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Motivated Examples

Example 1. Censored exponentially distributed
survival times

• Suppose W is a nonnegative random vari-
able having an exponential distribution with
mean θ > 0. Its pdf is given by

fW (w; θ) = θ−1 exp(−w/θ)I(0,∞)(w),

where the indicator function I(0,∞)(w) = 1
for w > 0 and is zero elsewhere. The distri-
bution function is given by

FW (w; θ) = {1− exp(−w/θ)}I(0,∞)(w).

• In survival or reliability analyses, a study to
observe a random variable W1, . . . ,Wn will
generally be terminated in practice before
all of these random variables are able to be
observed.

– Let y = (yT
1 , . . . , yT

n )T denote the ob-
served data, where yj = (cj, δj)

T and
δj = 0 or 1 according as the observa-
tion Wj is censored or uncensored at cj

(j = 1, . . . , n).
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– If the observation Wj is uncensored, its
realized value wj is equal to cj.

– If the observation Wj is censored at cj,
then wj is some value greater than cj

(j = 1, . . . , n).

– In medical study, it is commonly assumed
that the censored data is caused by com-
peting risk.
Under this assumption, it is assumed that
(W1, R1), . . . , (Wn, Rn) are iid, Ci = min(Wi, Ri),
and δi = 1{Wi≤Ri}.
Here R is a nonnegative random variable.

• Approach 1: Model C directly.

– Derive the density function of C. Note
that

P (C ≤ y) = P (min(W, R) ≤ y)

= 1− P (W > y,R > y) = 1− e−y/θ[1− FR(y)]

and hence

fC(c) = θ−1e−c/θ[1−FR(c)]+e−c/θfR(c).

– Assuming R is exponentially distributed
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with mean λ, we have

fC(c) =
θ + λ

θλ
exp

−θ + λ

θλ
c
 .

Hence, C is again exponentially distributed
with mean θλ/(θ + λ).

– How do we estimate θ?
We should use information contained in
δj. Note that δ is a Bernoulli random
variable with probability of success

P (W ≤ R) =
∫ ∞
0

∫ r
0 θ−1e−y/θfR(r)dydr

=
∫ ∞
0 fR(r)[1− exp(−r/θ)]dr

= 1−
∫ ∞
0 e−r/θfR(r)dr.

When R is exponentially distributed with
mean λ, we have

P (W ≤ R) =
λ

λ + θ
.

By the law of large numbers, we consider
using n−1 ∑

i δi to estimate P (W ≤ R).

• Approach II: Method of Maximum Likeli-
hood

– We have iid observations (C1, δ1), . . . , (Cn, δn)
and need to find the probability density
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function of (C, δ). Observe that

P (C ≤ c, δ = 1) = P (W ≤ R, W ≤ c)

=
∫ c
0

∫ r
0 fW (w)fR(r)dwdr +

∫ ∞
c

∫ c
0 fW (w)fR(r)dwdr

=
∫ c
0 FW (r)fR(r)dr +

∫ ∞
c FW (c)fR(r)dr

=
∫ c
0 FW (r)fR(r)dr + FW (c)[1− FR(c)].

Then

f (C = c, δ = 1) = fW (c)[1− FR(c)].

By the same argument, we have

f (C = c, δ = 0) = [1− FW (c)]fR(c).

– The likelihood function is
∏
i
(fW (wi) [1− FR(wi)])

δi(fR(wi) [1− FW (wi)])
1−δi

=
∏
i
(fW (wi))

δi [1− FW (wi)]
1−δi

·∏
i
(fR(wi))

1−δi [1− FR(wi)]
δi .

– For simplicity, we relabel the observa-
tions such that W1, . . . ,Wr denote the r
uncensored observations and Wr+1, . . . ,Wn

the n− r censored observations.
The likelihood function for θ formed on

5



the basis of y is given by
r∏

i=1
[θ−1 exp(−wi/θ)]

n∏
i=r+1

{1− [1− exp(−wi/θ)]}

= θ−r exp(−
n∑

i=1
ci/θ).

– In this case, the MLE of θ can be derived
explicitly from the standard differentia-
tion technique.

θ̂ =
n∑

i=1
ci/r.

– Rewrite θ̂ asn−1 n∑
i=1

ci

 /(r/n).

It can be shown that θ̂ will converge to
θ in probability.

Remarks:

• The exponential distribution is often used
to model lifetimes or waiting times.

• Suppose that we consider modeling the life-
time of an electronic component, T , as an
exponential random variable with parame-
ter θ. Its implication is as follows:

P (T > t + s|T > s) =
P (T > t + s and T > s)

P (T > s)
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=
P (T > t + s)

P (T > s)
=

e−(t+s)/θ

e−s/θ

= exp(−t/θ).

This is so-called memoryless property of ex-
ponential distribution.

• Does it make sense to use exponential dis-
tribution to model human lifetimes?
Compare the probability that a 16-year-old
will live at least 10 more years and the prob-
ability that a 80-year-old will live at least 10
more years.

• Hazard function h(t): It is defined as

h(t) =
f (t)

1− F (t)
(= − d

dt
log S(t)),

where S(t) = P (T > t) = 1 − F (t). I
can be thought of as the instantaneous death
rate for individuals who are alive at time t.
If an individual is alive at time t, the prob-
ability that that individual will die in the
time interval (t, t + δ) is, assuming that the
density function is continuous at t,

P (t ≤ T ≤ t + δ|T ≥ t) =
P (t ≤ T ≤ t + δ)

P (T ≥ t)
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=
F (T ≤ t + δ)− F (t)

1− F (t)
≈ δf (t)

1− F (t)
.

