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Sampling from Populations: Sample Surveys

Where does the data come from?

• Much empirical data arises from experiments,
in which the investigator interacts in some
way with the units of observation and ac-
tually influences the conditions of the units
leading to the measurements.
Clinical trial on comparing effectiveness of
treatment is such an example.

• Many other sets of data result from simply
observing, that is, making a survey.

– Usually one cannot observe every indi-
vidual in the population, and often this
would not even be desirable, for many
individuals are similar.

– Sampling is needed because of limited re-
sources (time, money, etc).
Gallup polls before elections, telephone
surveys about commercial products

– One does not need to eat the whole bowl
to learn how the soup tastes; a spoonful
will suffice, provided that the soup has
been adequately stirred.
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∗ The “spoonful” is a sample from the
bowl (population).

∗ The “stirring” corresponds to drawing
a random sample.

Sample surveys are especially useful in busi-
ness and economics, market research, sociology,
and industrial quality control.

• A survey often involves an interview, a ques-
tionnaire, or some sort of inspection.

– Care must be taken in working out the
details of administration of the interview,
questionnaire, or inspection.

– The planning of a survey should involve
two kinds of professionals working together
- a subject-matter specialist (economist,
sociologist, production engineer) and a
statistician.
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Motivated Example

Suppose that one wants to draw a random sam-
ple from among the households in a county to
find out how many hours a day children watch
television.

• Individual children are the “units of obser-
vation.”
Question: How do we sample it?

• Households are the “sampling units.”

– The frame is a physical list of the sam-
pled population.
In this example, we have the household
registration record.

– Complication arising from the sampling
unit is different from units of observation:
Each sampling unit contains one, more
than one, or no units of observation.

• The list of household registration records on
the county is a“frame.”

• The“population sampled” consists of the chil-
dren in the county who live in households.
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• The “target population” is the set of all chil-
dren who live in the county.
In general, the target population is the pop-
ulation about which it is desired to make
inferences.

• Any difference between the population sam-
pled and the target population is a potential
source of bias.

• Question: Suppose that the sampling unit is
households on the county tax roll. Do you
forsee any bias?

Many problems would arise in carrying out the
survey of TV-viewing habits.
How should the survey be designed?

• For how many days should each child be ob-
served?
Suppose that it is decided to monitor the
TV viewing of the children for two-week pe-
riods be chosen.
The first question to be settled is Which two
week should be chosen?

– Should different two-week periods be cho-
sen for different subsamples of children?
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– How can one ensure that the parents keep
an accurate record of how long their chil-
dren watch TV?

– If there is more than one child in a house-
hold, should all of them be included in
the sample?

– Should some inducement to participate
be offered?

Nonresponse bias

• When a survey involves an expenditure of
time or effort on the part of those selected
to be in the sample, there are almost always
some individuals who refuse to respond.

• When the sampling unit is a household, and
interviewer may find no one home when he
or she calls a household designated to be in
a sample.

• Such failures to obtain information from each
unit meant to be sampled can introduce some
bias onto the results when those not respond-
ing differ systematically from those respond-
ing.
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Why do we need to introduce the term non-
response bias?

• It means, in effect, that the population sam-
pled differs from the target population, inas-
much as the population sampled consist only
of those individuals in the target population
who are willing to respond or can be induced
to do so.

• If, with respect to the characteristic of inter-
est in the study, the population of persons
who do not respond differs from those who
do, there is a nonresponse bias.
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The Literary Digest poll of 1936

• most famous flawed surveys

• It predicted a 57% to 43% victory for Re-
publican Alfred Landon over incumbent pres-
ident Franklin Roosevelt.

• Questionnaires were limited to about 10 mil-
lion voters, who were selected from lists such
as telephoon books and club memberships.

• Approximately 2.4 million of the question-
naires were returned.

• Two intrinsic problems:

– noneresponse: those who did not respond
may have voted differently from those
who did

– selection bias: even if all 10 million vot-
ers had responded, they would not have
constituted a random sample
Those in lower socioeconomic classes(who
were more likely to vote for Roosevelt)
were less likely to have telephone service
or belong to clubs and thus less likely
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to be included in the sample than were
wealthier voters.
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Adjust for nonresponse bias: statistical
method

• Nonresponse cannot be avoided!

