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Association Between Numerical Scales

• Scientific question: Does studying more help
raise scores on the SAT?

– Data Collection: Record the number of
hours spent studying for the SAT and the
SAT scores for a sample of students.

– Does this data lead to the conclusion that
“individuals with higher hours also have
higher scores?”

• Scientific question: Is sodium intake related
to systolic and diastolic blood pressure?

– Data Collection: Record the monthly sodium
intakes for each individual in a sample
and his/her blood pressure.

– Do individuals with higher sodium con-
sumption also have higher blood pressure
readings?

• Question: How do we assess the association
of two numerical variables in statistics?

– scatter plot: a graphical technique
Scatter plots frequently depict informa-
tion about the relationship between vari-
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ables that is not indicated by a single
summary statistic.

– correlation coefficient: a formal numeri-
cal index of linear relationship.

∗ How do we measure a curvelinear re-
lationship?

– How reliable are these two tools?
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Scatter plots

• Data: We have the language and nonlan-
guage mental maturity scores (two kinds of
”IQs”) of 23 school children.
How do we explore it?

– Let x denote language IQ and y denote
non-language IQ where

x < − c(86, 104, 86, 105, 118, 96, 90, 95, 105,

84, 94, 119, 82, 80, 109, 111, 89, 99,

94, 99, 95, 102, 102)

y < − c(44, 53, 42, 50, 65, 52, 37, 50, 46, 30,

37, 66, 41, 43, 74, 69, 44, 67, 43, 60,

47, 54, 43)

– These data are represented visually by
making a graph on two axes, the hori-
zontal x axis representing language IQ
and the vertical y axis representing non-
language IQ.

– Such a graph is called a scatter plot (or
scatter diagram).

– Use R command, plot(x,y,xlab=“language
IQ”,ylab =“non-languae IQ”,main=“Scatter
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Plot”)
Each point in such a plot represents one
individual.

– When all of the observations are plotted,
the diagram conveys information about
direction and magnitude of the associa-
tion of x and y.

– The swarm of points goes in a southwest-
northeast direction.
This indicates a positive or direct associ-
ation of x and y.
Namely, individuals who have the lower
y values are the same people who have
the lower values on x; they form a clus-
ter of points in the lower-left portion of
the diagram.

– If the swarm of points lines in a northwest-
southeast direction (i.e., upper left to lower
right), there is a negative or inverse as-
sociation of x with y.

• The strength or magnitude of the associa-
tion is indicated by the degree to which the
points are clustered together around a single
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line.

– If all of the points fall exactly on the line,
there is a “perfect” association of the two
variables. In this case, if we knew an in-
dividual’s value on variable x, we would
be able to compute his/her value on y
exactly.

– To the extent that the points in the di-
agram diverge from a straight line, the
association is less than perfect.

– Since the scatter plot is a nonnumerical
way of assessing association, adjectives
are used to describe the strength of asso-
ciation.

– We may say a “strong” (moderate or even
weak) association of x with y.

– Are they objective?
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The Correlation Coefficient: A Measure of
Linear Relationship

• correlation coefficient: r = sxy

sxsy

– It is a statistic based on n pairs of mea-
surements (xi, yi) on two variables x and
y.

– r is a measure of association between two
quantitative variables.

– −1 ≤ r ≤ +1.

– The absolute value of r is exactly 1 for
a perfect linear relationship, but lower if
the points in the scatter plot diverge from
a straight line.

• A descriptive statistic that indicates the de-
gree of linear association of two numerical
variates is the correlation coefficient, usually
represented by the letter r.
Do you see why?

• The sign of r indicates the direction of association-
it is positive for a direct association of x and
y and negative for an inverse association.
We might ask
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– Whether the selling prices of various mod-
els of automobiles are related to the num-
bers of each that are sold in a given pe-
riod of time?

– Whether the amount of rainfall in a given
agricultural area is related to the size of
the crop yield?

– The observational units may not be peo-
ple, but institutions, objects, or events.

• For the above examples, it involves two nu-
merical variables but questions about cate-
gorical variables are equally common which
will be discussed later on.

• A correlation close to zero-either positive or
negative-indicates little or no linear associa-
tion between x and y.

• The question “what is a strong correlation?”
has several answers.
Statisticians would generally refer to a cor-
relation close to zero as indicating “no cor-
relation”; a correlation between 0 and 0.3 as
“week”; a correlation between 0.3 and 0.6 as
“moderate”; a correlation between 0.6 and
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1.0 as “strong”; and a correlation of 1.0 as
“perfect.”