• For an exponential random variable T with
mean θ, its hazard function is 1/θ (a con-
stant function).
As a remark, the expectation of an exponen-
tial random variable is θ.
Do you think that the connection between
the expectation and the hazard function is
a coincidence? Is there any intuitive expla-
nation?

• Usually, the hazard function of human life-
times is assumed to be of bathtub shape.
How would you model the density function
of human lifetimes?
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Example 2. Model heterogeneous data by
finite-mixture models

• In the problem considered by Do and McLach-
lan (1984), the population of interest con-
sists of rats from g species G1, . . . , Gg, that
are consumed by owls in some unknown pro-
portions π1, . . . , πg.

• The problem is to estimate the π on the ba-
sis of the observation vector W containing
measurements recorded on a sample of size
n of rat skulls taken from owl pellets.
The rats constitute part of an owl’s diet,
and indigestible material is regurgitated as
a pellet.

• Use the argument of conditioning, the un-
derlying population can be modeled as con-
sisting of g distinct groups G1, . . . , Gg in
some unknown proportions π1, . . . , πg, and
where the conditional pdf of W given mem-
bership of the ith group Gi is fi(w).

• Let y = (wT
1 , . . . , wT

n )T denote the observed
random sample obtained from the mixture
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density

f (w; (π1, . . . , πg−1)) =
g∑

i=1
πfi(w).

• The log likelihood function for (π1, . . . , πg−1)
can be formed from the observed data y is
given by

n∑
i=1

log


g∑

j=1
πjfj(wi)

 .

• On differentiating log likelihood function with
respect to πj (j = 1, . . . , g − 1), we obtain

n∑
i=1


fj(wi)

f (wi; (π1, . . . , πg−1))
− fg(wi)

f (wi; (π1, . . . , πg−1))

 = 0,

for j = 1, . . . , g−1. It clearly does not yield
an explicit solution for (π1, . . . , πg−1)

T .
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Statistical models

• Most studies and experiments, scientific or
industrial, large scale or small, produce data
whose analysis is the ultimate object of the
endeavor.

– Compare the efficiency of two ways of do-
ing something under similar conditions
such as: brewing coffee; reducing pol-
lution; treating a disease; producing en-
ergy; learning a maze; and so on.

– Abstraction: It can be thought of as a
problem of comparing the efficacy of two
methods applied to the members of a cer-
tain population.

– Run m + n independent experiments as
follows: m + n members of the popula-
tion are picked at random and m of these
are assigned to the first method and the
remaining n are assigned to the second
method.

– In comparing two drugs A and B we would
administer drug A to m and drug B to
n randomly selected patients and then
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measure temperature, blood pressure, have
the patient rated quantitatively for im-
provement by physicians, and so on.

– Random variability would come primar-
ily from differing responses among pa-
tients to the same drug, but also from
error in the measurements and variation
in the purity of the drugs.

– one sample location model for measure-
ment:
Let X1, . . . , Xn be the n determinations
of µ. Write

Xi = µ + εi, 1 ≤ i ≤ n,

where ε = (ε1, . . . , εn) is the vector of
errors.

– two-sample problem:
Let X1, . . . , Xn be the n samples from
the population with distribution F and
Y1, . . . , Ym be the m samples from the
population with distribution G.

• Many statistical procedures are based on sta-
tistical models which specify under which
conditions the data are generated.
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• Usually the assumption is made that the set
of observations x1, . . . , xn is a set of (i) in-
dependent random variables (ii) identically
distributed with common pdf f (xi, θ).

• Once this model is specified, the statistician
tries to find optimal solutions to his problem
(usually related to the inference on a set of
parameters θ ∈ Θ ⊂ Rk, characterizing the
uncertainty about the model).
Does this statement fit to the just-mentioned
two-sample problem?

• Any statistical inference starts from a basic
family of probability measures, expressing
our prior knowledge about the nature of the
probability measures from where the obser-
vations originate.
A model P is a collection of probability mea-
sures P on (X ,A) where X is the sample
space with a σ-field of subsets A.

• If P = {Pθ : θ ∈ Θ}, Θ ⊂ Rk for some k,
then P is a parametric model.

• Example 3. Bernoulli trials
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– Consider a new model of automobile which
is being produced in large numbers.

– Choose one at random from the produc-
tion line and observe whether or not it
suffers a mechanical breakdown within
two years.

– In each trial, there are only two possible
observations. The sample space consists
of two elements 1 (representing break-
down) and 0 (representing no breakdown).

– The inherent variability in the situation
is described by a probability distribution
which in this case is defined by a single
number θ, the probability of breakdown.

– The possible probability distribution on
the sample space can be described by a
Bernoulli trial with an unknown param-
eter θ between 0 and 1.

• Example 4. The parameter is a function.

– Suppose we have a large batch of seeds
stored under constant conditions of tem-
perature and humidity.

– In the course of time seeds die.
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Suppose that at time t a proportion π(t)
of the stored seeds are still alive.

– At each of times t1, t2, . . . , ts we take a
random sample of n seeds and observe
how many are still alive.

– A typical observation consists of an or-
dered set (r1, r2, . . . , rs) of integers, ri

being the number of seeds observed to
be alive at time ti.

– The appropriate distribution for describ-
ing the variable element in this situation
is

p(r1, r2, . . . , rs) =
s∏

i=1
C(n, ri)[π(ti)]

ri[1−π(ti)]
n−ri.

Here π(·) is an unknown distribution. In
this example, the parameter is a func-
tion.

– Isotonic regression problem: π(t) is nec-
essarily a non-increasing function of t,
taking values between 0 and 1.
Can we find a parametric model for π(t)?
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Related Issues:

• Suppose that we have a fully specified para-
metric family of models. Denote the param-
eter of interest by θ.