• Can we reduce the impact of nonresponse?

• Idea: modelling

– In order for any such adjustment to be
possible, however, there must be a second
try, in which at least some of those who
did not respond the first time do in fact
respond.

Now we discuss how a nonresponse can be
converted into a response when a second try is
being done.

• A second try for getting response:

– If no one in a household is at home at the
time the interviewer calls, the interviewer
can return (a “call-back”).

– If a questionnaire mailed to a respondent
is not returned, the respondent can be
tried by telephone.

– Typically, the second attempt is more ex-
pensive than the first (for example, the
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households may be more scattered), and
the response on the second round may
not be complete.

Now we use an example of using modeling to
adjust for nonresponse.
Suppose that of a sample of 100 taken in March
to estimate the unemployment rate in the coun-
try there were 10 nonrespondents.

• Of the 90 respondents, 5 were unemployed,
and the unemployment rate was estimated
as p̂1 = 5/90 = 0.056. This is an estimate
of the unemployment rate in the population
of respondents.

• The 10 nonrespondents were revisited in April
and asked of they were employed in March;
8 of them responded, 3 saying that they were
unemployed in March.

• The estimate of the unemployment in the
population of nonrespondents is p̂2 = 3/8 =
0.375.

Idea:

• Classify the population in two subpopula-
tions: the population of respondents and the

11



population of nonrespondents.

• Let p1 and p2 denotes the unemployment
rates of the population of respondents and
the population of nonrespondents.

• Set π to be the proportion of the population
of respondents.

• The overall unemployment rate p is then de-
fined as πp1 + (1 − π)p2.

• An estimate of π is 90/10.
The corresponding estimate of unemploy-
ment rate is 0.9p̂1 + 0.1p̂2 = 0.088.
This is considerably higher than the initial
estimate of 5.6%, due to the high rate of
unemployment among the nonrespondents.
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Interviewer bias

It results when different persons in the sample
are questioned by different interviewers.

• This may occur because interviewers inter-
pret the instructions given by the director of
the survey in slightly different ways, or sim-
ply because people react in different ways to
different interviewers.

• Care should be taken to minimize these ef-
fects beforehand.

• Sometimes statistical methods, such as anal-
ysis of variance, can be employed after the
fact to assess the extent of interviewer bias
and adjust for it.

• One-way ANOVA

yij = µ + αi + εij

– αi is used to model the effect due to the
interviewers.

– Suppose that each interviewer is only in-
terview two peoples. Can we still esti-
mate µ correctly?
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Probability Sample

• How do we assess the accuracy and preci-
sion of estimators resulting from the various
sampling methods?

• For such assessment to be possible, the sam-
ple drawn must be a probability sample, a
sample drawn in such a way that he inves-
tigator knows the probability that any indi-
vidual unit of observation will be included
in the sample.

• Probability sampling methods: simple ran-
dom sampling, stratified random sampling,
cluster sampling, and systematic subsam-
pling with random starts.
In each case some random device plays a
role in determining which members of the
population shall be included in the sample.
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Simple Random Sampling

• Aim: Obtain information about large pop-
ulations by examining only a portion.
Examples include traffic, tax audits, quality
control, census preparation, and etc.

• To minimize sampling bias, it is impartial
and objective to use probability methods to
sample from a population.

– Random sampling guards against inves-
tigator bias, consider election polls.

– Above all, this randomness, allows an
estimate of the error, (we can even de-
sign the sample size necessary to obtain
a given precision).

• A simple random sample of size n is a sam-
ple of n drawn in such a way that all sets
of N units in the population have the same
chance of being in the sample.

• There are C(N, n) such sets where N is the
population size.

– Sampling without Replacement: Consider
taking a random sample such that all the
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individuals in the sample are different.
If we want a sample of 2 individuals from
a population of 4, the first is selected ran-
domly. Suppose 3 appears.
That leaves 1, 2, and 4 in the population.
Then one of these three is drawn ran-
domly. The result determines the second
member of the sample.