– Two laboratory technicians counting im-
purities in the same water samples should
have very high agreement-the correlation
between their counts may be 0.95 or bet-
ter.

– Two different human characteristics rarely
have such a high correlation.
The correlation of height and weight is
generally in the neighborhood of 0.8; of
scores on the Scholastic Assessment Test
with college freshman grade average about
0.6; of measured intelligence with socioe-
conomic status about 0.4; of heart rate
with blood pressure about 0.2.

– Example: consider the data collected by
Nanji and French (1985) to examine the
relationship of alcohol consumption with
mortality due to cirrhosis of the liver in
the 10 Canadian provinces. In this case,
variable x is an index of the amount of
alcohol consumed in the province in one
year (1978) and variable y is the number
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of individuals who died from cirrhosis of
the liver per 100, 000 residents.
r is equal to 0.51.

Calculating Correlation Coefficient

• help.search(“correlation”)

• The software responds with “Help files with
alias or title matching ‘correlation’, type ‘help(FOO,
package = PKG)’ to inspect entry ‘FOO(PKG)
TITLE’:

• We try the first two:

– cor(base) Correlation, Variance and
Covariance (Matrices)

– corr(boot) Correlation Coefficient

– acf(ts) Auto- and Cross- Covariance
and -Correlation Function Estimation

– plot.acf(ts) Plotting Autocovariance
and Autocorrelation Functions

• Consider the example on language and non-
language IQ scores.

• Use R base package, cor(x, y) leads to 0.7689431.
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• Use R boot package, corr(cbind(x, y)) leads
to 0.7689431.

– From Packages, load the package boot.

– Look at help manual by command help(corr).

– It only deals with matrix. We need to
form a matrix with x and y.

Test and Confidence Interval on r

• Efron (1982) analyzes data on law school
admission, with the object being to exam-
ine the correlation between the LSAT (Law
School Admission Test) score and the first-
year GPA.

– For each of 15 law schools, we have the
pair of data points (acerage LSAT, aver-
age GPA):
(576,3.39), (635, 3.30), (558, 2.81), (578,3.03),
(666,3.44), (580,3.07), (555,3.00), (661,3.43),
(651,3.36), (605,3.13), (653,3.12), (575,
2.74), (545,2.76), (572,2.88), (594,2.96)

– Let (X,Y ) be a bivariate normal with
correlation coefficient ρ and sample cor-

11



relation r, it can be shown that
√

n(r − ρ) → N(0, (1− ρ2)2).

– The above result can be used to derive
confidence interval and carry out hypoth-
esis testing when the data is normally
distributed.

– Fisher suggests to consider a z-transformation
log((1 + x)/(1− x)). Then we have

√
n

1

2

log
1 + r

1− r

 − log

1 + ρ

1− ρ


) → N(0, 1).
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Interpreting Association

• The correlation coefficient is useful for sum-
marizing the direction and magnitude of as-
sociation between two variables. It is a widely-
used statistic, cited frequently in both scien-
tific and popular reports.

• Limitations to the meaning of any particular
correlation:

– The correlation coefficient reveals only
the straight line (linear) association be-
tween x and y.

– r would be close to 0 while the scatter
plot reveals important curvilinear pat-
terns.
In this case, the scatter plots reveal that
a straight line is not the whole story of
the relationship of x to y.
This suggests that a scatter plot should
always be examined when a correlation
coefficient is to be computed or inter-
preted.

– Nonlinear association: Pairs of variables
are often associated in a clear pattern,
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but not conforming to a straight line.

Nonlinear Association

Quite common, we will see scatter plots with
following characteristics.

• (asymptote) Consider the following two cases.

– Suppose that patients who experience pain,
the observations are variable x might be
the amount of aspirin taken orally, in mil-
ligrams, and variable y the amount that
is absorbed into the bloodstream.
Beyond a certain point, additional amounts
of ingested aspirin are no longer absorbed,
and the amount found in the bloodstream
reaches a plateau.

– In research on human memory, it has
been found that initial practice trials are
very helpful in increasing the amount of
material memorized; after a certain num-
ber of trials, however, each additional at-
tempt to memorize has only a small added
benefit.
Consider students who are learning a for-
eign language, what is the relationship
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between the number of 25-minute peri-
ods devoted to studying vocabulary and
the number of words memorized.

• (N shape) Examine the effects of advertising
on sales.