• Suppose that we wish to calculate from the
data a single value representing the “best
estimate” that we can make of the unknown
parameter. We call such a problem one of
point estimation.

• Instead of point estimation, we can estimate
the parameter by giving a confidence inter-
val which is associated with the probability
of covering the true value.
When we say that a 95% CI of θ is (0.3, 0.7),
it does not mean that there is a 95% prob-
ability of θ ∈ (0.3, 0.7).
Such a claim does not make any sense since

– Although θ is unknown, it is still a fixed
number.

– (0.3, 0.7) is a known fixed interval.

– θ is either in (0.3, 0.7) or not in that in-
terval. It will not be sometimes in (0.3, 0.7)
or sometimes not in.
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– The precise meaning of probability 0.95
will be discussed later on.

– The probability 0.95 refers to the proba-
bility that θ is in a random interval.
Here (0.3, 0.7) is one realization of that
random interval.

• Distinction between data and random vari-
ables:
In statistics, we deal with data only.
Why do we need to introduce random vari-
ables?

Attitudes on Models:

• The statistician may be a “pessimist” who
does not believe in any particular model f (x, θ).
In this case he must be satisfied with de-
scriptive methods (like exploratory data anal-
ysis) without the possibility of inductive in-
ference.

• The statistician may be an “optimist” who
strongly believes in one model. In this case
the analysis is straightforward and optimal
solutions may often be easily obtained.
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• The statistician may be “realist”: he would
like to specify a particular model f (x, θ) in
order to get operational results but he may
have either some doubt about the validity of
this hypothesis or some difficulty in choosing
a particular parametric family.

Let us illustrate this kind of preoccupation
with an example.

• Suppose that the parameter of interest is the
“center” of some population.

• In many situations, the statistician may ar-
gue that, due to a central limit effect, the
data are generated by a normal pdf.

• In this case the problem is restricted to the
problem of inference on µ, the mean of the
population.

• But in some cases, he may have some doubt
about these central limit effects and may
suspect some skewness and/or some kurtosis
or he may suspect that some observations
are generated by other models (leading to
the presence of outliers).
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In this context three types of question may
be raised to avoid gross errors in the predic-
tion, or in the inference:

– Does the optimal solution, computed for
assumed model f (x, θ), still have “good”
properties if the true model is a little dif-
ferent?
This question is concerned with the sensi-
tivity of a given criterion to the hypothe-
ses (criterion robustness).
Question: Validity of one-sample t-test
Partial Answer: Central Limit Theo-
rem

– Are the optimal solutions computed for
other models near to the original one re-
ally substantially different?
In this question, it is the sensitivity of
the inference that is analyzed (inference
robustness).
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Maximum Likelihood Estimates

• The true distribution on the sample space
can be labeled by a parameter θ taking val-
ues in a finite-dimensional Euclidean space.

• We further assume the family {Pθ : θ ∈ Θ}
(Θ ⊂ Rk) possesses density functions {pθ :
θ ∈ Θ} with respect to some natural mea-
sure on the sample space, such as counting
measure if the sample space is discrete or
Lebesgue measure when it is not.

– In the discrete case, pθ(x) is the proba-
bility of the point x when θ is the true
parameter.

– In the continuous case, pθ(x) is the prob-
ability density at x when θ is the true
parameter.

• x: the observed set of values obtained in an
experiment.

• Consider p(x, θ) as a function of θ for fixed
x.
p(x, θ) is called the likelihood function.
We also write it L(θ,x).
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L(θ,x) gives the probability of observing x
for each θ when X is discrete.

• Idea: Find the value θ̂ of the parameter
which is most plausible after we have ob-
served the data.

• A maximum likelihood estimate θ̂ is any el-
ement of Θ such that

p(x, θ(x)) = max
θ∈Θ

p(x, θ).

• This principle was first put forward as a
novel and original method of deriving es-
timators by R.A. Fisher in 1922. It very
soon proved to be a fertile approach to sta-
tistical inference in general, and was widely
adopted; but the exact properties of the en-
suring estimators and test procedures were
only gradually discovered.

• How do we find the maximum of L(θ,x)?

– A systematic way we learn in calculus is
to transform a maximization problem to
a root-finding problem.

– The above strategy may not always work.
Refer to the the uniform example.
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– Computationally feasibility:
Before 1960, we only rely on the capacity
of the human calculator, equipped with
pencil and paper and with such aids as
the slide rule, tables of logarithms, and
other convenient tables.
The advent of electronic computer removes
the restriction of the human operator.

– The estimates defined by nonlinear equa-
tions can be established as a matter of
routine by the appropriate iterative al-
gorithms.

Examples:

• Example 5. Suppose θ = 0 or 1 (Θ =
{0, 1}) and p(x, θ) is given by the following
table.

p(x, θ) x = 0 x = 2
θ = 1 0 1
θ = 2 0.1 0.9

Suppose that we observe two observations 2
and 2.
How do we get them?
Abstraction:
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– X : a discrete random variable with pmf
p(x, θ)

– 2 and 2 are realizations of X1 and X2.

– What is the pmf of (X1, X2)?

Then

L(0, (2, 2)) = 1 L(1, (2, 2)) = (0.9)2

and θ̂((2, 2)) = 0.

• Example 6. If x1, . . . , xn are i.i.d. accord-
ing to the Poisson distribution P(λ), the
likelihood is

L(λ,x) = λ
∑

i xie−nλ/
∏
i
xi!.

This is maximized by

λ̂ =
∑
i
xi/n

which is therefore the MLE of λ.
In this example, Θ = (0,∞) and k = 1.
Use rpois(20, 3) to generate 20 observations
fromP(3). They are 2, 3, 3, 5, 6, 3, 0, 5, 3, 2, 2, 2, 2, 2, 4, 1, 3, 2, 7, 5.

