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Motivated Example on Hypothesis Testing

ESP experiment: guess the color of 52 cards
with replacement.

• Experiment: Generate data to test the hy-
potheses.

• T : number of correct guess in 10 trials

• H0 : T ∼ Bin(10, 0.5) versus H1 : T ∼
Bin(10, p) with p > 1/2

• Consider the test statistic T and the rejec-
tion region R = {8, 9, 10}.

• Compute the probability of committing type
1 error:

α = P (R) = P (X > 7)

= 0.0439 + 0.0098 + 0.0010 = 0.0547.

• When rejection region= R = {7, 8, 9, 10},
α = P (X > 6) = 0.1172+P (X > 7) = 0.1719.

• Calculation of power when R = {8, 9, 10}.
We compute what the power will be under
various values of p.

p = 0.6 P (X > 7|p = 0.6) = 0.1673

p = 0.7 P (X > 7|p = 0.7) = 0.3828.
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• Idea: A statistical test of a hypothesis is a
rule which assigns each possible observation
to one of two exclusive categories: consis-
tent with the hypothesis under considera-
tion and not consistent with the hypothe-
sis.

• Will we make mistake?

Two Types of Error

Reality
H0 true H0 false

Test says reject H0 Type I Error Good
cannot reject Good Type II Error

H0

• Usually, P (Type I Error) is denoted by α
and P (Type II Error) is denoted by β.

• In ESP experiment, α increases when R moves
from {8, 9, 10} to {7, 8, 9, 10} but β decreases.
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• Statistical Hypotheses testing is a formal
means of choosing between two distributions
on the basis of a particular statistic or ran-
dom variable generated from one of them.

– How do we accomodate the uncertainty
on the observed data?

– How do we evaluate a method?

• Neyman-Pearson Paradigm

– Null hypothesis H0

– Alternate hypothesis HA or H1

– The objective is to select one of the two
based on the available data.

– A crucial feature of hypothesis testing is
that the two competing hypotheses are
not treated in the same way: one is given
the benefit of the doubt, the other has
the burden of proof.
The one that gets the benefit of the doubt
is called the null hypothesis. The other
is called the alternative hypothesis.

– By definition, the default is H0. When
we carry out a test, we are asking whether
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the available data is significant evidence
in favor of H1. We are not testing whether
H1 is true; rather, we are testing whether
the evidence supporting H1 is statisti-
cally significant.

– The conclusion of a hypothesis test is
that we either reject the null hypothe-
sis (and accept the alternative) or we fail
to reject the null hypothesis.
Failing to reject H0 does not quite mean
that the evidence supports H0; rather, it
means that the evidence does not strongly
favor H1.
Again, H0 gets the benefit of the doubt.

– Examples:

∗ Suppose we want to determine if stocks
picked by experts generally perform
better than stocks picked by darts. We
might conduct a hypothesis test to de-
termine if the available data should
persuade us that the experts do bet-
ter. In this case, we would have
H0: experts not better than darts
H1: experts better than darts
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∗ Suppose we are skeptical about the ef-
fectiveness of a new product in pro-
moting dense hair growth. We might
conduct a test to determine if the data
shows that the new product stimulates
hair growth. This suggests
H0: New product does not promote
hair growth
H1: New product does promote hair
growth
Choosing the hypotheses this way puts
the onus on the new product; unless
there is strong evidence in favor of H1,
we stick with H0.

∗ Suppose we are considering changing
the packaging of a product in the hope
of boosting sales. Switching to a new
package is costly, so we will only un-
dertake the switch if there is signifi-
cant evidence that sales will increase.
We might test-market the change in
one or two cities and then evaluate the
results using a hypothesis test. Since
the burden of proof is on the new pack-
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age, we should set the hypotheses as
follows:
H0: New package does not increase
sales
H1: New package does increase sales

– There are two types of hypotheses, sim-
ple ones where the hypothesis completely
specifies the distribution.

– Simple hypotheses test one value of the
parameter against another, the form of
the distribution remaining fixed.

– Here is an example when they are both
composite:
Xi: Poisson with unknown parameter
Xi is not Poisson
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Steps for setting up test:

1. Define the null hypothesis H0 (devil’s ad-
vocate).
Put the hypothesis that you don’t believe
as H0

2. Define the alternative HA (one sided /two
sided).

3. Find the test statistic.
Use heuristic or systematic methods.

4. Decide on the type I error: α that you
are willing to take.

5. Compute the probability of observing the
data given the null hypothesis: p-value.

6. Compare the p-value to α, if its smaller,
reject H0.
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Example 1: Sex bias in graduate admission

• The graduate division of the University of
California at Berkeley attempted to study
the possibility that sex bias operated in grad-
uate admissions in 1973 by examining ad-
mission data.

• In this case, what does the hypothesis of no
sex bias corresponds to? It is natural to
translate this into

P [Admit|Male] = P [Admit|Female].

• Data

– There were 8, 442 men who applied for
admission to graduate school that quar-
ter, and 4, 321 women.

– About 44% of the men and 35% of the
women were admitted.

– How do we perform this two-sample test?

• What is the conclusion?

– two-sample test

0.44− 0.35√
0.44×0.56

8442 + 0.35×0.65
4321

= 9.948715.
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– p-value is 1.283 exp(−22) when H1 is a
one-sided test P [Admit|Male] > P [Admit|Female].

– p-value is 2.566 exp(−22) when H1 is a
two-sided test P [Admit|Male] 6= P [Admit|Female].
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Example 2: Effectiveness of Therapy

• Suppose that a new drug is being considered
with a view to curing a certain disease.

• How do we evaluate its effectiveness?