– If observations are branches of a large
chain of stores with independent control
over expenditures, variable x might be
advertising outlays and y the total sales
volume in a given period of time.

– What will the plot look like?

– If initial advertising outlays have a sub-
stantial effect on sales, additional adver-
tising outlays have little additional im-
pact on sales, but expensive “saturation”
advertising again gives a significant boost
to sales.

• (concave upward) Consider the amount of
water provided to agricultural plots and the
proportion of plants on the plot that do not
grow to a given size.
This pattern would suggest that too much
as well as too little water is harmful, while

15



moderate amounts of water minimize the
plant loss.

• (concave downward) In examining the re-
sponses of humans and animals to various
kinds of physiological stimulation, little or
no stimulation produces little or no response,
while moderate amounts of stimulation pro-
duce maximal response.
Levels of stimulation that exceed the indi-
vidual’s ability to process the input, how-
ever, can result in a partial or complete sup-
pression of t he response.
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Causation

• Even a strong correlation between two vari-
ables does not imply that one causes the
other.
When a statistical analysis reveals associ-
ation between two variables it is generally
desirable to know more about the associa-
tion.

– Does it persist under different conditions?

– Does one factor “cause” the other?

– Is there a third factor that causes both?

– Is there another link in the chain, a factor
influenced by one variable and in turn
influencing the other?

• The correlation indicates only that certain
pairings of values on x and y occur more
frequently than other combinations.

• Example: If the x and y variables were “years
on the job” and “job satisfaction ratings” for
a sample of employees, the positive correla-
tion between them might indicate that
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– if employees hold their jobs for more years,
the work seems to become more satisfy-
ing, or

– if employees are more satisfied, they keep
their jobs longer.

That is, the casual connection may go in
either direction and may also be affected by
other intermediary mechanisms.
It may be that

– more senior employees are given subtle
or overt rewards that in turn enhance
their satisfaction. Thus, the distribution
of rewards-referred to as an intervening
variable-explains the association of years
with satisfaction; the correlation itself does
not imply a direct cause-and-effect rela-
tionship.

• Association between two variables may also
occur because x and y are both consequences
of some third variable that has not been ob-
served. This is seen in the following illustra-
tion:

• Example: Do Storks Bring Babies?
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In Scandinavian countries a positive associ-
ation between the number of storks living in
the area and the number of babies born in
the area was noticed.
Do storks bring the babies? Without shat-
tering the illusions of the incurably roman-
tic, we may suggest the following:
Districts with large populations have a large
number of births and also have many build-
ings, on the chimneys of which storks can
nest.
Consider the diagram representing the idea
that the population factor explains both the
number of births and the frequency with
which storks are sighted.

Large population


Many babies born
Many buildings → Many storks

The three variables to study are populations
of districts, numbers of births in districts,
and numbers of storks seen in the districts.
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Simple Regression Analysis

• Find the statistical relationship between two
quantitative variables.

• Statistical data are often used to answer ques-
tions about relationships between variables.

– How do we summarize the relationship
or association between 2 or among 3 or
more variables?

– How do we find the association among
variables measured on numerical scales?
How about categorical variables?

• Functional Relationship: A variable y is said
to be a function of a variable x if to any
value of x there corresponds one and only
one value of y.

– We symbolize a functional relationship
by writing y = f (x), where f represents
the function.

– The variable x is called the independent
variable; the variable y is called the de-
pendent variable because it is considered
to depend on x.
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– If x is the height from which a ball is
dropped and y is the time the ball takes
to fall to the ground, then y is function-
ally related to x because the law of grav-
ity determines y in terms of x.

• Statistical relationship: When one variable
is used to predict or “explain” values of the
second variable, we allow some imperfection
in the prediction.

– How do we express statistical relation-
ships?

– What kind of methods can be used for es-
timating those relationships from a sam-
ple of data?

– How do we measure and interpret vari-
ability around the predicted or explained
values?
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Statistical Relationship

• The relationship between x and y is not an
exact, mathematical relationship, but rather
several y values corresponding to a given x
value scatter about a value that depends on
the x value.

• For example, although not all persons of the
same height have exactly the same weight,
their weights bear some relation to that height.

– On the average, people who are 6 feet
tall are heavier than those who are 5 feet
tall; the mean weight in the population
of 6-footers exceeds the mean weight in
the population of 5-footers.

• The relationship between height and weight
is modeled statistically as follows:

– For every value of x there is a correspond-
ing population of y values.
Denote it by FY (y|x) where F (·) is a dis-
tribution function.