Then λ̂ = 3.1.
Why do we need to introduce X?
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• Example 7. Let X1, . . . , Xn be i.i.d. ac-
cording to the uniform distribution U(0, θ),
so that the likelihood is

L(θ,x) =


1/θn if 0 ≤ xi ≤ θ for all i
0 otherwise.

We can no longer differentiate L(θ,x) to get
the MLE.
By direct maximization, the MLE is equal
to x(n).

• Example 8. Consider n items whose times
to failure X1, . . . , Xn form a sample from an
E(θ) distribution. (i.e., p(x) = θ exp(−θx)
for x > 0)
Suppose the items are inspected only at dis-
crete times 1, 2, . . . , k so that we really ob-
serve Y1, . . . , Yn where, for j = 1, . . . , n,

Yj = ` if `− 1 < Xj ≤ `, ` = 1, . . . , k

= k + 1 if Xj > k.

Suppose n = 20, k = 5, and θ = 3. xis are
5.19, 0.06, 2.37, 4.38, 4.98, 13.02, 0.34, 7.26,
0.67, 1.96, 3.82, 0.27, 1.83, 3.48, 3.03, 1.90,
6.42, 7.49, 5.67, 6.27 and yis are 6, 1, 3, 5,
5, 6, 1, 6, 1, 2, 4, 1, 2, 4, 4, 2, 6, 6, 6, 6.
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Let Ni = number of indices j such that Yj = i,
i = 1, . . . , k+1. Then the multinomial vec-
tor N = (N1, . . . , Nk+1) is sufficient for θ
and the likelihood function of N is

L(θ, n1, . . . , nk+1) =
n!

n1! · · ·nk+1!

k+1∏
j=1

p
nj
j (θ),

where pj(θ) = exp(−[j − 1]θ) − exp(−jθ)
for 1 ≤ j ≤ k and pk+1(θ) = exp(−kθ).
Question: How do we solve this problem?

Limitations on MLE

• It is a constant theme of the history of the
method that the use of ML techniques is not
always accompanied by a clear appreciation
of their limitations.

• Example 9. (Neyman-Scott (1948) prob-
lem)
In this example, the MLE is not even con-
sistent.
Refer to J. Neyman and E.L. Scott. Con-
sistent estimate based on partially consis-
tent observations. Econometrica 16 1-32
(1948).
Estimation of a Common Variance:
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Let Xαj (j = 1, . . . , r) be independently
distributed according to N(θα, σ

2), α = 1, . . . , n.
The MLEs are

θ̂α = Xα·, σ̂2 =
1

rn

n∑
α=1

r∑
j=1

(Xαj −Xα·)
2.

Furthermore, these are the unique solutions
of the likelihood equations.
However, in the present case, the MLE of σ2

is not even consistent.
To see this, note that the statistics

S2
α =

r∑
j=1

(Xαj −Xα·)
2

are identically independently distributed with
expectation

E(S2
α) = (r − 1)σ2

so that ∑S2
α/n → (r − 1)σ2 and hence

σ̂2 → r − 1

r
σ2 in probability.

• Example 10. (Non-existence of MLE)
If Y1, . . . , Yn are i.i.d. according to the Pois-
son distribution P (λ). Suppose for each i
we observe only when Yi is 0 or positive and
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let

Xi =


0 if Yi = 0
1 if Yi > 0.

Then

P (Xi = 0) = exp(−λ), P (Xi = 1) = 1−exp(−λ),

and the likelihood is

L(λ) = [1−exp(−λ)]
∑

xi exp(−λ
∑

[1−xi]).

This is maximized by

λ̂ = − log(1− x̄),

provided ∑(1− xi) > 0.
When all the x’s are = 1, the likelihood be-
comes

L(λ) = [1− exp(−λ)]n,

which is an increasing function of λ. In this
case, the likelihood does not take on its max-
imum for any finite λ and the MLE does not
exist. (Does it make sense?)
Discussions:

– For any fixed n, the probability P (X1 =
· · · = Xn = 1) = (1 − exp(−λ))n tends
to 1 as λ → ∞. Thus there will exist
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values of λ for which the probability is
close to 1 that the MLE is undefined.

– For any fixed λ, the probability P (X1 =
· · · = Xn = 1) = (1 − exp(−λ))n tends
to 0 as n →∞.

Iterative Procedures

In applications MLE’s typically do not have an-
alytic forms and some numerical methods have
to be used to compute MLE’s.
It is usually possible to assume that MLE emerges
as a solution of the likelihood equations. Namely,

∂

∂θi
log p(x, θ) = 0, i = 1, · · · , k.

Symbolically, the equations we have to solve
may be written

Dθ`(x, θ) = 0,

where `(x, θ) = log p(x, θ) and Dθ is the vec-
tor differential operator whose ith component is
∂/∂θi.
A commonly used numerical method is the Newton-
Raphson iteration method.

• Solve the likelihood equation L(1)(θ,x) = 0
iteratively.
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• Replace L(1)(θ,x) by the linear terms of its

Taylor expansion about a starting value θ̂
(0)

.

• Replace the likelihood equation with the equa-
tion

L(1)(θ̂
(0)

,x) + L(2)(θ̂
(0)

,x)(θ − θ̂
(0)

) = 0.

The solution for θ is

θ̂
(1)

= θ̂
(0)
− [L(2)(θ̂

(0)
,x)]−1L(1)(θ̂

(0)
,x),

as a first approximation to the solution of
the likelihood equation.

• Iterative the above procedure by replacing

θ̂
(0)

by θ̂
(1)

and so on.