• The fact that all these sets are equally likely
to be chosen implies in particular that all
units have the same chance of being included.

• Implementation:

– A frame, a list of all units with one of the
numbers from 1 to N assigned to each,
is constructed.

– A random sample can then be drawn.

• How is it being done? Need random devices.

– If the sample size is not very large, ran-
dom numbers can be taken from a table
of random numbers such as in your high
school textbook.

– We can obtain a random sample from a
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deck of 52 playing cards by shuffling the
deck adequately and dealing a specified
number of cards from the top of the deck.
A random sample from the population
of 52 weeks in the year can be obtained
by identifying each week with a differ-
ent card and then dealing a sample of
the desired size. Unfortunately, the just
described mechanical devices for drawing
at random is subject to biases. A deck of
cards may be shuffled inadequately.

– Consider computer random number gen-
erator, based on uniform random num-
ber generator. A computer can be used
to obtain a stream of numbers that be-
have like random numbers (often called
pseudorandom numbers).

– Since the frame of N units is finite, the
sampling is done without replacement.
The set of n random numbers determines
the n sampling units to be included in
the sample. Characteristics of the sam-
pled units are then obtained by inter-
view, written questionnaire, of direct mea-
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surement.

• Composition of the sample is random (the
labels are random) implies that the sample
mean, the sample total... are random vari-
ables.

• The population mean is a number, the sam-
ple mean is a random variable whose accu-
racy as an estimate can be evaluated by a
probabilistic analysis.
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Behavior of Sampling Mean under SRS

• Set-up

– In the case of a numerical variable, let
the numbers y1, y2, . . . , yN represent the
values of the variable for the N individ-
uals in the population.

– The population mean µ is ∑
k yk/N , and

the population variance is σ2 = ∑
k(yk −

µ)2/N .

– Let the values of the variable for the n in-
dividuals in the sample be x1, x2, . . . , xn,
where xi is the value of the variable for
the ith individual in the sample, i =
1, 2, . . . , n.

– The symbol x1 bears no special relation
to y1; if n = 3 and the sample of three in-
dividuals consists of the individuals num-
bered 13, 17, and 8 in the frame, then
x1 = y13, x2 = y17, and x3 = y8.)

• How do we describe x1?

– It is a random variable.

– X1 can take values y1, y2, . . . , yN each
with probability N−1.
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– Xi’s distribution is called the sampling
distribution.

• Is x̄ close to µ?

• Standard analysis: Find the expectation and
variance of X̄ .

• The sample mean x̄ is an unbiased estimate
of the population mean µ, that is, E(X̄) =
µ (whether sampling is with or without re-
placement).

• The variance of the sample mean for sam-
pling without replacement is

σ2
X̄ =

N − n

N − 1

σ2

n
.

The finite population correction factor for
the variance (N − n)/(N − 1) is approxi-
mately 1−n/N . When the fraction sampled
n/N is small, this correction is negligible.

• What is the definition of mean and variance?
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Stratified Random Sampling

• Randomness in drawing a sample, which is
essential to obtaining unbiased estimates, re-
sults in sampling variability.

• In some situations the variability can be re-
duced without introducing bias by using other
information about the population.

• Suppose that sample of engineers employed
in a large corporation is to be drawn to es-
timate the mean salary of all engineers.

– An individual’s salary depends heavily
on his or her corporate function-whether
the position is supervisory or nonsuper-
visory.

– If the listing of engineers (a frame) is such
that the function of each is identified, it
is possible to draw a random sample of
each type of engineer and estimate the
average salary of each type of engineer in
the entire corporation.

– A weighted average of these two estimates
yields an estimate of the average salary
of all engineers.
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– The sampling variability of this proce-
dure is less than that of simple random
sampling because the variability within
the set of supervisory engineers and with
in the set of nonsupervisory engineers is
less than the variability among all the en-
gineers.

• A stratum is a subpopulation.

• A set of strata is a collection of subsets of
individuals in the population such that each
individual belongs to one and only one such
subset.