– The population mean of y for a particular
value of x is denoted by µ(x). Note that
µ(x) = E(Y |X = x).
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– As a function of x, µ(x) is called the re-
gression function.

– The population of y values at a particu-
lar x value also has a variance, denoted
σ2; the usual assumption is that the vari-
ance is the same for all values of x.
homoscedastic: V ar(Y |X = x) = σ2

heteroscedastic: V ar(Y |X = x) depends
on x

• For many variables encountered in statisti-
cal research, the regression function is a lin-
ear function of x, and thus may be written
as µ(x) = α + βx.

– The quantities α and β are parameters
that define the relationship between x
and µ(x).

– Write Y = α + βx + ε with E(ε) = 0
and V ar(ε) = σ2.

– In conducting a regression analysis, we
use a sample of data, (xi, yi), to estimate
the values of these parameters so that we
can understand this relationship.

• The focus of regression analysis is on making
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inferences about α, β, and σ2.

– Estimate the magnitude of these param-
eters and test hypotheses about them.

– Consider the hypothesis H0 : β = 0.
If this null hypothesis is true then µ(x) =
α + 0× x = α, the same number for all
values of x.
This means that the values of y do not
depend on x, that is, there is no statisti-
cal relationship between x and y.
If H0 is rejected, then the existence of a
statistical relationship between x and y
is confirmed.

• The data required for regression analysis are
observations on the pair of variables (x, y).

– Variable x may be uncontrolled of “nat-
urally occurring” as in the case of ob-
serving a sample of n individuals with
their heights x (random design) and their
weights y, or it may be controlled, as
in an experiment in which persons are
trained as data processors for different
lengths of time x (fixed design), and one
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measures the accuracy of their work y.

• Examples:

– “Does studying more help raise scores on
the Scholastic Assessment Tests (SAT)?”
This question could also be worded as fol-
lows: If we recorded the number of hours
spent studying for the SAT and the SAT
scores for a sample of students, do in-
dividuals with higher “hours” also have
higher SAT scores and individuals with
lower hours have lower SAT scores?

– We might ask if high sodium intake in
one’s diet is associated with elevated blood
pressure.
The question could be worded as follows:
If we recorded the monthly sodium in-
take for each individual in a sample and
his/her blood pressure, do individuals with
higher sodium consumption also have higher
blood pressure readings while those with
lower sodium intakes have the lower blood
pressure readings?

– The term regression stems from the work
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of Sir Francis Galton (1822-1911), a fa-
mous geneticist, who studied the sizes of
seeds and their offspring and the heights
of fathers and their sons.
In both cases, he found that

∗ The offspring of parents of larger than
average size tended to be smaller than
their parents.

∗ The offspring of parents of smaller than
average size tended to be larger than
their parents.

∗ He called this phenomenon “regression
toward mediocrity.”
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Least-Square Estimates

• The data consist of n pairs of numbers (x1, y1), (x2, y2), . . . , (xn, yn).

• To explore their association, they can be
plotted as a scatter plot.

• How do we find a ”best fit” line for two vari-
ables x and y?

yi = α̂ + β̂xi + ri

ŷi = α̂ + β̂xi,

where ri = yi − ŷi is called the residuals.
Is ri close to unobserved εi?

• In regression analysis we seek to determine
the equation of that line that gives ŷi values
as close as possible to the data values yi.

– How do we determine α̂ and β̂, estimates
of α and β, respectively?

– How do we obtain confidence intervals
and to test hypotheses about the param-
eters of interest?

• If we all agree on choosing a line of best
fit from all the lines that gives ŷi values as
close as possible to the data values yi, this
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question is equivalent to asking how we can
choose an appropriate y intercept and slope,
a and b, such that the deviation yi − ŷi as
small as possible.
One approach is to find a and b to minimize
the criterion

n∑
i=1

(yi − ŷi)
2.

• The principle of least squares leads to

ȳ = α̂ + β̂x̄

β̂ =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

.

Example 1. One of the questions about peace-
ful uses of atomic energy is the possibility that
radioactive contamination poses health hazards.

• Since World War II, plutonium has been
produced at the Hanford, Washington, fa-
cility of the Atomic Energy Commission.

• Over the years, appreciable quantities of ra-
dioactive wastes have leaked from their open-
pit storage areas into the nearby Columbia
River, which flows through parts of Oregon
to the Pacific.
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• To assess the consequences of this contam-
ination on human health, investigators cal-
culated, for each of the nine Oregon coun-
ties having frontage on either the Columbia
River or the Pacific Ocean, an “index of ex-
posure.”