• In general,

θ̂
(t+1)

= θ̂
(t)
−∂L(θ)

∂θ

∣∣∣∣∣∣∣∣θ=
ˆθ

(t)

∂
2L(θ)

∂θ∂θT

∣∣∣∣∣∣∣∣θ=
ˆθ

(t)


−1

.

– The laborious aspect of this iterative pro-
cedure is the inversion of the matrix ∂2L(θ(t))/∂θ∂θT

at the tth stage.

– If our initial approximation θ̂
(0)

is good,
then ∂2L(θ(0))/∂θ∂θT will be near ∂2L(θ(t))/∂θ∂θT

in non-pathological conditions.
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We can often use the former matrix at
each stage of the procedure.

– It often happens that terms awkward to
calculate appear in ∂2L(θ(t))/∂θ∂θT but
not in its expected value.
Sometimes, we replace ∂2L(θ)/∂θ∂θT

by its expected value E[∂2L(θ)/∂θ∂θT ],
where the expectation is taken under Pθ.
This method is known as the Fisher-scoring
method.
In most instances, E[∂2L(θ)/∂θ∂θT ] is
simply the negative information matrix
discussed in the second topic.

• Issues on implementation:

– Specification of the starting point: To en-

sure a sequence θ̂
(t)

which converges to

θ̂, it requires that θ̂
(t)

is sufficiently close
to the root θ̂.

– Take any estimator which satisfies
√

n(θ̂
(0)
−

θ) is bounded in probability.

– Specification of the stopping rule:

• Example 11. Probit Analysis
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– Suppose the probability π(s) that an in-
dividual responds to the level s of a stim-
ulus can be expressed in the form

π(s) = Φ
s− µ

σ

 =
1√
2π

∫ (x−µ)/σ
−∞ e−z2/2dz.

– The level si of the stimulus is applied
to ni individuals (i = 1, . . . , r) and the
numbers mi (i = 1, . . . , r) of responses
at the different levels are observed.

– Determine MLE of µ and σ.

– `(x, (µ, σ)) = constant+∑
i{mi log π(si)+

(ni −mi) log(1 − π(si))} and the likeli-
hood equations are

∑
i

mi − niπi

πi(1− πi)

∂π(si)

∂µ
= 0,

∑
i

mi − niπi

πi(1− πi)

∂π(si)

∂σ
= 0.

– Obtain initial approximations µ0 and σ0

to their solution.

– Suppose the π(si)s are known.
The plot of the points (si, Φ

−1(π(si)))
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would lie on the straight line

Φ−1(π) =
s− µ

σ
.

Since mi/ni is an estimate of π(si), we
can fit a straight line to this set of points
to yield estimates of µ and σ.

– The Hessian matrix is a rather compli-
cated expression.
If we use Fisher-scoring method, it is given
by


∑
i

−ni
πi(1−πi)

(
∂π(si)

∂µ

)2 ∑
i

−ni
πi(1−πi)

∂π(si)
∂µ

∂π(si)
∂σ∑

i
−ni

πi(1−πi)
∂π(si)

∂µ
∂π(si)

∂σ
∑

i
−ni

πi(1−πi)

(
∂π(si)

∂σ

)2

 .
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Method of Moments

• It is the oldest method of deriving point es-
timators.
Proposed by Karl Pearson (1894).

• Consider a parametric problem where X1, . . . , Xn

are i.i.d. random variables from Pθ, θ ∈
Θ ⊂ Rk.
Suppose that m1(θ), . . . ,mk(θ) are the first
k moments of the population we are sam-
pling from.

mj(θ) = Eθ(Xj
1).

• Define the jth sample moment m̂j by

m̂j =
1

n

n∑
i=1

Xj
i = EFn(X

j).

• Suppose we want to estimate q(θ) which can
be expressed as

q(θ) = g(m1(θ), . . . ,mk(θ)),

where g is a continuous function.

• The method of moments estimate of q(θ) is

T (X) = g(m̂1, . . . , m̂k).
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• Basic ideas:

– Law of Large Numbers:

m̂j
P−→ mj(θ)

– Continuity:

Example 12. Consider the estimation of µ
and σ2 if X1, . . . , Xn are a random sample from
a population with mean µ and variance σ2.

Example 13.

• Normal Mixtures. Consider an industrial
setting with a production process in con-
trol, so that the outcome follows a known
distribution, which we shall take to be the
standard normal distribution.
However, it is suspected that the production
process has become contaminated, with the
contaminating portion following some other
unknown normal distribution N(η, τ 2).
A sample x1, . . . , xn of the output is drawn.
The X ′s are therefore assumed to be i.i.d. ac-
cording to the distribution

pN(0, 1) + (1− p)N(η, τ 2).
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Apply the method of moments, we have

m1(p, η, τ ) = E(Xi) = (1− p)η,

m2(p, η, τ ) = E(X2
i ) = p + (1− p)(η2 + τ 2),

m3(p, η, τ ) = E(X3
i ) = (1− p)η(η2 + 3τ 2)

and thus obtain the estimating equations

(1− p)η = x̄,

p + (1− p)(η2 + τ 2) = n−1 ∑
i
x2

i ,

(1− p)η(η2 + 3τ 2) = n−1 ∑
i
x3

i .

– Do you know how to express (p, η, τ ) as
functions of m1, m2 and m3?

– In general, how can we know whether the
above task is possible?

– Implicit Function Theorem in advanced
calculus.

• For the above example, suppose τ = 1. The
resulting estimators of η and 1− p are

η̂ =
n−1 ∑

i X
2
i − 1

X̄
, and 1−p̂ =

X̄2

n−1 ∑
i X2

i − 1
.
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The Frequency Substitution Principle

• Suppose we observe n multinomial trials in
which the values v1, . . . , vk of the popula-
tion being sampled are known, but their re-
spective probabilities p1, . . . , pk are completely
unknown.