• To use “stratified sampling,” it is essential
that a frame be available for each stratum;
this implies that the sizes if the strata are
known.

Consider the example with two strata.

• Two strata: supervisory and nonsupervisory.

• Let N denote the size of the total population
of engineers and µ the mean salary in this
population.
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• Suppose that some N1 of these N have su-
pervisory positions; let µ1 denote the mean
income in this stratum.
The other N2 (= N − N1) engineers have
nonsupervisory positions, and their mean in-
come is µ2.

• The parameter µ is equal to (N1µ1+N2µ2)/N .

• The parameters µ, µ1 and µ2 are, of course,
unknown to the investigator, but N , N1,
and N2 are known from information on the
sampling frame (the list of engineers).

• The population has been stratified by occu-
pational position (supervisory versus non-
supervisory).

– One takes a random sample of specified
size n1 from the N1 supervisory engineers
and a random sample of size n2 from the
N2 nonsupervisory engineers.

– The estimates of the strata µ1 and µ2

are the sample means x̂1 and x̂2 of the
samples from the two strata.

– As an estimate of µ, we take the weighted
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average, namely

N1

N
x̂1 +

N2

N
x̂2.

• E(µ̂) = µ and

V ar(µ̂) =
N1

N


2 N1 − n1

N1 − 1

σ2
1

n1
+

N2

N


2 N2 − n2

N2 − 1

σ2
2

n2
.

• What can we say about σ2
1 and σ2

2 for this
particular example?
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Cluster Sampling

Cluster sampling refers to sampling “cluster”
of potential respondents and then sampling re-
spondents in the clusters in the sample.

• To determine the total number of unem-
ployed in a city, for example, one might con-
sider city blocks as the clusters and house-
holds as the “respondents.”

• A sample of city blocks is taken, using a map
of the city to number the blocks.

• In each block the households are enumer-
ated, and a random sample of households is
taken in each block in the sample.

• The total number of unemployed in a sam-
pled block is estimated from the sample of
households in that block.

• In turn, the total number of unemployed in
the city is estimated from these estimated
block totals.

How do we estimate the population mean?

25



• An unbiased estimate of the population mean
is obtained by dividing the estimated total
by the number of units in the population.

• Sampling variability arises from two source:
the sampling of clusters and the sampling of
units with in clusters.

• The formula for the variance of an estimate
depends on the rule for sample size within
the sampled cluster. For example, the sam-
ple sizes may be the same in all clusters or
they may be a fixed proportion of the cluster
sizes. Refer to Cochran (1977) for details.

Advantages of cluster sampling

• When the clusters represent geographically
compact sets of units, as in the above il-
lustration, with cluster sampling the inter-
viewers may spend more time in interview-
ing than traveling.

• Also, a frame for clusters (for instance, blocks)
may be available, making enumeration of
clusters feasible, while preparation of a frame
for the entire population of units is not prac-
tical.
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• In a sense the clusters are strata, since each
individual or unit belongs to one and only
one cluster. The greater flexibility here re-
sults because clusters (or strata) are them-
selves sampled.
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Systematic Sampling with a Random Start

The idea of systematic sampling is to take every
tenth name on a list, or check every fifth car
passing a toll booth, or review every twentieth
file folder in a drawer.

• The method is appealing because it is easy
to carry out and it spreads the “sample” out
through the population.

• It is clearly not random.

• To add an element of randomness-which is
necessary to obtain unbiased estimates-one
may select the starting point at random.

The sample mean is unbiased (because the
start is random), but the precision of x̄ de-
pends on how the characteristic under obser-
vation varies as we go through the frame.

• If the population is the 365 days of the year,
the frame is the calendar.

• When the sampling interval is 7 and n = 52,
we get a systematic sample that is based on
the same day of the week over the entire
year.
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– The method is good for estimating the
average hours of daylight per day over
the year.

– But poor for estimation the average hours
of work per day over the year.