• The drug is given to n patients suffering
from the disease and the number x of cures
is noted.

• We wish to test the hypothesis that there is
at least a 50 − 50 chance of a cure by this
drug based on the following data:

x cures among n patients.

• Put the problem in the following framework
of statistical test:

– The sample space X is simple-it is the
set {0, 1, 2, . . . , n}. (i.e., X can take on
0, 1, 2, . . . , n.)

– The family {Pθ} of possible distributions
on X is (assuming independent patients)
the family of binomial distributions, parametrized
by the real parameter θ taking values in
[0, 1].
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– θ is being interpreted as the probability
of cure.

– X ∼ Bin(n, θ)

– The stated hypothesis defines the subset
Θ0 = [1/2, 1] of the parameter space.
H0 : θ ≥ 1/2

– In this situation, only a small class of
tests which seem worth considering on a
purely intuitive basis.
We will only consider those for which the
set of x taken to be consistent with Θ0

have the form {x : x ≥ k}
– Question: Does it make sense to con-

sider that x cures out of n patients were
consistent with Θ0, while x+1 were not?

– What is a reasonable test?
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A recipe: Optimal tests for simple hypotheses

• Null hypothesis H0 : f = f0

• Alternate hypothesis HA : f = f1

• Want to find a rejection region R such that
the error of both types are as small as pos-
sible.
∫
R f0(x)dx = α and 1− β =

∫
R f1(x)dx.

• Neyman-Pearson Lemma:
For testing f0(x) against f1(x) a critical re-
gion of the form

Λ(x) =
f1(x)

f0(x)
≥ K

where K is a constant has the greatest power
(smallest β) in the class of tests with the
same α.

– Let R denote the rejection region deter-
mined by Λ(x) and S denote the rejec-
tion of other testing procedure.

– αR =
∫
R f0(x)dx, αS =

∫
S f0(x)dx,

– αR, αS ≤ α
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– βR−βS = (
∫
R− ∫

S) f1dx =
∫
R∩Sc f1dx−∫

S∩Rc f1dx.
Since in R, f1 ≥ f0/K and in Rc, −f1 ≥
−f0/K we have:

βR − βS ≥ 1

K

(∫
R∩Sc f0dx−

∫
S∩Rc f0dx

)

=
1

K

(∫
R f0dx−

∫
S f1dx

)
=

1

K
(αR − αS)

– When αR = αS = α, βR − βS ≥ 0.
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Why Neyman-Pearson framework is being
accepted?

• A test whose error probabilities are as small
as possible is clearly desirable.
However, we cannot choose the critical re-
gion in such a way that α(θ) and β(θ) are
simultaneously uniformly minimized.
By taking the critical region as the empty
set, we can make α(θ) = 0 and by taking
the critical region as the sample space, we
can make β(θ) = 0. Hence a test which
uniformly minimized both error-probability
functions would require to have zero error
probabilities, and usually no such test ex-
ists.

• The modification suggested by Neyman and
Pearson is based on the fact that in most
circumstances our attitudes to the hypothe-
ses Θ0 and Θ−Θ0 are different- we are often
asking if there is sufficient evidence to reject
the hypothesis Θ0.
In terms of the two possible errors this may
be translated into the statement that often
the Type I error is more serious than
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the Type II error.

• We should control the probability of the
Type I error at some pre-assigned small value
α, and then, subject to this control, look
for a test which uniformly minimizes
the function describing the proba-
bilities of Type II error.

• Is this asymmetry on (H0, H1) reasonable?
Can you come up an example with business
application?

– Suppose we use this testing technique in
searching for regions of the genome that
resemble other regions that are known to
have significant biological activity.

– One way of doing this is to align the
known and unknown regions and com-
pute statistics based on the number of
matches.

– To determine significant values of these
statistics a (more complicated) version of
the following is done.
Thresholds (critical values) are set so that
if the matches occur at random and the
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probability of a match is 1/2, then the
probability of exceeding the threshold (type
I) error is smaller than α.

– No one really believes that H0 is true and
possible types of alternatives are vaguely
known at best, but computation under
H0 is easy.

Now we use the following example to moti-
vate Neyman-Pearson lemma. We start from
the simplest possible situation, that where Θ
has only two elements θ0 and θ1, say, and where
Θ0 = {θ0}, Θ − Θ0 = {θ1}. Note that a hy-
pothesis which specifies a set in the parameter
space containing only one element is called a
simple hypothesis. Thus we are now consider-
ing testing a simple null-hypothesis against a
simple alternative. In this case, the power func-
tion of any test reduces to a single number, and
we examine the question of the existence of a
most-powerful test of given significance level α.

Revisit the example that x cures out of n pa-
tients when n = 5. We wish to test

H0 : p = 0.5 versus H1 : p = 0.3.
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• The probability distribution of X is
X = x 0 1 2 3 4 5
p = 0.5 0.031 0.156 0.313 0.313 0.156 0.031
p = 0.3 0.168 0.360 0.309 0.132 0.028 0.003

f1(x)/f0(x) 5.419 2.308 0.987 0.422 0.179 0.097

• Think of the meaning of likelihood ratio f1(x)/f0(x).

• We consider all possible nonrandomized tests
of significance level 0.2.
critical region α 1− β critical region α 1− β

{0} 0.031 0.168 {0, 1} 0.187 0.528
{1} 0.156 0.360 {0, 4} 0.187 0.196
{4} 0.156 0.028 {1, 5} 0.187 0.363
{5} 0.031 0.003 {4, 5} 0.187 0.031
{0, 5} 0.062 0.171

• The best test is the one with critical region
{0, 1}. Can you give a reason for that? Or,
can you find a rule?
Try to think in terms of likelihood ratio by
noting

f1(x) =
f1(x)

f0(x)
· f0(x).