• Let Ni denote the number of indices j such
that Xj = vi. Then (N1, . . . , Nk) has a
multinomial distribution with parameter (n, p1, . . . , pk).
Here ∑

i Ni = n and n is any natural number
while (p1, . . . , pk) is any vector in

{(p1, . . . , pk) : pi ≥ 0,
∑
i
pi = 1}.

• If (N1, . . . , Nk) has a M(n, p1, . . . , pk),

p(n1, . . . , nk) =
n!

n1! · · ·nk!
pn1

1 · · · p
nk
k ,

E(Ni) = npi, V ar(Ni) = npi(1 − pi), and
Cov(Ni, Nj) = −npipj for i 6= j.

• The intuitive estimate of pi is Ni/n, the pro-
portion of sample values equal to vi.

• Suppose we want to estimate a continuous
function q(p1, . . . , pk).
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The frequency substitution principle will give
the estimate by replacing the unknown pop-
ulation frequencies p1, . . . , pk by the observ-
able sample frequencies N1/n, . . . , Nk/n. That
is

T (N1, . . . , Nk) = q(N1/n, . . . , Nk/n).

• Basic ideas:

– Law of Large Numbers:

Nj/n
P−→ pj

– Continuity:
A function f is said to be continuous at
x0 if f (x0+) and f (x0−) exist and if

f (x0+) = f (x0−) = f (x0).

Refer to any advanced calculus book for
details.

Example 14. Estimation in 2× 2 tables

• Consider n independent trials, the outcome
of each classified according to two criteria,
as A or Ā, and as B or B̄.
For example, a series of operations is being
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classified according to the gender of the pa-
tient and the success or failure of the treat-
ment.

• The results can be displayed in a 2×2 table
as show below.

B B̄
A nAB nAB̄ nA

Ā nĀB nĀB̄ nĀ

nB nB̄ n
where nAB is the number of cases having
both attributes A and B, and so on.

• The joint distribution of the four cell en-
tries is then multinomial with parameters
(n, pAB, pĀB, pAB̄, pĀB̄).

• A standard measure of the degree of associ-
ation of the attributes A and B is the cross-
product ratio (also called odds ratio)

ρ =
pABpĀB̄

pĀBpAB̄

.

– Use the fact that pAB = pApB|A where pA

and pB|A denote the probability of A and
the conditional probability of B given A,
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respectively. It leads to

ρ =
pB|ApB̄|A
pB|ĀpB̄|Ā

.

– Think of A as the maternal age is no
more than 20, Ā as the maternal age is
greater than 20, B as the birthweight is
no more than 2, 500gms, and B̄ as the
birthweight is greater than 2, 500gms. The
odds ratio can be used to associate the
risk of underweight baby to the mater-
nal age.

– The attributes A and B are said to be
positively associated if

pB|A > pB|Ā and pB̄|Ā > pB̄|A,

and these conditions imply that ρ > 1.

– In the case of negative dependence, the
above inequalities are reversed.

– Independence of A and B is character-
ized by equality instead of inequality and
hence by ρ = 1.

• The odds ratio ρ is estimated by replacing
the cell probabilities pAB, . . . by the corre-
sponding frequencies nAB/n, . . ..
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The Method of Least Squares

• It became widely used early in the nine-
teenth century by Gauss for estimation in
problems of astronomical measurement.

• Suppose that water is being pumped through
a container to which an amount of dye has
been added.
Every few seconds the concentration of dye
is measured in the water leaving the con-
tainer.
It is expected that the concentration of dye
will decrease linearly over time.
Since the measuring equipment maynot be
perfectly accurate, it may not be possible to
interpret the measurements exactly, and the
mixing may not behave exactly as predicted.
The determine the rate at which the concen-
tration decreases, the experimenter would
have to approximate the data by a straight
line, a line that best approximated the data
in some sense. A common approach is to
employ the method of least squares.

• The model above is called a linear model
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because it is a linear combination of the
model functions 1 and x.
x refers to the concentration of dye.
The model can be written as

Yx = θ1 + θ2x + εx,

where Yx is often called the response ob-
served at x, (θ1, θ2) is a 2-vector of unknown
parameters, x is an explanatory variable (or
covariate), and εx is random error.
Our data is (x, Yx) and εx cannot be ob-
served.
x can be random or nonrandom.

• Nonlinear models are also used. A common
example is an exponential model such as

Yt = θ1 exp(θ2t) + εt.

Here the model is a nonlinear function of the
parameter β.

• In either case, we can write the observations
(xi, yi)

′s in the form,

Yi = gi(θ1, . . . , θk) + εi, 1 ≤ i ≤ n.

where
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– The gi are known functions and the real
numbers θ1, . . . , θk are unknown param-
eters of interest.

– The parameters (θ1, . . . , θk) can vary freely
over a set Ω contained in Rk.

– The εi satisfy the following restriction:

E(εi) = 0, 1 ≤ i ≤ n,

V ar(εi) = σ2, 1 ≤ i ≤ n,

Cov(εi, εj) = 0, 1 ≤ i < j ≤ n.

– E(Yi) = gi(θ1, . . . , θk) with unknown θ1, . . . , θk.

Example 15.

• Suppose that we want to find out how in-
creasing the amount x of a certain chemical
or fertilizer in the soil increases the amount
y of that chemical in the plants grown in
that soil.

– Nine samples of soil were treated with
different amounts x of phosphorus.