• Suppose again that we are sampling house-
holds and that the fame lists houses in the
following order:

– Think of houses in a particular commu-
nity which are located on a chess board
arrangement.
There are three avenues and four streets.
Avenue A from west to east; Avenue B
from west to east on the north side of the
street, Avenue B from west to east on the
south side of the street, etc.
First Street from north to south; Second
Street

– The blocks are oblong and narrow be-
tween avenues, so that all houses face on
avenues.

– Within each block, there are six houses
among which three houses face the same
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avenue.

• Suppose that the ordering in the frame cor-
responds to the cost of the houses; house 1
is least expensive and house 36 most expen-
sive.
Then systematic sampling gives us a sam-
ple of households that is varied and repre-
sentative as far as cost of house (and conse-
quently family income) is concerned. In this
case, systematic sampling performs toughly
likely stratified sampling, where the strata
are defined in terms of income.

• On the other hand, if the variation in the
population is related to the sampling inter-
val, then systematic sampling can be much
less precise than simple random sampling;
at worst it can be equivalent to having only
a sample of size 1.
If the corner houses are most expensive, and
our sample interval is 3, then we get a very
nonrepresentative sample: either all corner
houses or all middle-of-the-block houses.

How do we use a probabilistic analysis on this
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sampling scheme?

• Denote by m the starting number, the inte-
ger chosen at random from 1, 2, . . . , `.

• The quantity m is a random variable that
takes on the values 1, 2, . . . , `, each with
probability 1/`.

– Only ` different samples are possible.

– Although all individuals have the same
chance of being included in the sample,
not all possible sets of n have the same
chance.

– ` sets have probability 1/` each. All the
other sets have zero probability.

• The observed x̄ is a random sample of 1 from
the population of ` values, ȳ1, . . . , ȳ`.

• The variance is ∑
b(ȳb − µ)2/` which is un-

known.
It cannot be estimated from the sample be-
cause the sample is effectively a sample of 1
from the population ȳ1, . . . , ȳ`.

• The investigator cannot assess variability,
carry out tests of significance, or construct
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confidence intervals.
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Experiment Design

Example 1. Mammary Artery Ligation

• A person with coronary disease suffers from
chest pain during exercise because the con-
stricted arteries cannot deliver enough oxy-
gen to the heart. The treatment of ligating
the mammary arteries enjoyed a brief vogue;
the basic idea was that ligating these arter-
ies forced more blood to flow into the heart.
This procedure had the advantage of being
quite simple surgically, and it was widely
publicized in an article Reader’s Digest (Rat-
cliffe 1957).

• Two years later, the results of a more careful
study (Cobb et al. 1959) were published.

• In this study, a control group and an experi-
mental group were established in the follow-
ing way.

– When a prospective patient entered surgery,
the surgeon made the necessary prelimi-
nary incisions prior to tying off the mam-
mary artery. At that point, the surgeon
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opened a sealed envelope that contained
instructions as to whether to complete
the operation by tying off the artery.

– Neither the patient nor his attending physi-
cian knew whether the operation had ac-
tually been carried out.

– The study showed essentially no differ-
ence after the operation between the con-
trol group (no ligation) and the experi-
mental group (lifation), although there
was some suggestion that the control group
had done better.

• The Ratcliffe and Cobb studies differ in that
in the earlier one there was no control group
and thus no benchmark by which to gauge
improvement.

• The reported improvement of the patients
in this earlier study could have been due to
the placebo effect, which we discuss next.

• The design of the later study protected against
possible unconscious biases by randomly as-
signing the control and experiment groups
and by concealing from the patients and their
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physicians the actual nature of the treat-
ment.

• Such a design is called a double-blind, ran-
domized controlled experiment.

The Placebo Effect: The placebo effect
refers to the effect produced by any treatment,
including dummy pills (placebo), when the sub-
ject believes that he or she has been given an
effective treatment.

• The possibility of a placebo effect makes the
use of a blind design necessary in many ex-
perimental investigations.

• The placebo effect may not be due entirely
to psychological factors, as was shown in an
interesting experiment by Levine, Gordon,
and Fields (1978).

– A group of subjects had teeth extracted.

– During the extraction, they were given
nitrous oxide and local anesthesia.

