a population.

— More recent applications include simulation of high-
dimensional, complex stochastic systems that are
beyond analytical studies.



—In many practical situations the probability dis-
tributions are far too complicated to analyze and
often it is easier to simulate these distributions
on computers and the resulting samples can be
analyzed instead.

e The study of a random variable through simulations
iIs becoming a powerful tool in the hands of the
statisticians.

Monte Carlo experimentation is the use of simulated
random numbers to estimate some functional of a prob-
ability distribution.

e Building block in any simulation study is non-uniform
variate generation.

— Many algorithms are available.
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— Example: Generate normal random variable.

+* Box-Muller method (Polar method)

If X and Y are independent and standard normal
random variables then for

) = tan ! (%), R:\/X2+Y2

f is uniform in [0, 27] and R’ is exponential with
mean 2.

(0) Uy, Us iid U(0,1)
(1) X; = (=2In U2 cos(2n )
(2) X5 = (—2InU))Y % sin(27Us)
(3) X1, Xy iid N(0,1)

x Inverse method
If X ~ F, then F(X)~ U(0,1).
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—In the above methods, it assumes that we can

produce an endless flow of a iid uniform random
variate generators.

x On the computer, we generally settle for pseudo-
random numbers, that is, numbers that appear
to be random but actually deterministic.

e CDF transformation method
X=F (U),U~U(0,1) where
F~(u) =inf{x | F(x) > u}
is the generalized inverse of the cdf F.

— For a standard exponential random variable, the
transformation

X =log(U)

yields one exponential for each uniform variable.
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— How to simulate the process of flipping a coin
with probability of head p?

e For a discrete random variable, although the inverse
of the cdf does not exist, the inverse cdf method
can still be used.

— The value of the discrete random variable is cho-
sen as the smallest value within its countable range
such that the cdf is no less than the value of the
uniform variate.

e For a multivariate random variable, the inverse cdf
method yields a level curve in the range of the ran-
dom variable; hence, the method is not directly use-
ful for multivariate random variable.

— Multivariate random variates can be generated us-
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ing the inverse cdf method first on a univariate
marginal and then on a sequence of univariate
conditionals.



Discrete Random Variables

A discrete random variable takes only a countable num-
ber of values with pre-defined probabilities.

e A discrete random variable is characterized by its
probability mass function defined as P(z1) = p;, P(z9)
9, ..., P(xyn) = pn,... such that such that for all i,
0<p;, <1, and Zz’pi: L.

e Commonly used discrete random variables are bino-
mial, Poisson, geometric and negative-binomial. As
an

e How do we generate a Poisson random variable with
parameter \7?
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The probability mass function is given by:

Xi
Pi = GXP(—)\).—', 1=0,1,2,....
1.

Note that
PX=i+1) A
PX=i) i+1
Fx (i + 1) can be written in the following interative
form:

FX(i—I—l):FX(i)—I—P(X:i)iil.

The algorithm is

i. Generate U according to U|0, 1].
ii. Set i =0, p=exp(—A), and F = p.
. Iif U < F, set X =1 and stop.
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iv.Set p=Ap/(i+1), F=F+p, i=1+1
v. Go to Step (iii).

Definition For a given random variable, with a specified proba-
bility mass function {(x;,p;),7 =0,1,2,...}, the pro-
cess of selecting a value r;, with probability p; is

called Simulation. If this selection is performed many
times, generating a sequence {X;}, then

3Ly ({ih) = i
j=1
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Uniform Random Number Generation

e Use algebraic methods to generate sequences of
numbers that mimic the behavior of a uniform ran-
dom variable.

— These numbers are called pseudorandom num-
bers.

— A uniform pseudorandom number generator is a
mapping f that, starting from an initial value z,
generates a sequence

0, f (o), f(f(x0)), f(f(f(x0))), -

Since f is computed on a computer (without the
use of random number generator!!), it is a deter-
ministic mapping. That is, given () the remaining
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sequence is fixed everytime the sequence is com-
puted.