As a hint, compare the two tests {0, 1} and
{0, 4} with the same α. Observe that their
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power are

β{0,1} = [P{p=0.3}(r = 0)] + P{p=0.3}(r = 1)

β{0,4} = [P{p=0.3}(r = 0)] + P{p=0.3}(r = 4).

Compare P{p=0.3}(r = 4) to P{p=0.3}(r = 1).

• Conclusion: The critical region determined
by {x : f1(x)/f0(x) ≥ c} is quite intuitive.
Suppose that we set out to order points in
the sample space according to the amount of
evidence they provide for P1 rather than P0.
We should naturally order them according
to the value of the ratio f1(x)/f0(x); any x
for which this ratio is large provides evidence
than P1 rather than P0 is the true underly-
ing probability distribution. The Neyman-
Pearson analysis gives us a basis for choosing
c so that

P1

x :
f1(x)

f0(x)
≥ c

 = α.

Now we use the Neyman-Pearson lemma to
derive UMP test in the following two examples.

Example 3. Suppose that X is a sample of
size 1. We wish to test whether it comes from
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N(0, 1) or the double exponential distribution
DE(0, 2) with the pdf 4−1 exp(−|x|/2).

• Make a guess on the testing procedure?

• Since P (f1(x) = cf0(x)) = 0, there is a
unique nonrandomized UMP test.

• The UMP test T∗(x) = 1 if and only if

π

8
exp(x2 − |x|) > c2

for some c > 0, which is equivalent to |x| >
t or |x| < 1− t for some t > 1/2.

• Suppose that α < 1/4. We use

α = E0[T∗(X)] = P0(|X| > t) = 0.3374 > α.

Hence t should be greater than 1 and

α = Φ(−t) + 1− Φ(t).

Thus, t = Φ−1(1−α/2) and T∗(X) = I(t,∞)(|X|).
• Why the UMP test rejects H0 when |X| is

large?

• The power of T∗ under H1 is

E1[T∗(X)] = P1(|X| > t) = 1−1

4

∫ t
−t e

−|x|/2dx = e−t/2.
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Example 4. Let X1, . . . , Xn be iid binary
random variables with p = P (X1 = 1). Sup-
pose that we wish to test H0 : p = p0 versus
H1 : p = p1, where 0 < p0 < p1 < 1.

• Since P (f1(x) = cf0(x)) 6= 0, we may need
to consider randomized UMP test.

• A UMP test of size α is

T∗(Y ) =



1 λ(Y ) > c
γ λ(Y ) = c
0 λ(Y ) < c,

where Y = ∑n
i=1 Xi and

λ(Y ) =

p1

p0


Y 1− p1

1− p0


n−Y

.

• Since λ(Y ) is increasing in Y , there is an
integer m > 0 such that

T∗(Y ) =



1 Y > m
γ Y = m
0 Y < m,

where m and γ satisfy

α = E0[T∗(Y )] = P0(Y > m)+γP0(Y = m).
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• Since Y has the binomial distribution Bin(n, p),
we can determine m and γ from

α =
n∑

j=m+1

 n
j

 pj
0(1−p0)

n−j+γ

 n
m

 pm
0 (1−p0)

n−m.

• Unless

α =
n∑

j=m+1

 n
j

 pj
0(1− p0)

n−j

for some integer m, the UMP test is a ran-
domized test.

• Do you notice that the UMP test T∗ does
not depend on p1?

– Neyman-Pearson lemma tells us that we
should put those x into rejection region
according to its likelihood ratio until the
level of test achieves α.

– Think of two hypothesis testing problems:
The first one is H0 : p = p0 versus H1 :
p = p1 and the second one is H0 : p = p0

versus H1 : p = p2 where p1 > p0 and
p2 > p0.

– For the above two testing problems, both
their likelihood ratios increase as y in-
creases.
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– T∗ is in fact a UMP test for testing H0 :
p = p0 versus H1 : p > p0.

• Suppose that there is a test T∗ of size α such
that for every P1 ∈ P , T∗ is UMP for testing
H0 versus the hypothesis P = P1.
Then T∗ is UMP for testing H0 versus H1.

Example: Suppose we have reason to be-
lieve that the true average monthly return on
stocks selected by darts is 1.5%. We want to
choose between H0 : µ = 1.5 versus H1 : µ 6=
1.5, where µ¯ is the true mean monthly return.

• We need to select a significance level α. Let’s
pick α = 0.05. This means that there is at
most a 5% chance that we will mistakenly
reject H0 if in fact H0 is true (Type I error).
It says nothing about the chances that we
will mistakenly stick with H0 if in fact H1

is true (Type II error).

• Large sample hypothesis test. Let’s suppose
we have samples X1, · · · , Xn with n > 30.

– The first step in choosing between our
hypotheses is computing the following test
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statistic:

Z =
X̄ − µ0

σ/
√

n

– If the null hypothesis is true, then the
test statistic Z has approximately a stan-
dard normal distribution by the central
limit theorem.

– The test: If Z < −zα/2 or Z > zα/2, we
reject the null hypothesis; otherwise, we
stick with the null hypothesis. (Recall
that

• T-test for normal population.
Suppose now that we don’t necessarily have
a large sample but we do have a normal pop-
ulation. Consider the same hypotheses as
before.