– In the recovery room, they rated the amount
of pain they were experiencing on a nu-
merical scale.
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– Two hours after surgery, the subjects were
given a placebo and were again asked to
rate their pain.

– An hour later, some of the subjects were
given a placebo and some were given nalox-
one, a morphine antagonist.

– It is known that there are specific recep-
tors to morphine in the brain and that
the body can also release endorphins that
bind to these sites.
Naloxone blocks the morphine receptors.

– In the study, it was found that when
those subjects who responded positively
to the placebo received naloxone, they
experienced an increase in pain that made
their pain levels comparable to those of
the patients who did not respond to the
placebo.

– The implication is that those who responded
to the placebo had produced endorphins,
the actions of which were subsequently
blocked by the naloxone.

• The use of controls does not in itself ensure
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a valid experimental design; the allocation
of subjects to treatment and control groups
should be done by randomization.

• Wilson (1952) relates a story of a test of
a pill to prevent seasickness. Prior to the
voyage, the use of controls was carefully ex-
plained to the captain. On returning, he re-
ported that the pills had been a marvelous
success?most of the controls had been sick
and the treatment group had fared well. But
when further questioned, he revealed that he
had given the pills to his crew and had used
the passengers as controls.

Example 2: The Lanarkshire Milk Experi-
ment

• The importance of the randomized assign-
ment of individuals (or other experimental
units) to treatment and control groups is il-
lustrated by a famous study known as the
Lanarkshire milk experiment.

• In the spring of 1930, an experiment was
carried out in Lanarkshire, England to de-
termine the effect of providing free milk to
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schoolchildren.

• In each participating school, some children
(treatment group) were given free milk and
others (controls) were not.

• The assignment of children to control or treat-
ment was initially done at random; however,
teachers were allowed to use their judgment
in switching children between treatment and
control to obtain a better balance of under-
nourished and well-nourished individuals in
the groups.

• A paper by Gosset (1931), who published
under the name Student (as in Student’s t
test), is a very interesting critique of the ex-
periment.

• An examination of the data revealed that at
the start of the experiment the controls were
heavier and taller.

• Student conjectured that the teachers, per-
haps unconsciously, had adjusted the initial
randomization in a manner that placed more
of the undernourished children in the treat-
ment group.
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• A further complication was caused by weigh-
ing the children with their clothes on.

• The experiment data were weight gains mea-
sured in late spring relative to early spring
or late winter.

• The more well-to-do children probably tended
to be better nourished and may have had
heavier winter clothing than the poor chil-
dren. Thus.

• The well-to-do children’s weight gains were
vitiated as a result of differences in clothing,
which may have influenced comparisons be-
tween the treatment and control groups.

Example 3. The Portocaval Shunt

• Cirrhosis of the liver, to which alcoholics are
prone, is a condition in which resistance to
blood flow causes blood pressure in the liver
to built up to dangerously high levels.

• Vessels may rupture, which may cause death.
Surgeons have attempted to relieve this con-
dition by connecting the portal artery, which
feeds the liver, to the vena cava, one of the
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main veins returning to the heart, thus re-
ducing blood flow through the liver. This
procedure, called the Portacaval shunt, had
been used for more than 20 years when Grace,
Muench, and Chalmers (1966) published and
examination of 51 studies of the method.

• They examined the design of each study (pres-
ence or absence of a control group and pres-
ence or absence of randomization) and the
investigators’ conclusions (categorized as markedly
enthusiastic, moderately enthusiastic, or not
enthusiastic).

• The results are summarized in the following

table, which speaks for itself:

Enthusiasm
Design Marked Moderate No
No Controls 24 7 1
Nonrandomized Controls 10 3 2
Randomized Controls 0 1 3

• The differences between the experiments that
used controls and those that did not is not
entirely surprising, since the placebo effect
was probably operating.

• The importance of randomized assignment
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to treatment and control groups is illustrated
by comparing the conclusions for the ran-
domized and nonrandomized controlled ex-
periments.

• Randomization can help to ensure against
subtle unconscious biases that may creep
into an experiment. For example, a physi-
cian might tend to recommend surgery for
patients who are somewhat more robust than
the average. Articulate patients might be
more likely to have an influence on the de-
cision as to which group they are assigned
to.