The elements of such a sequence should have the
following properties:

1. The patterns between the numbers the appearing
in a sequence should be minimized.

2. The correlation between the neighboring elements
should be reasonably small.

3. The values should be distributed nearly uniformly
over the whole the range of possible values.

4. The sequences should have large periods, where
a period is defined to be duration after which a
sequence repeats itself.

5. There exist a set of goodness of fit tests for test-
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ing the probability distributions associated with
the observed random variables. The elements of a
pseudorandom sequence should provide a reason-
able performance in these goodness of fit tests.

e No random number generator is capable of gener-
ating (a) uniform and (b) independent variates.

e Slight defect in RNG may have dramatic effect on
whole simulation study.
— Deng and Chhikara (1992)
—If U,Us, ..., Uy iid ~ U(0,1),
Vvn/12
What if the assumption of iid and/or “U(0,1)”
fail?

~ N(0,1).
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e Classical uniform variate generator
Linear congruential generator [Lehmer (1951)]

- X, =BX,_1+ A mod n.

—U; = X;/m

— LCG has been used in almost all computer systems
and packages.

— Popular LCG (e.g., IMSL, SAS)
(a) B =16807, A=0, m =23 —1.
(b) Its period is m — 1 ~ 2.1 - 10",
— Comments
+ Period (< m) depends on B, A, m, X.
+x The period is too short by today’s standard.
Large-scale simulation study is more and more
common.
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x uniformity in 1-dimensional space

x LCG cannot generate set of all lattice points in
k space, S, for k > 2.

x Consider Sy = {([,J) | 0 < I,J < m} and do
plots of (U;,U; 1), i =0,1,2,...

x Insert p7 and 8 of Deng’s note.

e Feedback shift register [Tausworthe (1965)]

A 27]?:1 Ciaj—i(mOd 2) where a;, c; € {O, 1}, Cl. =
1

— The mth random variate is the d bits binary num-
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ber

O.apay...ay—1 base 2
O.adadH .- a94-1 base 2

O.amdade c. amd+d_1 base 2

x It can have an extremely long period, ok _1, (if
¢;'s are properly selected) for a large £,

x good theoretical £-space uniformity

x Poor empirical performance

e Combination generators:
Wichmann and Hill (1982): Add three LCGs and
take its fractional part.
_Xi = AXi—l mod mi
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—Y;, = BY;,_1{ mod my

— Zi — CZz'—l mod 3

—U; = Xz-/ml + Yz/mg + Zi/mg mod 1

Comments:

— Period is LCM(mj —1,m9—1,mg—1).
For m; = 30269, mo = 30307, m3g = 30323, its period
is 6.95 x 10'2.

— About 3000 times longer period than LCG-16807.

— About three times slower than LCG.

— No theoretical justification for uniformity provided.

e Statistical justification given in Deng and George

(1990)
— Suppose that X and X5 are independent r.v. over
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0, 1] with pdfs fi(x1) and f5(x9) respectively.
—| filz1) = 1< e, | folze) —1[< e
—Let Y = X7+ X9 mod 1 and denote its pdf by f(y).
— Conclusion: | f(y) — 1 |< €jeo.

In general, Y = )" ; X; mod 1 and denote its pdf
by f(y). Then

fw)—11<]] e
i=1
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Exponential and Poisson RVs

The exponential density function is defined by
[ Aexp(—Ax), if 0 <z < oo,
fla) = { 0, otherwise.

Here )\ is any positive constant, depending on the ex-
periment.

e The exponential density is often used describe ex-
periments involving a question of the form: How
long until something happens?

e For example, the exponential density is often used to
study the time between emissions of particles from
a radioactive source.

e “Memoryless” property:
Let 7' be an exponentially distributed random vari-
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able with parameter ).
It says that P(T">r+s|T >r)= P(T > s).