– This index of exposure was based on sev-
eral factors, including distance from Han-
ford and average distance of the popula-
tion from water frontage.

– The cancer mortality rate, cancer mor-
tality per 100, 000 person-years (1959-1964),
was also determined for each of these nine
counties. They are Clatsop, Columbia,
Gilliam, Hood River, Morrow, Portland,
Sherman, Umatilla, and Wasco.

– Data: (8.34, 210.3), (6.41, 177.9), (3.41, 129.9),
(3.83, 1623), (2.57, 130.1), (11.64, 207.5),
(1.25, 113.5), (2.49, 147.1), (1.62, 137.5)
(the index of exposure, cancer mortality
rate)
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Simple Regression Model

• A simple regression model for a set of pairs
(Xi, Yi), 1 ≤ i ≤ n of points with depen-
dent or response variable Y = (Y1, . . . , Yn)

T

and explanatory variable X = (X1, . . . , Xn)
is the following:

Yi = β0 + β1Xi + εi,

where ε = (ε1, . . . , εn)
T is a vector of in-

dependent, identically distributed random
variables with εi ∼ N(0, σ2), the normal
distribution with mean zero and variance σ2.

• The assumptions on the random variables εi

are relaxed to just uncorrelated, i.e. E[εiεj] =
0 for i 6= j but not necessarily independent.

• We can never separate the random variables
εi from the observations Yi since we don’t
know the value of εi, which means that we
can never know the true values of (β0, β1).

• The method of least squares leads to choose
a “best” (β̂0, β̂1). This is where the sum of
squared errors, or SSE of the model comes
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in. We measure the goodness of linear re-
gression model by its squared error

SSE(b0, b1) =
n∑

i=1
(Yi − b0 − b1Xi)

2.

The least squares regression model is the
model with smallest least squares.

• The least squares solutions (β̂0, β̂1) aren’t
equal to the true values of (β0, β1) but they
do have the property that

E[β̂0] = β0, E[β̂1] = β1.

That is, if the data do come from some sim-
ple linear regression model, the least squares
solutions are unbiased estimates of the true
values (β0, β1).
They also have the property that, among all
unbiased estimates of (β0, β1) that are linear
functions of the response variable, the least
squares solutions have the smallest variance,
this is what the classic Gauss-Markov The-
orem states.
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Properties of Least Squares Solution

• To summarize, we have made the following
decomposition of each observation using the
fitted and residual values

Y = Ŷ + r,

where Ŷ is made from X and corr(r, X) =
0.

• Under the standard assumption that V ar(Yi) =
σ2 and Cov(Yi, Yj) = 0 where i 6= j, we
have

V ar(β̂0) =
σ2 ∑n

i=1 x2
i

n ∑n
i=1 x2

i − (∑n
i=1 xi)

2 ,

V ar(β̂1) =
nσ2

n ∑n
i=1 x2

i − (∑n
i=1 xi)

2 ,

Cov(β̂0, β̂1) =
−σ2 ∑n

i=1 xi

n ∑n
i=1 x2

i − (∑n
i=1 xi)

2 .

• Define the residual sum of squares (RSS)
to be

RSS =
n∑

i=1
(yi − β̂0 − β̂1xi)

2,

where β̂0 and β̂1 are the least squares solu-
tions.
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Let s2 = RSS/(n−2) which is an unbiased
estimate of σ2.

• If the errors, εi are independent normal ran-
dom variables, then the estimated slope and
intercept, being linear combinations of in-
dependent random variables, are normally
distributed as well.

– Under the normality assumption, it can
be shown that

β̂i − β

sβ̂i

∼ tn−2.

This result makes possible the construc-
tion of confidence intervals and Hypoth-
esis tests.

– If the εi are independent and the xi sat-
isfy certain assumptions, a version of the
central limit theorem implies that, for
large n, the estimated slope and intercept
then the estimated slope and intercept
are approximately normally distributed.
The above t-distributions can be used.

• Since the absolute value of r cannot exceed
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1, the squared correlation has possible val-
ues from 0 to 1.

• If r = 0, then x is of no help in predicting
y.

• If r = 1 (and r2 = 1), then x predicts y
exactly.
This can only occur if each point (xi, yi) falls
exactly on the regression line; all of the vari-
ation in y can be explained by variability in
x.