Example 4. FD&C Red No. 40

• This discussion follows Lagakos and Mosteller
(1981).

• During the middle and late 1970’s, exper-
iments were conducted to determine possi-
ble carcinogenic effects of a widely used food
coloring, FD&C Red No. 40.

• One of the experiments involved 500 male
and 500 female mice.
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• Both genders were divided into five groups:
two control groups, a low-dose group, a medium-
does group, and a high-does group.

• The mice were bred in the following way:
Males and females were paired and before
and during mating were given their prescribed
dose of Red No. 40.

• The regime was continued during gestation
and weaning of the young.

• From litters that had at least three pups
of each sex, three of each sex were selected
randomly and continued on their parents’
dosage throughout their lives.

• After 109-111 weeks, all the mice still living
were killed.

• The presence or absence of reticuloendothe-
lial tumors was of particular interest.

• Although there were significant differences
between some of the treatment groups, the
results were rather confusing.

– For example, there was a significant dif-
ference between the incidence rates for
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the two male control groups, and among
the males the medium-does group had
the lowest incidence.

• Several experts were asked to examine the
results of this and other experiments.

• Among them were Lagakos and Mosteller,
who requested information on how the cages
that housed the mice were arranged.

– There were three racks of cages, each con-
taining five rows of seven cages in the
front and five rows of seven cages in the
back.

– Five mice were housed in each cage.

– The mice were assigned to the cages in
a systematic way: The first male control
group was in the top of the front of rack
1; the first female control group was in
the bottom of the front of rack 1; and so
on, ending with the high-does females in
the bottom of the back of rack 3.

– Lagakos and Mosteller showed that there
were effects due to cage position that could
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not be explained by gender of by dosage
group.

– A random assignment of cage positions
would have eliminated this confounding.

– Lagakos and Mosteller also suggested some
experimental designs to systematically con-
trol for cage position.

• It was also possible that a litter effect might
be complicating the analysis, since litter-
mates received the same treatment and lit-
termates of the same sex were housed in the
same or contiguous cages.

• In the presence of a litter effect, mice from
the same litter might show less variability
than that present among mice from different
litters.

• This reduces the effective sample size?in the
extreme case in which littermates react iden-
tically, the effective sample size is the num-
ber of litters, not the total number of mice.

• One way around this problem would have
been to use only one mouse from each litter.
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• The presence of a possible selection bias is
another problem.
Since mice were in the experiment only if
they came from a litter with at least three
males and three females, offspring of possi-
bly less health parents were excluded.
This could be a serious problem since expo-
sure to Red No. 40 might affect the parents’
health and the birth process.

• If, for example, among the high-does mice,
only the most hardy produced large enough
litters, their offspring might be hardier than
the controls’ offspring.
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Randomization

• As well as guarding against possible biases
on the part of the experiment, the process of
randomization tends to balance any factors
that may be influential but are not explicitly
controlled in the experiment.

• Time is often such a factor; background vari-
ables such as temperature, equipment cali-
bration, line voltage, and chemical compo-
sition can change slowly with time.

• In experiments that are run over some pe-
riod of time, therefore, it is important to
randomize the assignments to treatment and
control over time.

• Time is not the only factor that should be
randomized, however. In agricultural exper-
iments, the positions of test plots in a field
are often randomly assigned. In biological
experiments with teat animals, the locations
of the animals’ cages may have an effect, as
illustrated in the preceding section.
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Observational Studies, Confounding, and Bias
in Graduate Admission

• It is not always possible to conduct con-
trolled experiments or use randomization.

• In evaluating some medical therapies, for
example, a randomized, controlled experi-
ment would be unethical if one therapy was
strongly believed to be superior.

• For many problems of psychological interest
(effects of parental modes of discipline, for
example), it is impossible to conduct con-
trolled experiments.
In such situations, recourse is often made to
observational studies.

• Hospital records may be examined to com-
pare the outcomes of different therapies, or
psychological records of children raised in
different ways may be analyzed.

• Although such studies may be valuable, the
results are seldom unequivocal.