– Now our test statistic becomes

t ==
X̄ − µ0

s/
√

n

– Under H0, the test statistic t has a t-
distribution with n− 1

– Consider the mean return on darts. Sup-
pose we have n = 20 observations (the 1-
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month contests) with a sample mean of
−1.0 and a sample standard deviation of
7.2.
Our test statistic is −1.55. The thresh-
hold for rejection is t19,0.025 = 2.093.

Example: Consider the effect of a packag-
ing change on sales of a product. Let µ be the
(unknown) mean increase in sales due to the
change. We have data available from a test-
marketing study. We will not undertake the
change unless there is strong evidence in favor
of increased sales. We should therefore set up
the test like this: H0 : µ ≤ 0 versus H1 : µ > 0.

• Note that this is a one-sided test.

• This formulation implies that a large X (i.e.,
large increases in sales in a test market) will
support H1 (i.e., cause us to switch to the
new package) but negative values of X (re-
jecting decreased sales) support H0.

• The packaging example: Suppose that based
on test-marketing in 36 stores we observe a
sample mean increase in sales of 13.6 units
per week with a sample standard deviation
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of 42.
Is the observed increase significant at level
α=0.05? To answer this, we compute the
test statistic Z = 1.80.
Our cutoffffis zα = 1.645. Since Z > z, the
increase is significant.
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Observational Studies

• An observational study on sex bias in ad-
missions to the Graduate Division at the
University of California, Berkeley, was car-
ried out in the fall quarter of 1973. Bickel,
P., OConnell, J.W., and Hammel, E. (1975)
Is there a sex bias in graduate admissions?
Science 187, 398-404.

– There were 8, 442 men who applied for
admission to graduate school that quar-
ter, and 4, 321 women.

– About 44% of the men and 35% of the
women were admitted.

– Assuming that the men and women were
on the whole equally well qualified (and
there is no evidence to the contrary), the
difference in admission rates looks like a
very strong piece of evidence to show that
men and women are treated differently in
the admission procedure.

• Admissions to graduate work are made sep-
arately for each major. By looking at each
major separately, it should have been possi-
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ble to identify the ones which discriminated
against the women.

– In Berkeley, there are over a hundred ma-
jors.

– Look at the six largest majors had over
five hundred applicants each. (They to-
gether accounted for over one third of the
total number of applicants to the cam-
pus.)

– In each major, the percentage of female
applicants who were admitted is roughly
equal to the percentage of male appli-
cants.

– The only exception is major A, which ap-
pears to discriminate against men: it ad-
mitted 82% of the women, and only 62%
of the men.

– When a;; six majors are taken together,
they admitted 44% of the male appli-
cants, and only 30% of the females-the
difference is 14%,

• Admissions data in the six largest majors
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Men Women
Number of Percent Number of Percent

Major applicants admitted applicants admitted
A 825 62 108 82
B 560 63 25 68
C 325 37 59 34
D 417 33 375 35
E 191 28 393 24
F 373 6 341 7

• What is going on? An explanation:

– The first two majors were easy to get
into. Over 50% of the men applied to
these two.

– The other four majors were much harder
to get into. Over 90% of the women ap-
plied to these four.

– There was an effect due to the choice of
major, confounded with the effect due to
sex. When the choice of major is con-
trolled for, as in the above Table, there
is little difference in the admissions rates
for men or women.

• An experiment is controlled when the in-
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vestigators determine which subjects will be
the controls and which will get the treatment-
for instance, by tossing a coin.

• Statisticians distinguish carefully between con-
trolled experiments and observational stud-
ies.

– Studies of the effects of smoking are nec-
essarily observational-nobody is going to
smoke for ten years just to please a statis-
tician.

– Many problems can be studied only ob-
servationally and all observational stud-
ies have to deal with the problems of con-
founding.

– For the admission example, it is wrong to
campus-wide choice of major. We have
to make comparisons for homogeneous
subgroups.

– This was not a controlled, randomized
experiment, however; sex was not ran-
domly assigned to the applicants.

• An alternative analysis: Compare the weighted
average admission rates for men and women.
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Consider

933
4526 × 62% + 585

4526 × 63% + 918
4526 × 37%

+ 792
4526 × 33% + 584

4526 × 28% + 714
4526 × 6%

and etc which lead to 39% versus 43%.
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Hypothesis Testing By Likelihood Methods

Example Let X1, . . . , Xn be iid with X1 ∼
N(µ, 1).

• Test H0 : µ = 0 versus H1 : µ = µ0 > 0.

• Construct a test with α = 0.05 and β =
0.2005.

• Reject H0 if
√

nX̄n > 1.645.

• Note that

β = P (
√

nX̄n ≤ 1.645|µ = µ0) = Φ(1.645−
√

nµ0).

• If n → ∞ and µ0 is a fixed positive con-
stant, β → 0.

• To ensure β = 0.2005, it requires that

1.645−
√

nµ0 = −0.84

or µ0 = 2.485n−1/2.

• Do you notice that µ0 will change with n
which is no longer a fixed alternative?

Test Statistics for A Simple Null Hypothesis

Consider testing H0 : θ = θ0 ∈ Rs versus
H1 : θ 6= θ0.
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Likelihood Ratio Test

• A likelihood ratio statistic,

Λn =
L(θ0;x)

supθ∈Θ
L(θ;x)

was introduced by Neyman and Pearson (1928).

• Λn takes values in the interval [0, 1] and H0

is to be rejected for sufficiently small values
of Λn.

• The rationale behind LR tests is that when
H0 is true, Λn tends to be close to 1, whereas
when H1 is true, Λn tends to be close to 0,

• The test may be carried out in terms of the
statistic

λn = −2 log Λn.

• For finite n, the null distribution of λn will
generally depend on n and on the form of
pdf of X .

