Abitrage Approach to Pricing Derivatives

Jin-Chuan Duan
Hong Kong University of Science and Technology

Correspondence to:
Prof. Jin-Chuan Duan
Department of Finance
Hong Kong University of Science & Technology
Clear Water Bay, Kowloon, Hong Kong
Tel: (852) 2358 7671; Fax: (852) 2358 1749
E-mail: jcduan@ust.hk
Web: http://www.bm.ust.hk/~jcduan
Static vs. dynamic spanning

- Assume that there are N possible states at time 1. Every security entitles its holder an N-dimensional payoff vector. There are K securities with the $N \times K$ payoff matrix A and current $K \times 1$ price vector P.

- If A has a rank N, then the market is complete in the sense that any possible payoff structure can be spanned (static) by some portfolio of K securities.

- If A’s rank is less than N, the market is incomplete. A payoff structure can still be priced by arbitrage as long as it falls inside the static spanning.

- Arrow-Debreau equilibrium refers to a complete market competitive equilibrium in which allocations are efficient. Note that no arbitrage is a necessary condition of market equilibrium.

- The price vector P cannot be arbitrary. To say the least, it cannot permit arbitrage in the sense that any two portfolios with an identical payoff vector must have the same current value.

- If one is allowed to trade between time 0 and 1, the spanning set can be enlarged even though the number of securities remains fixed. In other words, one is more likely to be able to price a payoff structure by arbitrage.
Black-Schole dynamic spanning approach to option valuation

Asset price dynamic

\[\frac{dS_t}{S_t} = \mu dt + \sigma dW_t \]

Its derivative security with payoff function at time \(T \) equal to \(f(S_T; \theta) \) has a time-\(t \) value expressed as \(C(S_t, t; \sigma, \mu, T, r, \theta) \) or \(C_t \) for short.

Consider a dynamically rebalanced portfolio shorting \(\Delta_t \) units of the underlying asset to hedge the derivative security. The hedged portfolio’s value at time \(t \) is

\[V_t = C_t - \Delta_t S_t. \]

Applying Ito’s lemma gives rise to

\[dV_t = dC_t - \Delta_t dS_t \]

\[= \frac{\partial C_t}{\partial t} dt + \frac{\partial C_t}{\partial S_t} dS_t + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial^2 C_t}{\partial S_t^2} dt - \Delta_t dS_t \]

\[= \left(\frac{\partial C_t}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial^2 C_t}{\partial S_t^2} \right) dt + \left(\frac{\partial C_t}{\partial S_t} - \Delta_t \right) dS_t. \]

Setting \(\Delta_t = \frac{\partial C_t}{\partial S_t} \) yields a locally risk-free hedged portfolio. Excluding arbitrage, it must be true that
\[\left(\frac{\partial C_t}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial^2 C_t}{\partial S_t^2} \right) dt = rV_t dt \]

\[= r \left(C_t - S_t \frac{\partial C_t}{\partial S_t} \right) dt \]

or (the Black-Scholes PDE)

\[\frac{\partial C_t}{\partial t} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial^2 C_t}{\partial S_t^2} + rS_t \frac{\partial C_t}{\partial S_t} - rC_t = 0 \]

The solution to this PDE depends on the terminal condition: \(f(S_T; \theta) \). It can be solved using separation of variables, Green’s function or Fourier/Laplace transformation technique.

A probabilistic way of solving the generalized Black-Scholes PDE

When both \(\mu_t \) and \(\sigma_t \) are functions of \(S_t \), the Black-Scholes PDE applies.

\[\frac{\partial C_t}{\partial t} + \frac{1}{2} \sigma_t^2 S_t^2 \frac{\partial^2 C_t}{\partial S_t^2} + rS_t \frac{\partial C_t}{\partial S_t} - rC_t = 0 \]

The solution to the generalized PDE can be obtained by directly applying the backward equation for the Kac functional; that is the following conditional expectation satisfying the Black-Scholes PDE:
\[C_t = E\left\{ e^{-r(T-t)} f(S_T; \theta) \mid S_t \right\} \]

with respect to the following artificial diffusion system:

\[\frac{dS_t}{S_t} = rdt + \sigma_t dW_t^* \]

This probabilistic solution suggests a new perspective of risk-neutral valuation

Martingale pricing theory

The Kac functional result suggests that \(e^{-rT}S_t \) is a martingale with respect to the law \(Q \) which \(W_t^* \) is a standard Brownian motion. Note that \(C_T = f(S_T; \theta) \). The same martingale result is thus true for derivatives as well.

Alternatively, one can show this by the Kunita-Watanabe martingale representation theorem (see Harrison and Kreps (1979), *Journal of Economic Theory*).