• In between these extremes, a weak correla-
tion (e.g., in the range 0 to 0.3) is accom-
panied by a small proportion of explained
variation (0 to 0.09), while a strong correla-
tion (e.g., between 0.6 and 1.0) is accompa-
nied by a substantially larger proportion of
explained variation (0.36 to 1.0).

• Both r and r2 are useful measures of asso-
ciation for regression analysis.
The correlation tells the direction of associ-
ation and its square tells the extent to which
y is predictable from x.
For the cancer mortality data, the correla-
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tion coefficient is r = 900.13/... = 0.926.
This value is very high, and the proportion
of variation in mortality attributable to ra-
dioactive exposure is also high, 0.9262 =
0.875 (that is, 85%).
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Data Analysis

• In R, “lm” is used to fit linear models.

– It can be used to carry out regression,
single stratum analysis of variance and
analysis of covariance (although ‘aov’ may
provide a more convenient interface for
these).

– Usage: lm(formula, data, subset, weights,
na.action, method = “qr”, model = TRUE,
x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL,
offset = NULL,. . .)

– Models for ‘lm’ are specified symbolically.
A typical model has the form ‘response
terms’ where ‘response’ is the (numeric)
response vector and ‘terms’ is a series of
terms which specifies a linear predictor
for ‘response’.
A terms specification of the form ‘first +
second’ indicates all the terms in ‘first’
together with all the terms in ‘second’
with duplicates removed.
A specification of the form ‘first:second’
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indicates the set of terms obtained by
taking the interactions of all terms in ‘first’
with all terms in ‘second’.
The specification ‘first*second’ indicates
the cross of ‘first’ and ‘second’. This is
the same as ‘first + second + first:second’.

– Additive model and multiplicative model

• Example: Consider Plant Weight Data in
Annette Dobson (1990) “An Introduction to
Generalized Linear Models.”

– Data input:

ctl < − c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)

trt < − c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)

group < − gl(2, 10, 20, labels = c(“Ctl”, “Trt”))

weight < − c(ctl, trt)

– Regress weight to the group.
lm(weight∼ group) leads to the estimate
of β0 to be 5.032 and the estimate of β1

to be−0.371. Here β1 refers to the group
effect.

– Carry out an ANOVA analysis on the
proposed model.
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anova(lm(weight ∼ group)) leads to the
following table.

Analysis of Variance Table
Df Sum Sq Mean Sq F value Pr(> F )

group 1 0.6882 0.6882 1.4191 0.249
Residuals 18 8.7293 0.4850
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The Association Among Categorical Variables

• “Is inoculation with a polio vaccine related
to the occurrence of paralytic polio?”

– Data may be collected on a sample of
observations and we ask whether a par-
ticular value on one variable (i.e., “vacci-
nated”) co-occurs with a particular value
on the other (“polio absent”).

– Both of these variables are simple yes/no
dichotomies.

• How do we measure the association among
categorical variables?

– The idea of association is basically the
same as in quantitative variables, that is,
do certain values of one variable tend to
occur more frequently with certain values
of another?

– The values of categorical variables, how-
ever, may not have a range from lower
to higher quantities, but may represent
qualitatively distinct conditions, such as
a condition being “present” or “absent.”
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– Summary statistics such as the mean and
standard deviation are not applicable.
Instead, observations are simply counted;
for example, how many observations have
both condition A and condition B present?

– Counts are entered into a frequency ta-
ble.

• As with numerical variables, an association
of two categorical variables does not imply
that one causes the other.

– The direction of causation may be re-
ciprocal, with each variable affecting the
other.

– Causation may be mediated by one or
more intervening third variable(s).

– Both variables may be consequences of
additional variables not included in the
data causing the two outcomes to occur
together.

– To understand these effects more com-
pletely, it is often necessary to examine
the association of three or more variables.
The tabulation of data for three categor-
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ical variables results in a three-way for
two variables is a two-way table.
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Bivariate Categorical Data

• Bivariate categorical data result from the
observation of two categorical variables for
each individual.

• A variable with two categories, such as male/female
or graduate/undergraduate, is called a di-
chotomous variable.
A pair of dichotomous variables is called a
double dichotomy.
Because each variable has just two variables,
the table that results is a two-by-two (2×2)
frequency table.

• Double dichotomies arise, for example, when
each of a number of persons is asked a pair
of yes-no questions.

– Company X ask each of 600 men whether
or not they use Brand X razors and whether
or not they use Brand X blades.