• LR tests are closely related to MLE’s.

• Denote MLE by θ̂. For asymptotic analysis,
expanding λn at θ̂ in a Taylor series, we get

λn = −2

−
n∑

i=1
log f (Xi, θ̂) +

n∑
i=1

log f (Xi, θ
0)


33



= 2


1

2
(θ0 − θ̂)T

− n∑
i=1

∂2

∂θj∂θk
log f (x; θ)

∣∣∣∣∣∣∣∣θ=θ∗

 (θ0 − θ̂)

 ,

where θ̂ lies between θ̂ and θ0.

• Since θ∗ is consistent,

λn = n(θ̂−θ0)T
−1

n

n∑
i=1

∂2

∂θj∂θk
L(θ)

∣∣∣∣∣∣∣∣θ=θ0

 (θ̂−θ0)+oP (1).

By the asymptotic normality of θ̂ and

−n−1 n∑
i=1

∂2

∂θj∂θk
L(θ)|θ=θ0

P→ I(θ0),

λn has, under H0, a limiting chi-squared dis-
tribution on s degrees of freedom.

Example Consider the testing problem H0 :
θ = θ0 versus H1 : θ 6= θ0 based on iid X1, . . . , Xn

from the uniform distribution U(0, θ).

• L(θ0;x) = θ−n
0 1{x(n)<θ0}

• θ̂ = x(n) (MLE) and supθ∈Θ L(θ;x) = x−n
(n)1{x(n)<θ}

• We have

Λn =


(X(n)/θ

0)n X(n) ≤ θ0

0 X(n) > θ0
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• Reject H0 if X(n) > θ0 or X(n)/θ0 < c1/n.

• What is the asymptotic distribution of λn?

• What is P (n log(X(n)/θ
0) ≤ c) where c <

0? It is not a χ2 distribution. (Why???)

Example Consider the testing problem H0 :
σ2 = σ2

0 versus H1 : σ2 6= σ2
0 based on iid

X1, . . . , Xn from the normal distribution N(µ0, σ
2).

• L(θ0;x) = (2πσ2
0)
−n/2 exp

[
− ∑

i(xi − µ0)
2/2σ2

0

]

• σ̂2 = n−1 ∑
i(xi − µ0)

2 (MLE) and

sup
θ∈Θ

L(θ;x) = (2πσ̂2)−n/2 exp(−n/2).

• We have

Λn =

σ̂2

σ2
0


n/2

exp

n

2
−

∑
i(xi − µ0)

2

2σ2
0


or under H0

λn = −n

ln
 1

n

n∑
i=1

Z2
i

 −
1−

 1

n

n∑
i=1

Z2
i




 ,

where Z1, . . . , Zn are iid N(0, 1).

• Fact: Using CLT, we have

n−1 ∑n
i=1 Z2

i − 1√
2/n

d→ N(0, 1)
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or
n

2

 1

n

n∑
i=1

Z2
i − 1


2

d→ χ2
1.

• Note that ln u ≈ −(1 − u) − (1 − u)2/2
when u is near 1 and n−1 ∑n

i=1 Z2
i → 1 in

probability by LLN.

• A common question to be asked in Tay-
lor’s series approximation is that how many
terms we should consider. In this exam-
ple, it refers to the use of approximation
ln u ≈ −(1− u) as a contrast to the second
order approximation we use. If we do use
the first order approximation, we will end
up the difficulty of finding limn anbn when
limn an = ∞ and limn bn = 0.

• We conclude that λn has a limiting chi-squared
distribution with 1 degree of freedom.
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Hypothesis Test on a Population Mean

1. We begin with the simplest case of a test. Suppose we are inclined to believe that some
(unknown) population mean � has the value �0, where �0 is some (known) number.
We have samples X1; : : : ;Xn from the underlying population and we want to test our
hypothesis that � = �0. Thus, we have

H0 : � = �0

H1 : � 6= �0

What sort of evidence would lead us to reject H0 in favor of H1? Naturally, a sample
mean far from �0 would support H1 while one close to �0 would not. Hypothesis testing
makes this intuition precise.

2. This is a two-sided or two-tailed test because sample means that are very large or very
small count as evidence against H0. In a one-sided test, only values in one direction are
evidence against the null hypothesis. We treat that case later.

3. Example: Suppose we have reason to believe that the true average monthly return on
stocks selected by darts is 1.5%. (See Dart Investment Fund in the casebook for back-
ground and data.) We want to choose between

H0 : � = 1:5

H1 : � 6= 1:5;

where � is the true mean monthly return.

4. We need to select a signi�cance level �. Let's pick � = :05. This means that there is at
most a 5% chance that we will mistakenly reject H0 if in fact H0 is true (Type I error).
It says nothing about the chances that we will mistakenly stick with H0 if in fact H1 is
true (Type II error).

5. Large sample hypothesis test. Let's suppose we have samples X1; : : : ;Xn with n >
30. The �rst step in choosing between our hypotheses is computing the following test
statistic:

Z =
X � �0
�=
p
n
:

I am temporarily assuming that we know �.

6. Remember that we know �0 (it's part of the null hypothesis we've formulated), even
though we don't know �.

7. If the null hypothesis is true, then the test statistic Z has approximately a standard
normal distribution.

8. Now we carry out the test: If Z < �z�=2 or Z > z�=2 we reject the null hypothesis; oth-
erwise, we stick with the null hypothesis. (Recall that z�=2 is de�ned by the requirement
that the area to the right of z�=2 under N(0; 1) is �=2. Thus, with � = :05, the cuto� is
1.96.)
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9. Another way to express this is to say that we reject if jZj > z�=2; i.e., we reject if the test
statistic Z lands in the set of points having absolute value greather than z�=2. This set is
called the rejection region for the test.