There is a very important relationship between the ex-
ponential density and the Poisson distribution.

e Define X, X»,... to be a sequence of independent
exponentially distributed random variables with pa-
rameter .

e Think of X, as denoting the amount of time between
the ith and (i + 1)st emissions of a particle by a
radioactive source.

e Consider a time interval of length ¢, and we let Y de-
note the random variable which counts the number
of emissions that occur in this time interval.

e Find the distribution function of Y (clearly, Y is a
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discrete random variable).

o Let 5, denote the sum X{+ Xo+ ...+ X, then it is
easy to see that

P(Y =n) = P(Sy, <t and Sy 1 > )
— P(Sp <t)— P(Sy.1 <1).

e The density of 5, is given by the following formula:

A n—1 .
gn(z) = )‘% exp(—Az), if x>0,
0, otherwise.

It is a gamma density with parameters )\ and n.

e It is easy to show by induction on n that the cumu-
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lative distribution function of S, is given by:

n—1
1 — exp(—Az) (1+%+---+(8f)1)!> Cif >0,

0, otherwis

Gplx) =

We recognize easily that it is the probability of tak-
ing on the value n by a Poisson-distributed random
variable, with parameter A\t.

e The above relationship will allow us to simulate a
Poisson distribution, once we have found a way to
simulate an exponential density.

e To simulate a Poisson random variable 11/ with pa-
rameter \, we

— Generate a sequence of values of an exponentially
distributed random variable with the same param-
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eter.
— Keep track of the subtotals S;. of these values.

— We stop generating the sequence when the subto-
tal first exceeds ).

— Assume that we find that S, < A < 5,,11. Then
the value 7 is returned as a simulated value for

w.
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Simulating Poisson Processes

A point process consisting of randomly occurring points
in the plane is said to be a two-dimensional Poisson
process having rate ), if

1. the number of points in any given region of area A
is Poisson distributed with mean )\A; and

2. the number of points in disjoint regions are indepen-
dent.

Let O be the origin in R? and R; be the ith nearest
Poisson point to O, i > 1 (Ry = O).
It can be shown that

o (wR?—wRZZ_l) are exponentially distributed with rate
A.
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e By symmetry, the respective angles of the Poisson
points are independent and uniform [0, 27].

The following algorithm simulates a two-dimensional

Poisson process in a ball of radius » centered at O,

C(r).

1. Generate independent exponentials X, X5, ... with
rate 1, stopping at

X1+ X oo+ X
N:min{n: L+ A2t T n>7“2}

AT

2.if N =1, stop, there are no points in C(r). Other-
wise, for 1 =1,2,... . N — 1, set

Ri=+(X1+Xo+-+X;)/ 7.

3. Generate independent uniform |0, 1] random variables
Ui, Uz, ..., Un_1.
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4. Return the N — 1 Poisson points in C(r) whose polar
coordinates are (R;,27U;); i=1,...,N — 1.
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Brownian motion

Finance Application:

As you may know something about the celebrated Black-
Scholes formula of finance. The problem addressed
by the formula is determining how much an “option”
should cost. This option is called the “call” options.

e A call option on a certain stock is the right to buy
a share of the stock at a certain fixed price (the
strike price) at a certain fixed time in the future (the
maturity date).

e If | buy a call option from you, | am paying you a
certain amount of money in return for the right to
force you to sell me a share of the stock, if | want
it, at the strike price, K, on the maturity date, 7.

29



e The problem is, what is the right amount of money
for me to pay for this right?

— The meaning of the term right here relates to the
economic term arbitrage.

— An arbitrage opportunity is the opportunity to
make money instantly and without risk. That is,
you get some money for sure, right now.

— Such free lunches are not supposed to exist, or at
least should be rare and short-lived.
The basic reason for believing this is that many
people are looking for such opportunities to make
money.

x If the price of commodity A were so low, for ex-
ample, that some clever financial transaction in-
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volving buying commaodity A and perhaps selling
some others were guaranteed to make an instan-
taneous profit, then many eager arbitrage seek-
ers would try to perform the transaction many
times.

x The resulting increased demand for commod-
ity A would cause its price to increase, thereby
destroying the arbitrage opportunity.

e It assume that there is a financial instrument called
bond such that its “interest rate” or the “riskless”
rate of return be r, that is, $1 in a riskless invest-
ment today becomes $exp(rt) at time t.