• Since there is no randomization, it is always
possible that the groups under comparison
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differ in respects other than their ”treat-
ments.”

• As an example, let us consider a study of
gender bias in admissions to graduate school
at the University of California at Berkeley
(Bickel and O’ Connell 1975).

– In the fall of 1973, 8442 men applied for
admission to graduate studies at Berke-
ley, and 44% were admitted; 4321 women
applied, and 35% were admitted.

– If the men and women were similar in
every respect other than sex, this would
be strong evidence of sex bias.

– This was not a controlled, randomized
experiment, however; sex was not ran-
domly assigned to the applicants.

– As will be seen, the male and female ap-
plicants differed in other respects, which
influenced admission.

– In the percentages admitted are compared,
women do not seem to be unfavorably
treated.

– But when the combined admission rates
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for all six majors are calculated, it is found
that 44% of the men and only 35% of
the women were admitted, which seems
paradoxical.

– The resolution of the paradox lies in the
observation that the women tended to
apply to majors that had low admission
rates (C through F) and the men to ma-
jors that had relatively high admission
rates (A and B).
This factor was not controlled for, since
the study was observational in nature; it
was also ”confounded” with the factor of
interest, sex; randomization, had it been
possible, would have tended to balance
out the confounded factor.

• Confounding also plays an important role in
studies of the effect of coffee drinking.

– Several studies have claimed to show a
significant association of coffee consump-
tion with coronary disease.

– Clearly, randomized, controlled trials are
not possible here?
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A randomly selected individual cannot
be told that he or she is in the treatment
group and must drink 10 cups of coffee a
day for the next five years.

– It is known that heavy coffee drinkers
also tend to smoke more than average, so
smoking is confounded with coffee drink-
ing.

– Hennekens et al. (1976) review several
studies in this area.
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Fishing Expeditions:

• Another problem that sometimes flaws ob-
servational studies, and controlled experi-
ments as well, is that they engage in“fishing
expeditions.”

• For example, consider a hypothetical study
of the effects of birth control pills.

– In such a case, it would be impossible to
assign women to a treatment or a placebo
at random, but a nonrandomized study
might be conducted by carefully match-
ing controls to treatments on such factors
as age and medical history.

– The two groups might be followed up on
for some time, with many variables being
recorded for each subject such as blood
pressure, psychological measures, and in-
cidences of various medical problems.

– After termination of the study, the two
groups might be compared on each of
these variables, and it might be found,
say, that there was a “significant finding”
in the incidence of melanoma.
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• The problem with this “significant finding”
is the following.

– Suppose that 100 independent two sam-
ple t tests are conducted at the 0.05 level
and that, in fact, all the null hypotheses
are true.

– We would expect that five of the test
would procedure a “significant” result.

– Although each of the tests has probabil-
ity 0.05 of type I error, as a collection
they do not simultaneously have α =
0.05.

– The combined significance level is the prob-
ability that at least one of the null hy-
potheses is rejected:

P (at least one H0 rejected)

= 1 − P (no H0 rejected)

= 1 − 0.95100 = 0.994

Thus, with very high probability, at least
one “significant” result will be found, even
if all the null hypotheses are true.

There are no simple cures for this problem.
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In general, we consider the following three pos-
sibilities:

• Regard the results of a fishing expedition
as merely providing suggestions for further
experiments.

• The data could be split randomly into two
halves, one half for fishing in and the other
half to be locked safely away, unexamined.
“Significant” results from the first half could
then be tested on the second half.

• Conduct each individual hypothesis test at
a small significance level.
To see how this works, suppose that all null
hypotheses are true and that each of n null
hypotheses is tested at level α.

– Let Ri denote the event that the ith null
hypothesis is rejected.

– Let α∗ denote the overall probability of
a type I error.

– Then

α∗ = P{R1 or R2 or · · · or Rn}
≤ P (R1) + P (R2) + · · · + P (Rn) = nα
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– Thus, if each of the n null hypotheses
is tested at level α/n, the overall signifi-
cance level is less than or equal to α. This
is often called the Bonferroni method.
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