10. Every hypothesis test has this general form: we compute a test statistic from data, then
check if the test statistic lands inside or outside the rejection region. The rejection region
depends on � but not on the data.

11. Notice that saying

�z�=2 <
X � �0
�=
p
n

< z�=2

is equivalent to saying

X � z�=2
�p
n
< �0 < X + z�=2

�p
n
:

So, here is another way to think of the test we just did. We found a con�dence interval
for the mean � and checked to see if �0 lands in that interval. If �0 lands inside, we don't
reject H0; if �0 lands outside, we do reject H0.

12. This supports our intuition that we should reject H0 if X is far from �0.

13. As usual, if we don't know � we replace it with the sample standard deviation s.

14. T-test for normal population. Suppose now that we don't necessarily have a large
sample but we do have a normal population. Consider the same hypotheses as before.
Now our test statistic becomes

t =
X � �0
s=
p
n
:

15. Under the null hypothesis, the test statistic t has a t-distribution with n � 1 degrees of
freedom.

16. Now we carry out the test. Reject if

t < �tn�1;�=2 or t > tn�1;�=2;

otherwise, do not reject.

17. As before, rejecting based on this rule is equivalent to rejecting whenever �0 falls outside
the con�dence interval for �.

18. Example: Let's continue with the hypothesis test for the mean return on darts. As above,
�0 = 1:5 and � = :05. Suppose we have n = 20 observations (the 1-month contests)
with a sample mean of �1:0 and a sample standard deviation of 7:2. Our test statistic is
therefore

t =
X � �0
s=
p
n

=
�1:0� 1:5

7:2=
p
20

= �1:55

The threshhold for rejection is t19;:025 = 2:093. Since our test statistic t has an absolute
value smaller than the cuto�, we cannot reject the null hypothesis. In other words, based
on a signi�cance level of :05 the evidence does not signi�cantly support the view that
� 6= 1:5.
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19. Keep in mind that the deck is stacked in favor ofH0; unless the evidence is very compelling,
we stick with the null hypothesis. The smaller we make �, the harder it is to reject H0.

20. If a test leads us to reject H0, we say that the results are signi�cant at level �.

P-Values

1. There is something rather arbitrary about the choice of �. Why should we use � = :05
rather than .01, .10 or some other value? What if we would have rejected H0 at � = :10
but fail to reject it because we chose � = :05? Should we change our choice of �?

2. Changing � after a hypothesis test is \cheating" in a precise sense. Recall that, by the
de�nition of �, the probability of a Type I error is at most �. Thus, �xing � gives us a
guarantee on the e�ectiveness of the test. If we change �, we lose this guarantee.

3. Nevertheless, there is an acceptable way to report what would have happened had we
chosen a di�erent signi�cance level. This is based on something called the p-value of a
test.

4. The p-value is the smallest signi�cance level (i.e., the smallest �) at which H0 would be
rejected, for a given test statistic. It is therefore a measure of how signi�cant the evidence
in favor of H1 is: the smaller the p-value, the more compelling the evidence.

5. Example: Consider the test of mean returns on stocks picked by darts, as above. To
simplify the present discussion, let's suppose we have 30 data points, rather than 20.
(See Dart Investment Fund in the casebook for background and data.) As before the
hypotheses are

H0 : � = 1:5

H1 : � 6= 1:5

Let's suppose that our sample mean X (based on 30 observations) is -0.8 and the sample
standard deviation is 6.1. Since we are assuming a large sample, our test statistic is

Z =
X � 1:5

s=
p
n

=
�0:8� 1:5

6:1=
p
30

= �2:06

With a signi�cance level of � = :05, we get z�=2 = 1:96, and our rejection region would
be

Z < �1:96 or Z > 1:96:

So, in this case, Z = �2:06 would be signi�cant: it is suÆciently far from zero to cause
us to reject H0.

We now ask, what is the smallest � at which we would reject H0, based on Z = �2:06.
We are asking for the smallest � such that �2:06 < �z�=2; i.e., the smallest � such that
z�=2 < 2:06. To �nd this value, we look up 2.06 in the normal table. This gives us
.9803. Now we subtract this from 1 to get the area to the right of 2.06. This gives us

5



1� :9803 = :0197. This is the the smallest �=2 at which we would reject H0. To �nd the
smallest �, we double this to get .0394. This is the p-value for the test. It tells us that
we would have rejected the null hypothesis using any � greater than :0394.

6. To verify that this is correct, let's work backwards. Suppose we had chosen � = :0394
in the �rst place. Our rejection cut-o� would then have been z�=2 = z:0197. To �nd
this value, we look up 1 � :0197 = :9803 in the body of the normal table; we �nd that
z:0197 = 2:06. So, we reject if Z < �2:06 or Z > 2:06. Since our test statistic was
Z = 2:06, we conclude that the p-value .0394 is indeed the signi�cance level at which our
test statistic just equals the cuto�.

7. Summary of steps to �nd p-value in a two-sided, large-sample hypothesis test on a
population mean:

(a) Compute the test statistic Z.

(b) Look up the value of jZj in the normal table.

(c) Subtract the number in the table from 1.

(d) Multiply by 2; that's the p-value.

8. In principle, to �nd a p-value based on a t-test we would follow the same steps; however,
our t-table does not give us all the information we have in the normal table, so we cannot
get the p-value exactly. We can only choose from the � values available on the table or
interpolate between them.