– A physician may classify patients accord-
ing to whether of not they have been in-
oculated against a disease and whether
or not they contracted the disease.
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– Businesses of a certain type, for example,
might be classified based on whether or
not they provide “day-care” facilities and
whether or not they provide maternity
leave for pregnant employees.

• Association between the pair of variables is
seen by examining the patterns of frequen-
cies in the individual cells.

• Many statistical studies involve 2× 2 tables
and because many concepts of statistics can
be presented in this form, we shall consider
such tables in some detail.
This discussion is simplified by the notation
displayed in the following table.

Question 2
Yes No Total

Question 1 Yes a b a + b
No c d c + d

Total a + c b + d n
Here

– a is the number of persons answering “yes”
to both questions.

– b is the number of persons answering “yes”

43



to Question 1 and “no” to Question 2.

– c is the number of persons answering “no”
to Question 1 and“yes” to Question 2.

– d is the number of persons answering “no”
to both questions.

– We denote by n the total number of per-
sons included in the table and n = a +
b + c + d.

• Independence:

– When the joint frequencies for two vari-
ables have no association, they are said
to be independent.

– For example, suppose communities were
cross-classified according to average in-
come and crime rate as the following ta-
ble.

Average income level
Low Medium High Total

Crime Low 1(10%) 4(10%) 3(10%) 8(10%)
Medium 7(70%) 28(70%) 21(70%) 56(70%)

rate High 2(20%) 8(20%) 6(20%) 16(20%)
All crime 10 40 30 80

levels
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– The table shows that for each income
level most communities (70%) have a medium
crime rate.

– The entire distribution of crime rates is
the same for each level of average income;
that is, crime rate is independent of level
of average income.

– In this case, knowledge of a community’s
average income level provides no infor-
mation about its crime rate.

– The percentages of districts with low, medium,
and high crime rates are 10%, 70%, and
20% regardless of the average income.

– Note that the marginal distribution of
crime rate has to be the same as the dis-
tribution for each income level.

– When will a
a+b = c

c+d?

– When will a
a+c = b

b+d?

• Index of association for 2× 2 tables

– A numerical indicator of association be-
tween two dichotomous variables can be
based on the quantity ad− bc.
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– a and b are the upper-left and lower-right
entries in the above table, and b and c are
the upper-right and lower-left entries.

– If ad−bc = 0, it indicates independence.

– If ad−bc > 0, it indicates that A1 occurs
more frequently with B1, and A2 with
B2, than the other way around.

– If ad−bc < 0, it indicates that A1 occurs
more frequently with B2, and A2 with
B1, than the other way around.

– The difference ad − bc is divided by a
quantity that keeps the final index of as-
sociation between −1 and +1, like the
correlation coefficient for numerical scales.

• Measure of Association: φ coefficient

φ =
ad− bc√

(a + b)(c + d)(a + c)(b + d)

– If the variables A and B are ordered then
the magnitude of φ indicates the strength
of association and the sign indicates the
direction of association as well.

– (a + b + c + d)φ is identical to the chi-
square test we will discuss later on.
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Other kinds of 2× 2 tables

• Dichotomous variables sometimes have cate-
gories that are ordered, so that one value re-
flects more of some characteristic than other.

– To study the association of income and
education level, the income might be clas-
sified simply as above or below poverty
level, education as having completed fewer
than 12 years of schooling or 12 years or
more.

• Another type double dichotomy is shown by
the two-by-two tabulation of a dichotomous
variable for the same individuals at two dif-
ferent times.

– Suppose in August we asked a number
of people which of two presidential can-
didates they favored and then asked the
same people the same question in Septem-
ber.

– We could tabulate the results as follows.
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September
Bush Clinton Total

August Bush a b a + b
Clinton c d c + d
Total a + c b + d n

Here the number c would be the num-
ber of persons who switched from Demo-
cratic candidate Clinton Republican can-
didate Bush between August and Septem-
ber 1992.

– These data are change-in-time data and
the table is called a “turnover” table.

– We may ask whether the number of peo-
ple who kept their original preference (cells
a and d) is substantially larger than the
number who changed (cell b and c).
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Interpretation of frequencies

• Question: Is there a tendency for those who
use Brand X razors also to use Brand X
blades?

• Company X conducted a market survey, in-
terviewing a sample of 600 men.
Each man was asked whether he uses the
Brand X razor and whether he uses Brand
X blades.