IB(t)
—— =rB(),

where B(t) is the bond price at time ¢.
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e Let the stock price at time ¢t be X (¢).

e A little thought shows that the value of the option
at time ¢; is the random variable (X (¢{) — K)+, since

it makes sense for me to exercise the option if and
only if X(t1) > K.

e Let Y (¢) denote the magic, no-arbitrage price for the
option that we are seeking.
Assume that Y (¢) may be expressed as some func-
tion f(X(t),t) of X(¢) and t; our goal is to determine
the function f.

e Assume a simple probabilistic model for the evolu-
tion of the stock price: suppose X is the geometric
Brownian motion having stochastic differential

dX = uXdt + o XdW.
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Thus, X is the exponential of a Brownian motion
with drift.

¢ Note that the riskless investments change as exp(linear
function), and stocks change as exp(Brownian mo-
tion).
What we are really assuming is that returns, that is,
proportional changes in the stock price, are station-
ary and independent over different time intervals.

The formulation of this process was inspired by the
physical phenomenon of Brownian motion, which is the
irregular jiggling sort of movement exhibited by a small
particle suspended in a fluid, named after the botanist
Robert Brown who observed and studied it in 1827.

e A physical explanation of Brownian motion was given
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by Einstein, who analyzed Brownian motion as the
cumulative effect of innumerable collisions of the
suspended particle with the molecules of the fluid.

¢ Einstein’s analysis provided historically important sup-
port for the atomic theory of matter, which was still
a matter of controversy at the time-shortly after
1900.

e The mathematical theory of Brownian motion was
given a firm foundation by Norbert Wiener in 1923;
the mathematical model we will study is also known
as the “Wiener process.”

Brownian motion and diffusions are used all the time in
models in all sorts of fields, such as finance (in mod-
eling the prices of stocks, for example), economics,
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queueing theory, engineering, and biology.

e Just as a pollen particle is continually buffeted by
collisions with water molecules, the price of a stock
is buffeted by the actions of many individual in-
vestors.

Construction of Brownian motion on the time interval
0, 1]:

e Connect-the-dots approach: At each stage of the
construction we obtain a more and more detailed

picture of a sample path.

e V(0)=0

e For W (1), we generate a N(0, 1) random variable 7;
and take Z; to be W (1) since W (1) ~ N(0, 1).
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¢ Given that the path passes through the two points
(0,0) and (1, Z7), the conditional expectation is the
linear interpolation X0)(¢) = Zt.
This will be our first crude approximation to a sam-
ple path.

e Next let’s simulate a value for W (1/2).

— Given the values we have already generated for
W (0) and W (1), we know that W (1/2) ~ N(Z1/2,(1/2)(1/
— Generate another independent standard random
variable Z, and take W(1/2) to be X(0)(1/2) +
(1/2)Z5.
— Define the approximation X to be the piece-
wise linear path joining the three points (0,0),
(1/2,W(1/2)), and (1, W (1)).
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e Simulate W (1/4) and W (3/4).
— B(W (1) | W(0), W (1/2), W(1)) = XI(t)
— Conditional variance of both W (1/4) and W (3/4)
is (1/4)(1/4)/(1/2) = 1/8.
— Generate two more independent standard random
variables Z5 and Z,;, and define

Wi(t/4) = xW(1/4) + %Zg,

W(3/4) = XxW(3/4) + %24.

— The approximation X2 to be the piecewise lin-
ear interpolation of the simulated values we have
obtained for the times 0, 1/4, 1/2, 3/4, and 1.