9. Here is another interpretation of the p-value: it is the probability of observing the results
actually observed if the null hypothesis were true. Thus, a small p-value implies that it
would be very unusual to observe the results actually observed if the null hypothesis were
true. This leads us to reject the null hypothesis.

10. Most statistical packages (including spreadsheets) automatically report a p-value when
they carry out a hypothesis test. You can then compare the p-value with your own
personal � to determine whether or not to reject H0.

One-Sided Tests on a Population Mean

1. In the setting considered so far, the null hypothesis is � = �0, with �0 a �xed value.
Very large values of X and very small values both count as evidence against H0. We now
consider cases (which are actually more common) in which only values in one direction
support the alternative hypothesis. The general setting is this:

H0 : � � �0

H1 : � > �0
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2. Example: Consider the e�ect of a packaging change on sales of a product. Let � be the
(unknown) mean increase in sales due to the change. We have data available from a
test-marketing study. We will not undertake the change unless there is strong evidence
in favor of increased sales. We should therefore set up the test like this:

H0 : � � 0

H1 : � > 0

This formulation implies that a large X (i.e., large increases in sales in a test market)
will support H1 (i.e., cause us to switch to the new package) but negative values of X
(re
ecting decreased sales) support H0.

3. The mechanics of this test are quite similar to those of the two-sided test. The �rst thing
we do is compute a test statistic. Assuming a large sample, we compute

Z =
X � �0
s=
p
n
:

If our signi�cance level is �, we �nd the corresponding value z� (not z�=2!). We reject H0

if
Z > z�:

4. Why are we now using z� rather than z�=2? The short answer is that we are doing a
one-sided rather than a two-sided test; so, we need all the area � in one tail rather than
split between two tails.

5. A better answer is this: By de�nition, � is the maximum probability of a Type I error.
Recall that Type I means rejecting H0 when H0 is true. If z is our cuto�, then a Type I
error means observing Z > z even though H0 is true. So, we want

P (Z > z) = � when H0 is true.

Recall that when H0 is true, Z has a standard normal distribution; the value of z that
makes P (Z > z) = � is precisely z�.

6. If you understand the explanation just given, then you have appreciated the fundamental
principles of hypothesis testing. If not, just remember that in a two-sided test you use
z�=2 and in a one-sided test use z�.

7. We return to the packaging example: Suppose that based on test-marketing in 36 stores
we observe a sample mean increase in sales of 13.6 units per week with a sample standard
deviation of 42. Is the observed increase signi�cant at level � = :05? To answer this, we
compute the test statistic

Z =
X � �0
s=
p
n

= (13:6 � 0)=(42=6) = 1:80:

Our cuto� is z� = z:05 = 1:645. Since Z > z�, the increase is signi�cant.
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8. The t-distribution modi�cation follows the usual pattern. Assuming a normal population,
the test statistic

t =
X � �0
s=
p
n

has a t-distribution with n � 1 degrees of freedom. We reject the null hypothesis if
t > tn�1;�.

9. The de�nition of a p-value is the same as before: it is the smallest � at which the results
would be rejected. The only di�erence comes from the fact that our cuto� is now z�
rather than z�=2.

10. Finding p-value in a one-sided, large-sample hypothesis test on a population mean:

(a) Compute the test statistic Z.

(b) Look up the value of Z in the normal table.

(c) Subtract the number in the table from 1; that's the p-value.

We no longer multiply by 2.

11. If we reverse the inequalities in the hypotheses to get

H0 : � � �0

H1 : � < �0

the steps are exactly the same as before, except that now we reject H0 if

Z < �z� or t < �tn�1;�;
in other words, when we reverse the inequalities, large negative test statistics support H1.

12. To compute the p-value in this case, look up �Z rather than Z. The other steps are
unchanged.

Hypothesis Test on a Proportion

1. We now turn to a hypothesis test for a proportion, always assuming a large sample. The
mechanics of this case are essentially the same as those for a mean.

2. The general two-sided test is

H0 : p = p0

H1 : p 6= p0

and the general one-sided test is

H0 : p � p0

H1 : p > p0

In all cases, p is an unknown population parameter while p0 is a number we pick in
formulating our hypotheses and is thus known.
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3. Example: Let's test whether at least 50% of men who use Rogaine can be expected to
show minimal to dense growth. This makes p0 = :50 and p the true (unknown) proportion.
Our test is

H0 p � 0:5

H1 p > 0:5

The burden of proof is on Rogaine to show that the proportion is greater than one-half.

4. To test the hypotheses, we compute the test statistic

Z =
p̂� p0
�p0

;

where

�p0 =

r
p0(1� p0)

n
;

in other words, �p0 is what the standard error of p̂ would be if p were actually p0.

5. In an Upjohn study, 419 men out of 714 had at least minimal growth, so p̂ = :59. Since
p0 = 0:5, we have

�p0 =

r
0:5(1 � 0:5)

714
= :0183

Thus, our test statistic is

Z = (:59 � :50)=:0183 = 4:81:

We now reject the null hypothesis if Z > z�. Clearly, 4.81 is larger than z� for any
reasonable choice of �, so the results are very signi�cant.

6. The procedure for �nding a p-value in this setting is exactly the same as in the test of
a mean. In the example just carried out, 4.81 is o� the normal table. Since our normal
table goes up to 0.9998, we know that the p-value is less than 0.0002; in fact, we could
report it as 0.000 since it is 0 to three decimal places. This means that the evidence is
so overwhelming that there would be virtually no chance of observing the results in the
study if the null hypothesis were true.

7. In the case of a two-sided test, we use z�=2 for a cut-o� rather than z�. If we reverse the
inequalities in H0 and H1, the rejection condition becomes Z < �z� rather than Z > z�.
(You don't need to memorize this; just think about which direction supports H1 and
which supports H0.)