– Y is the amount of phosphorus found in
corn plants grown for 38 days in the dif-
ferent samples of soil.
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– (xi, yi) are (1, 64), (4, 71), (5, 54), (9, 81),
(11, 76), (13, 93), (23, 77), (23, 95), (28, 109).

• Assume the relationship between x and y
can be approximated well by a random model
yi = θ1 + θ2xi + εi.

• A least squares estimator of (θ1, θ2) is de-
fined to be the minimizer of

Q(θ1, θ2) =
9∑

i=1
(yi − θ1 − θ2xi)

2.

We then run into an optimization problem.
Note that

– Q(θ1, θ2) is a quadratic function of (θ1, θ2).

– There is no restriction on the ranger of
(θ1, θ2). (i.e., (θ1, θ2) ∈ R2 which falls in
an open set.)
It follows from vector calculus that the
least squares estimate (θ̂1, θ̂2) must sat-
isfy the equations

∂

∂θj
Q(θ1, θ2) = 0, j = 1, 2.

If the constraint is imposed, we may need
to use the method of Lagrange multiplier
to find the minimizer.
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– Differentiation leads to the following nor-
mal equations

∑
i
(yi − θ1 − θ2xi) = 0

∑
i
xi(yi − θ1 − θ2xi) = 0.

The sample regression line is 61.58+1.42x.

• If some of {ε1, · · · , εn} have more chance of
being small than others it might seem more
sensible to estimate θ1 and θ2 by minimizing
some weighted sum of squares

n∑
i=1

wi(yi − θ1 − θ2xi)
2,

the ws being weights which are larger for
those is for which εi is liable to be small
and small for εi liable to be large.

Optimization and Least Squares

• The word optimization denotes either the
minimization or maximization of a function.

• Consider a real-valued function h with do-
main D in Rk. The function h is said to
have a local maximum at point θ∗ ∈ D
if there exists a real number δ > 0 such
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that h(θ) ≤ h(θ∗) for all θ ∈ D satisfying
‖θ − θ∗‖ ≤ δ.
Define a local minimum in a similar way,
but in the sense that inequality h(θ) ≤ h(θ∗)
is reversed.
If the inequality h(θ) ≤ h(θ∗) is replaced by
a strict inequality

h(θ) < h(θ∗), θ ∈ D, θ 6= θ∗,

we have a strict local maximum; and if the
sense of the inequality h(θ) < h(θ∗) is re-
versed, we have a strict local minimum.

• We say that the function h has a global (ab-
solute) maximum (strict global maximum)
at θ∗ if h(θ) ≤ h(θ∗), [h(θ) < h(θ∗)] holds
for every θ ∈ D.
Thus a function may have many local max-
ima, each with a different value of h(θ), say,
h(θ0

j ), j = 1, . . . , `.
The global maximum can always be chosen
from among these local maxima by compar-
ing their values and choosing one such that

h(θ∗) ≥ h(θ0
j ), j = 1, . . . , `,
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where θ∗ ∈ {θ0
j , j = 1, . . . , `}.

It is clear that every global maximum (min-
imum) is also a local maximum (minimum);
however, the converse of this statement is,
in general, not true.
Only when h(θ) is a convex function in Rk

and D ⊂ Rk is a convex set is every local
extremum of h at θ ∈ D also a global ex-
tremum of h over D.

• Minimization of a one-dimensional function
h(θ), without any restrictions on θ, by New-
ton’s method:

– Assume that h(θ) has at least two contin-
uous derivatives and that it is bounded
below.

– Approximate h(θ) by a quadratic func-
tion that we can minimize, and use the
minimizer of the simpler function as the
new estimate of the minimizer of h(θ).
The process is then repeated from this
new point.

– To form a quadratic approximation, let
θ(t) be the current estimate of the solu-
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tion θ∗, and consider a Taylor series ex-
pansion of h about the point θ(t):

h(θ(t)+s) = h(θ(t))+sh
′
(θ(t))+

1

2
s2h

′′
(θ(t))+· · · .

The original minimization problem can
be approximated using a Taylor series ex-
pansion

h(θ∗) = min
θ

h(θ) = min
s

h(θ(t) + s)

= min
s

h(θ(t)) + sh
′
(θ(t)) +

1

2
s2h

′′
(θ(t)) + · · ·



≈ min
s

h(θ(t)) + sh
′
(θ(t)) +

1

2
s2h

′′
(θ(t))

 .
– To minimize the quadratic, take the deriva-

tive with respect to s and set it equal to
zero giving

s = −h
′
(θ(t))

h′′(θ(t))
.

Since s is an approximation to the step
that would take us from θ(t) to the solu-
tion θ∗ of the original problem, and the
algorithm is defined by the formula

θ(t+1) = θ(t) − h
′
(θ(t))

h′′(θ(t))
.
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• Optimization in many dimensions with lin-
ear regression

– Consider Example 15 in which Q(θ1, θ2)
can be written as

(θ1, θ2)

 9 ∑
i xi∑

i xi
∑

i x
2
i


 θ1

θ2

−2(θ1, θ2)


∑

i yi∑
i xiyi

+∑
i
y2

i .

– How do we differentiate a quadratic form
θTAθ?
Here A is a k × k square matrix and
symmetric.
Result:

∂

∂θ
θTAθ = 2Aθ.

– How do we differentiate θTb?
Here b is a k × 1 column vector.
Result:

∂

∂θ
θTb = b.

– Matrix formulation of the linear model:

y = Xθ + ε.

Here y = (y1, . . . , yn)
T , X = (xij)n×k,

and ε = (ε1, . . . , εn)
T . Observe that

(y−Xθ)T (y−Xθ) = θTX TXθ−2θTX Ty+yTy.
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Differentiation leads to the normal equa-
tions

2X TXθ − 2X Ty = 0,

Any solution of the above is an LSE of
θ. If X is of full rank, in which case
(X TX )−1 exists, then there is a unique
LSE which is

θ̂ = (X TX )−1X Ty.