Use Not use
Brand X Brand X
blades blades Total

Use Brand X 186(67%) 93(33%) 279(100%)
razor
Not Use 59(18%) 262(82%) 321(100%)
Total 245(41%) 355(59%) 600(100%)

• Association: Most (67%) of the men using
Brand X razors also use Brand X blades;
only a few (18%) of the men not using Brand
X razors who use Brand X blades differs
from that percentage among men not using
Brand X razors.

– We say there is an association between
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using the Brand X razor and using Brand
X blades.

– We can say that men who use the Brand
X razor are more likely to use Brand X
blades than are men who do not use the
razor.

– This difference may suggest that an ad-
vertising campaign for blades should be
directed to men not using Brand X ra-
zors.
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Chi-Square Tests of Independence

Consider frequency tables in the case in which
individuals were classified simultaneously on two
categorical variables.

• Consider testing the null hypothesis that in
a population two variables are independent
on the basis of a sample drawn from that
population.

– Even though the variables are indepen-
dent in the in the population, they may
not be (and in fact probably will not be)
independent in a sample.

Consider the following hypothetical data.

• At each of three different dates, a sample of
1000 registered voters was drawn; at each
time each respondent was asked which of
two potential candidates he or she would fa-
vor.

10/91 1/92 Total
Bush 523 502 1025
Clinton 477 498 975
Total 1000 1000 2000
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• In the underlying population, let the pro-
portion favoring Bush be p1 at the time of
the first poll and p2 at the time of the second
poll.

• The null hypothesis that the proportion fa-
voring one candidate does not depend on the
date of polling is H0 : p1 = p2.

• In this example the estimates of p1 and p2

are p̂1 = 0.523 and p̂2 = o.502, respectively,
based on sample sizes n1 = n2 = 1000

• The estimate of the SD of the difference be-
tween two sample proportions when H0 is
true is √√√√√√p̂q̂

 1

n1
+

1

n2

 = 0.02235.

The test statistic is

z =
p̂1 − p̂2√

p̂q̂(1/n1 + 1/n2)
= 0.940.

• What is the distribution of the above test
statistic?
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Measure of Association Based on Prediction

• Consider another measure of association which
is based on the idea of using one variable to
predict the other.

• Consider the cross-classification of exercise
and health in the following Table.

-3 Health status
Good Poor Total

Exerciser 92 14 106
Non-exerciser 25 71 96
Total 117 85 202

– How well does exercise group predict health
status?

– If one of the 202 persons represented in
this table is selected at random, our best
guess of the health status-if we don’t know
anything about the person-is to say that
the person is in the good-health group
because more of the people are in that
group (117, compared with 85 for the
poor-health group); the good-health cat-
egory is the mode.

– If we make this prediction for each of the
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202 persons, we shall be right in 117 cases
and wrong in 85 cases.

• If we take the person’s exercise level into
account, we can improve our prediction.

– If we know the person exercises regularly,
our best guess is still that the person is in
good-health group, for 92 of the regular
exercisers are in the good-health group,
compared with only 14 in the poor-health
group.

– If we know the person is not an exer-
ciser, we should guess that the person is
in the poor-health group; in this case we
would be correct 71 times and incorrect
25 times.

– Our total number of errors in predicting
all 202 health conditions for both exer-
cises and nonexercisers is 14 + 25 = 39,
compared with 85 errors if we do not use
the exercise category in making the pre-
diction.

• For this example, a coefficient of association
that measures the improvement in predic-
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tion of the column category due to using
the row classification is

λcṙ =
85− (14 + 25)

85
= 0.54.

Here 85−(14+25) is the reduction in errors
when using the rows to predict columns
and 85 is the number of errors not using
the rows.

• The subscript c · r refers to predicting the
column category using the row category.

Recall the correlation coefficient r = sxy/sxsy

is also a measure of association between two
quantitative variables.

• Although the measure is symmetric in the
two variables, it can be interpreted in terms
of how well one variable y can be predicted
form the other variable x.

• Recall the definition of λ which defines a
measure of association for categorical vari-
ables.

• With quantitative variables,
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– The notion that replaces “number of er-
rors” is “sum of squared deviations” of
the predicted values of y from the actual
values.

– Number of errors in prediction of y
without using x is replaced with sum
of squares of deviations in predicting
y without using x. It is

∑
(yi − ȳ)2.

– Number of errors in prediction of y us-
ing x is replaced with sum of squares of
deviations in predicting y using x. It
is ∑

(yi − ŷi)
2.

– With the above interpretation, λ is equal
to r2.
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