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Static vs. dynamic spanning

•  Assume that there are N possible states at time 1.
Every security entitles its holder an N-dimensional
payoff vector. There are K securities with the N×K
payoff matrix A and current K×1 price vetor P.

•  If A has a rank N, then the market is complete in the
sense that any possbile payoff structure can be
spanned (static) by some portfolio of K securites.

•  If A’s rank is less than N, the market is incomplete. A
payoff structure can still be priced by arbitrage as long
as it falls inside the static spanning.

•  Arrow-Debreau equilibrium refers to a complete
market competitive equilibrium in which allocations
are efficient. Note that no arbitrage is a necessary
condition of market equilibrium.

•  The price vector P cannot be arbitrary. To say the
least, it cannot permit arbitrage in the sense that any
two portfolios with an identical payoff vector must has
the same current value.

•  If one is allowed to trade between time 0 and 1, the
spanning set can be enlarged even though the number
of securities remains fixed. In other words, one is
more likely to be able to price a payoff structure by
arbitrage.
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Black-Schole dynamic spanning approach to option
valuation

Asset price dynamic
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Its derivative security with payoff function at time T
equal to );( θTSf  has a time-t value expressed as

),,,,;,( θµσ rTtSC t  or tC  for short.

Consider a dynamically rebalanced portfolio shorting
−

∆ t units of the underlying asset to hedge the derivative
security. The hedged porfolio’s value at time t is

tttt SCV
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Applying Ito’s lemma gives rise to
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 yields a locally risk-free hedged

portfolio. Excluding arbitrage, it must be true that
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or (the Black-Scholes PDE)
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The solution to this PDE depends on the terminal
condition: );( θTSf  . It can be solved using separation of
variables, Green’s function or Fourier/Laplace
transformation technique.

A probabilistic way of solving the generalized
Black-Scholes PDE

When both tµ  and tσ  are functions of tS , the Black-
Scholes PDE applies.

0
2
1

2

2
22 =−

∂
∂+

∂
∂+

∂
∂

t
t

t
t

t

t
tt

t rC
S
CrS

S
CS

t
C σ

The solution to the generalized PDE can be obtained by
directly applying the backward equation for the Kac
functional; that is the following conditional expectation
satisfying the Black-Scholes PDE:
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with respect to the following artificial diffusion system:

*
tt

t

t dWrdt
S

dS σ+=

This probablistic solution suggests a new perspective of
risk-neutral valuation

Martingale pricing theory

The Kac functional result suggests that t
rtSe−  is a

martingale with respect to the law Q which *
tW  is a

standard Brownian motion. Note that );( θTT SfC = .
The same martingale result is thus true for derivatives as
well.

Alternatively, one can show this by the Kunita-Watanabe
martingale representation theorem (see Harrison and
Kreps (1979), Journal of Economic Theory).