Tests on Di�erences of Population Means

1. Hypothesis testing is frequently used to determine whether observed di�erences between
two populations are signi�cant:

� Is the observed di�erence in performance between experts and darts signi�cant?
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� Is the mean midterm score among foreign students really greater than that among
non-foreign students, or can the observed di�erence be attributed to chance?

� Is a new drug treatment more e�ective than an existing one?

� Do full-page ads signi�cantly increase sales compared to half-page ads?

In each case, we are comparing two population means. Assuming we have samples from
both populations, we can test hypotheses about the di�erence between the means.

2. We refer to one population using X quantities and the other using Y quantities; the two
means are �X and �Y . The general two-sided test for the di�erence of two means has the
form

H0 : �X � �Y = D0

H1 : �X � �Y 6= D0

where D0 is a speci�ed (known) value we are testing. The general one-sided test is

H0 : �X � �Y � D0

H1 : �X � �Y > D0

or else the same thing with the inequalities reversed.

3. We concentrate on the case D0 = 0; that is, testing whether there is any di�erence between
the two means. This is the most interesting and important case.

4. As with con�dence intervals, here we distinguish a matched pairs setting and an inde-
pendent setting. We begin with matched pairs.

5. We assume that we have samples X1; : : : ; Xn and Y1; : : : ; Yn from the two populations.
Each Xi and Yi are matched | they need not be independent. However, we do assume
that (X1; Y1) are independent of (X2; Y2), etc. We compute the average di�erence

d = X � Y

and the sample standard deviation of the di�erences

sd =

vuut 1

n� 1

nX
i=1

[(Xi � Yi)� (X � Y )]2:

From these we get the test statistic

Z =
d�D0

s=
p
n

or, in case of samples from normal populations,

t =
d�D0

s=
p
n
:

In the one-sided case, we compare the test statistic with z� or tn�1;� accordingly; in a
two-sided test we use �z�=2 and �tn�1;�=2.

10



6. Example: Let's compare experts and darts. The burden is on the experts to prove they
are better than darts, so we have

H0 : �X � �Y � 0

H1 : �X � �Y > 0

the X's refer to expert returns, the Y 's to dart returns. From the 20 1-month contests,
we get d = 5:3 and s = 6:8. Our test statistic is

t =
5:3� 0

6:8=
p
20

= 3:48

Using � = 0:05, our cuto� is t19;:05 = 1:729. Since t > 1:729 we reject the null hypothesis:
the evidence in favor of the experts is signi�cant.

7. Caveat: \Signi�cant" here only refers to the outcome of this test. It does not imply that
the conclusion itself is sound. For example, we may have reason to believe that the experts
were unduly aided by the publication of their picks. This interferes with the sampling
mechanism that generated our 20 data points. The test above is premised on the data
coming from a random sample. The test says nothing about the quality of the data itself.

8. Now we consider the case of independent samples. We have samples X1; : : : ;XnX and
Y1; : : : ; YnY from two populations. We assume these are all independent of each other.
Consider the test

H0 : �X � �Y � D0

H1 : �X � �Y > D0

From the sample means X and Y and the sample standard deviations sX and sY , we
compute the test statistic

Z =
X � Y �D0q

s2
X

nX
+

s2
Y

nY

;

assuming that the sample sizes nX and nY are large. We reject H0 if Z > z�. In a
two-sided test, we reject if Z < �z�=2 or Z > z�=2.

9. Calculating p-values, whether for matched pairs or independent samples works exactly
the same way as before. Remember to multiply by 2 in the two-sided case.

10. The case of t-based comparisons is similar but a bit more complicated. If the variances of
the two populations are assumed equal, we use a pooled estimate of the standard deviation
and a t statistic with nX + nY � 2 degrees of freedom. See x9.1 of LBS.

Testing a Di�erence of Proportions

1. We now test the di�erence between two unknown population proportions, pX and pY .
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(a) Is Rogaine more e�ective in promoting hair growth than a placebo?

(b) Based on a random sample of 100 shoppers, can we conclude that the market share
of Colgate toothpaste di�ers from that of Crest?

(c) Is the proportion of women being promoted in an organization signi�cantly smaller
than the proportion of men promoted?

2. Let's formulate these comparisons in more detail:

(a) With pX the proportion for Rogaine and pY the proportion for the placebo, we want
to test

H0 : pX � pY � 0

H1 : pX � pY > 0

(b) With pX and pY the proportion of Colgate and Crest buyers, we are testing

H0 : pX � pY = 0

H1 : pX � pY 6= 0

In other words, we are testing if the market shares are the same or di�erent.

(c) With pX the chances a woman is promoted and pY the chances a man is promoted,
we are testing

H0 : pX � pY � 0

H1 : pX � pY < 0

In this formulation, the burden of proof is on the claim of discrimination against
women.

3. In each case above, the null hypothesis can equivalently be taken to state that pX = pY .
We compute a test statistic under the assumption that the null hypothesis is true. If the
two proportions are equal, the following is a pooled estimate of the common proportion:

p̂0 =
nX p̂X + nY p̂Y

nX + nY
:

The corresponding estimate of the standard error is

sp̂0 =

s
p̂0(1� p̂0)

�
nX + nY
nXnY

�
:

Our test statistic is

Z =
p̂X � p̂Y
sp̂0

:

For the three tests described above, we have

(a) Reject H0 if Z > z�

(b) Reject H0 if Z < �z�=2 or Z > z�=2

(c) Reject H0 if Z < z�
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