¢ In general, to get from X o X, we generate
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2" new standard normal random variables Zon {, Zon 9, ...

multiply these by the appropriate conditional stan-
dard deviation V272 = 2=(7/2)~1 and add to the

values X (®)(1/2n+1) x(m)(3/9n+hy X (p)(1—1/27+])
to get the new values X ("+1)(1/2n+1) x(n+1)(3/ont+1y
1)(1 — 1/27+0),

e Claim. With probability 1, the sequence of functions
X(l),X@), ... converges uniformly over the interval
0, 1].

— The limit of a uniformly convergent sequence of
continuous functions is a continuous function.

— To appreciate the need for uniformity of conver-
gence in order to be guaranteed that the limit
function is continuous, recall the following stan-
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dard example.

For n = 1,2,..., consider the function ¢" for t €
0,1]. Then as n — 1, this converges to 0 for all
t < 1 whereas it converges to 1 for t = 1, so that
the limit is not a continuous function.

— Define the maximum difference ), between X (nt+1)
and X (™) by

M, = max | X"t — xM@) |

tel0,1]
— Note that if Y M, < oo, then the sequence of
functions X(l),X@), ... converges uniformly over
0, 1].

— It is sufficient to show that P{) M, < oo} = 1.
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— Observe that
My = 27" max{| Zony1 || Zonia |, o, | Zoni1 |}
— Note that

ZP{\ Zn |> /clogn} < 2\/%2

—(1/2)clogn

Veclogn

\/CT nzzl nc/2(log n)1/2
which is finite for ¢ > 2.
— By the Borel-Cantelli lemma,

P{| Z,, |> v/clogn infinitely often} = 0.
— Taking ¢ > 2, the fact implies that with probability
1,

My, < 2_”’/2_1\/(: log(2n+1)

40



holds for all sufficiently large n.
We have ) M, < oo with probability 1, which
completes the proof of the above claim.
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Acceptance/Rejection Method

This method assumes that we have a method for sim-
ulating from some density function ¢ and our task is
utilize samples from ¢ to simulate from a given density
function f.

g can be fairly arbitrary except for one condition men-
tioned below.

e The basic idea is to simulate from g and accept the
samples with probability proportional to the ratio

/9.

— Requirement: Let C' be a constant such that
@ < (' for all Y.
g(Y)

e Simulation procedure:
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(1) Simulate Y from the density ¢ and simulate U
from uniform [0, 1].

(2)If U < f(Y)/|Cg(Y)] then X =Y else go to step
1.
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Validity of Acceptance/Rejection Method

e Let X be the value obtained and n be the number
of iterations required to reach this value.

P(ngzf)ZP(Yn§37>:P<Y<x‘U_C{g<g2))

P(Y <a.U <)

P (Y <z.U< ({%))

L  [TWCID 1 qugy (o) dudy
[ [IWICIY) gy () dudy
B [f %QY(?JM?J
: e %gy(y)dy’
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since Y and U are independent random variables.
(Their joint density function is the product of the
marginals ¢(y) x 1)

e As r — oo, the left side goes to 1 and the integral
on the right side also goes to 1.

Therefore,
C/ gg(?{))gy(y)dyzl

and P(X <z)= [T f(Y)dY. We conclude that X
is random with probablllty density f.

Efficiency: For a given value of Y we accept Y by gen-
erating a uniform U and comparing U with f(Y)/Cg(Y).

e Accept Y with probability f(Y)/Cg(Y).
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e Each iteration in the loop involves independent real-
izations, we can compute the probability of accept-
ing Y as X according to

f(Y) 1
PlUXL =K =—.
( — Cy(Y) C
If C' is large then the process, of generating samples
from f using this method, will be slow.

e What is the distribution of n?

lllustration: Use acceptance/rejection method to gen-
erate sample from standard normal density function.

e Find ¢ with support on (—oo, o).

— Sampling from the standard exponential density
function (g(z) = exp(—xz)) can be done quickly.
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— Note that the support of ¢ is on [0,00) and f
is symmetric at 0. Convert the problem to the
generation of half-normal variate.

e Generate X =| Z | with density function

2
flz) = fQ_ﬂexp <7> Lz >0,

e Determine (.