– In R, the function solve inverts matri-
ces and solve systems of linear equations;
solve(A) inverts A and solve(A, b) solves
A% ∗%x = b.
If the system is over-determined, the least-
squares fit is found, but matrices of less
than full rank give an error.

– Consider the simple linear regression. It
turns out that

X TX =

 n ∑
i xi∑

i xi
∑

i x
2
i


The matrix is invertible if and only if
some xi’s are different.

• Optimization in Many Dimensions: New-
ton’s Method
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– Newton’s method (also called the Newton-
Raphson method) is a widely used and
often-studied method for minimization.

– The method requires use of both the gra-
dient vector and the Hessian matrix in
computations; hence it places more bur-
den on the user to supply derivatives of
the objective function than does the steep-
est descent method learned in calculus
(the gradient vector defines the direction
of maximum local increase).

– Write the Taylor series in matrix/vector
form. In two dimensions, the second-
order Taylor series approximation is

h(θ1 + s1, θ2 + s2) ≈ h(θ1, θ2) + s1D
(1,0)h(θ1, θ2) + s2D

(0,1)h(θ1, θ2)

+
1

2

[
s2

1D
(2,0)h(θ1, θ2) + 2s1s2D

(1,1)h(θ1, θ2)

+ s2
2D

(0,2)h(θ1, θ2)
]
.

– Let 52h be the constant matrix of sec-
ond partial derivatives of h at θj-the so-
called Hessian matrix:

52hij =
∂2h(θ)

∂θi∂θj
.
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– If the notations for the gradient and Hes-
sian matrix are used, we can write down
Taylor series in many dimensions which
takes the form

Q(θ+p) = h(θ)+pT5h(θ)+
1

2
pT52h(θ)p.

– When θ(t) is close to θ∗ we can expect
that the above quadratic function will
approximate h(θ).
To obtain the step p, we now minimize
this quadratic as a function of p by form-
ing its gradient with respect to p

5pQ(p) = 5p

pT 5 h(θ) +
1

2
pT 52 h(θ)p


= 5h(θ) +52h(θ)p

and setting it equal to zero

52h(θ)p = −5 h(θ).

This is a set of n linear equations in the
k unknowns p = (p1, . . . , pk)

T .
These linear equations are called the New-
ton equations.
If 52h(θ) is positive definite, this sug-
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gests the general iterative scheme

θ(t+1) = θ(t)+p = θ(t)−[52h(θ(t))]−15h(θ).

– When h(θ) is closely approximated by
Q(p) in the neighborhood of θ∗, conver-
gence will normally be at a quadratic rate
if the Hessian is positive definite at each
step.

– One problem with Newton’s method is
that the Hessian may not be positive def-
inite at each iteration.
Thus the method requires modification
to insure that the resultant method is
acceptable but still retains the desirable
characteristics of Newton’s method.

Recall the nonlinear regression. If a least-
squares approach were used, the following opti-
mization problem would be obtained

min
θ0,θ1

n∑
i=1

[Yi − θ0 exp(θ1Ti)]
2.

This is called a nonlinear least-squares prob-
lem. No analytic solution can be found. More
details will be given when we discuss MLE later
on.
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Prediction

• Suppose we have a random vector (or vari-
able) X with EXTX < ∞ and a random
variable Y .
One may wish to predict the value of Y
based on an observed value of X.
Let g(X) be the predictor with E[g(X)]2 <
∞.

• As a motivated example, a stock holder wants
to predict the value of his holdings at some
time in the future (Y ) on the basis of his
past experience with the market and his port-
folio (X).

• Suppose we use a linear function of X (in-
stead of nonlinear function) to predict of Y .
What is the best linear predictor under mean
squared error?

– Suppose that E(X2) and E(Y 2) are fi-
nite and X and Y are not constant. Then
the unique best zero intercept linear pre-
dictor is obtained by taking

a = a0 = E(XY )/E(X2),
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while the unique best linear predictor is
a1X + b1 where

a1 = Cov(X,Y )/V ar(X), b1 = E(Y )−a1E(X).

– If we don’t find any good predictor, how
do we predict Y ?
We may use E(Y ). (Note that E(Y )
is the constant which minimizes E(Y −
c)2.)

– How do we predict Y if we use the least
absolute criterion E|Y − c|?

– Up to now, we have three possible pre-
dictor of Y .
They are sample mean, linear predictor,
and conditional mean (smoother).

– In general, we have to find θ0 and θ to
minimize

E(Y − θ0 − θTX)2.

A simple algebra leads to


θ0

θ1
...
θk


=



1 E(X1) · · · E(Xk)
E(X1) E(X2

1) · · · E(X1Xk)
... ... ... ...

E(Xk) E(XkX1) · · · E(X2
k)



−1 

E(Y )
E(X1Y )

...
E(XkY )


.
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Later on, we will compare this to its sam-
ple version.

– Do we need condition to ensure the above
matrix is invertible?
Do you remember the concept of positive
definite?
When E(X) = 0, what can we say about
X?

Basic ideas on the method of least squares:

• Substitution principle:
Suppose we view the linear regression as a
best linear predictor problem.
The linear regression is the one that mini-
mizes the following estimated mean squared
error:

n−1 n∑
i=1

(yi − θ0 − θTxi)
2.

• Is the above estimated mean squared error
a good estimate of E(Y − θ0 − θTX)2?

• We can use standard argument involving the
linear combination of random variable by
computing its mean and variance of least
squares solution.
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