— The bound on the ratio of f to g:

flx)  [2e (z — 1) 2e
@\/;exp< > )f Faa

~ f(2)/Cg(x) = exp(—(z — 1)7/2).
e Algorithm 1
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1. Generate Y, an exponential random variable with
mean 1, and U, a uniform [0, 1| random variable.

2.1f U < exp(—(Y —1)?/2) set X = Y, otherwise
return to (1).

e Algorithm 2
Observe that —log(U) > (Y — 1)2/2 and log(U) is

exponential with rate 1.

1. Generate Y7 and Y5, two samples from exponential
random variable with mean 1.

2.1f Y5 > (Y] —1)?/2 set X =Y}, otherwise return to

(1).

Having generated a random variable which is the ab-
solute value of a standard normal, we can generate
sample from standard normal.
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1. Generate U a uniform random variable the algo-
rithm described above.

2.1f U € (0,1/2] set Z = X, else set 7 = —X.

Example on R-programming:
Generate deviates from a beta distribution with param-
eters o and f.

1

"= Ba.m
e It has a finite support [0, 1].

207N — )7L

e Choose ¢ as a uniform.

e Need to find the mode f. Solve
a—1 pf-—1

r l—uz
and obtain xmode = (o — 1)/(a+ ( — 2).
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o C = (zmode)® (1 — zmode)’ (e + B)/(T'(a)L(B))
R-program

e alpha<- 2; beta<- 7; nsimu<- 1000

e xmode<- (alpha -1)/(alpha+ beta -2)

e dmax<- xmode~ (alpha -1)x*(1-xmode) "~ (beta-1)*
gamma (alpha+beta)/(gamma (alpha) *gamma (beta) )

e y<- runif(nsimu)

e x<- na.omit(ifelse(runif(nsimu)<=dbeta(y,alpha,
beta)/dmax,y,NA))

Note that dmax~ 3.18 in this case, we expect to get
around 1000/3.18 deviates.
Remarks

e No clear rule to find g.
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— ¢g(y) should be similar and dominate f(y).
e The constant (' maynot be easy to find.

— As an example, how do we determine C for the
posterior distribution

p(0 | y) oc (2+ 0)12°(1 — 6)°9

If it is hard to apply rejection method, what can be
used?
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Simulating Multivariate Random Variates

With multivariate distributions, one is often faced with
enormous problems for random variate generation.

e Von Neumann’s rejection method [von Neumann
1963] requires a case-by-case study.

— It is difficult to determine a usable majorizing den-
sity.

e The conditional method (generate one random vari-
ate; generate the next one conditional on the first
one, and so forth) requires often difficult-to-compute
marginal densities.

Consider the generation of multivariate normal with
mean 0 and variance-covariance matrix X = (0;;)pxp-
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— Xpx1 has a multivariate normal distribution iff X
can be written as

X=pu+A%Z

where /i)x,, A are constant and X = (X7,..., X))’
where the 7, are independent standard normal
variables.

-y =AAT
A is nonsingular iff X is positive definite.

— By the spectral decomposition theorem, there ex-
ists P orthogonal such that X = PI{DP.
Here D is the diagonal matrix whose diagonal en-
tries are nonnegative eigenvalues of ..

—If rank(L) = p, 212 = PDY/2PT,
Useful R-command:
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x solve: Solve a system of equations.

x eigen: Computes eigenvalues and eigenvectors.

+ backsolve: Solve an upper or lower Triangular
System.

x chol: Compute the Cholesky factorization of a
real symmetric positive-definite square matrix.

x qr: The QR decomposition of a matrix

— Write X = (XI)T (XENTYT| the conditional dis-
tribution of X2 given X = x(1) is normal with
mean ,u<2) + Zngﬁl(x(l) — ,u(l)) and variance Yoy —
22121_11221.

— X is generated as N(uj,011),

— Xy is generated as N(uo+019X1/011,00—075/011),
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and so on,

e Generate multivariate random variates by use of ei-
ther iid univariates followed by a transformation.
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