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Contingency Tables

We start with a probability model to describe
the data summarized in terms of contingency
table.

• Consider a sequence of n independent trials,
with k possible outcomes for each trial.
For a 2 × 2 table, k = 4 and n is the total
number of observations.

• Let pj denote the probability of occurrence
of the jth outcome in any given trial (∑k

1 pj =
1).

• Let nj denote the number of occurrences
of the jth outcome in the series of n tri-
als (∑k

i nj = n). (n1, . . . , nk) is called the
“cell frequency vector” associated with the
n trials.

• The exact distribution of (n1, . . . , nk) is the
multinomial distribution MN(n, p) where
p = (p1, . . . , pk).

• E(ni) = npi, V ar(ni) = npi(1 − pi) and
Cov(ni, nj) = −npipj, so that E(n1, . . . , nk) =
np, Cov((n1, . . . , nk)) = n(Dp−ptp), where
Dp = diag(p).

3



• Let p̂ = n−1(n1, . . . , nk) be the vector of
sample proportions, and set Un =

√
n(p̂−

p). Then E(Un) = 0, Cov(Un) = Dp −
ptp.

We now use “Cramer-Wold device” to prove
asymptotic multivariate normality of cell fre-
quency vectors.

Theorem. The random vector Un converges
in distribution to k-variate normal with mean
0 and covariance Dp − ptp.

• Compute the characteristic function of E exp(it ∑n
i=1 ui)

where Un = (u1, . . . , uk).

• Observe that

E
exp

it k∑
j=1

λjuj




= E

exp

 k∑
j=1

itλj

 nj√
n
−
√

npj






= exp
−it

√
n

k∑
j=1

λjpj

 · E
exp

 it√
n

k∑
j=1

λjnj




= exp
−it

√
n

k∑
j=1

λjpj

 ·
 k∑
j=1

pj exp

 it√
n
λj



n

=

 k∑
j=1

pj · exp

 it√
n

λj −
k∑

i=1
λipi





n
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=


k∑

j=1
pj

1 +
it√
n

(λj −
k∑

i=1
λipi)−

t2

2n
(λj −

k∑
i=1

λipi)
2 + o(n−1)



n

=

1− t2

2n

k∑
j=1

pj

λj −
k∑

i=1
λipi


2

+ o(n−1)


n

→ exp
−1

2
(λ1, . . . , λk)(Dp − ptp)(λ1, . . . , λk)

t
 .

• The limit being the ch.f. of the multivariate
normal distribution with mean vector 0 and
covariance matrix Dp − ptp.

Assumptions:

• Every individual in the population under
study can be classified as falling into one and
only one of k categories, we say that the cat-
egories are mutually exclusive and exhaus-
tive.

• A randomly selected member of the popu-
lation will fall into one of the k categories
with probability p, where p is the vector of
cell probabilities

p = (p1, p2, . . . , pk)

and ∑k
i=1 pi = 1.
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• Here the cells are strung out into a line for
purposes of indexing only; their arrangement
and ordering does not reflect anything about
the characteristics of individuals falling into
a particular cell.

• The pi reflect the relative frequency of each
category in the population.

• Mining of association rules in Basket Anal-
ysis:

– A basket bought at the food store con-
sists of the following four items: Apples,
Bread, Coke, Milk, Tissues.

– Data on all baskets is available (through
cash registers)

– Goal: Discover association rules of the
form
Bread&Milk =¿ Coke&Tissue

– This analysis is also called linkage anal-
ysis or item analysis.

– Properties of association rules:

∗ The support of the rule is the Propor-
tion of baskets with Bread&Milk&Coke&Tissue.
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∗ The confidence of the rule is the
Sup (Bread&Milk&Coke&Tissue)/Sup(Bread&Milk)
which is simply the estimated condi-
tional probability in statistical terms.

∗ The lift of the rule is the
Sup (B&M&C&T)/Sup(B&M)Sup(C&T).
How do you connect it with P (A ∩
B)/P (A)P (B)?

– Search for rules with high confidence and
support

∗ Will the results be affected by ran-
domness?

∗ Add the requirement that the rule is
statistically significant in the test against
independence (i.e. against lift=1)

∗ The number of such tests to be per-
formed in a moderate problem reaches
tens of thousands

– You can put all of them in a huge con-
tingency table.
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2× 2 Tables

• As an example, we might be interested in
whether hair color is related to eye color.
Conduct a study by collecting a random sam-
ple and get a count of the number of people
who fall in this particular cross-classification
determined by hair color and eye color.

• When the cells are defined in terms of the
categories of two or more variables, a struc-
ture relating to the nature of the data is
imposed. The natural structure for two vari-
ables is often a rectangular array with columns
corresponding to the categories of one vari-
able and rows to categories of the second
variable; three variables creates layers of two-
way tables, and so on.

• The simplest contingency table is based on
four cells, and the categories depend on two
variables. The four cells are arranged in a
2 × 2 table whose two rows correspond to
the categorical variable A and whose two
columns correspond to the second categor-
ical variable B. Double subscripts refer to
the position of the cells in our arrangement.
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• The first subscript gives the category num-
ber of variable A, the second of variable B,
and the two-dimensional array is displayed
as a grid with two rows and two columns.

• The probability pij is the probability of an
individual being in category i of variable
A and category j of variable B. Usually,
we have some theory in mind which can be
checked in terms of hypothesis testing such
as

H0 : p = π (π a fixed value).

• Then the problem can phrased as n obser-
vations from the k-cell multinomial distribu-
tion with cell probabilities p1, . . . , pk. Then
we encounter the problem of proving asymp-
totic multivariate normality of cell fre-
quency vectors.

• To test H0, it can be proceed by the Pearson
chi square test, which is to reject H0 if X2

is too large, where

X2 =
k∑

i=1

(ni − nπi)
2

nπi
.
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This test statistic was first derived by Pear-
son (1900). Then we need to answer two
questions. The first one is to determine what
kind of the magnitude of X2 is the so-called
too large. The second one is whether the
Pearson chi-square test is a reasonable test-
ing procedure. These questions will be tack-
led by deriving the asymptotic distribution
of the Pearson chi square statistic under H0

and a local alternative of H0.

• Using matrix notation, X2 can be written
as

X2 = UnD
−1
π U t

n,

where

Un =
√

n(p̂−π), p̂ = n−1(n1, . . . , nk), and Dπ = diag(π).

• Let g(x) = xD−1
π xt for x = (x1, . . . , xk).

Evidently, g is a continuous function of x.
It can be shown that Un

d→ U, where U has
the multivariate normal distributionN (0,Dπ−
πtπ). Then we have

UnD
−1
π Ut

n
d→ UD−1

π Ut.

Thus the asymptotic distribution of X2 un-
der H0, which is the distribution of UD−1

π Ut,
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where U has the N (0,Dπ − πtπ) distri-
bution. This reduces the problem to finding
the distribution of a quadratic form of a mul-
tivariate normal random vector. The above
process is the so-called δ method.

• Now we state without proof the following
general result on the distribution of a quadratic
form of a multivariate normal random vari-
able. It can be found in Chapter 3b in Rao
(1973) and Chapter 3.5 of Serfling (1980).
Theorem If X = (X1, . . . , Xd) has the
multivariate normal distributionN (0, Σ) and
Y = XAXt for some symmetric matrix A,
thenL[Y ] = L[∑d

i=1 λiZ
2
i ], where Z2

1 , . . . , Z
2
d

are independent chi square variables with
one degree of freedom each and λ1, . . . , λd

are the eigenvalues of A1/2Σ(A1/2)t.

• Apply the above theorem to the present prob-
lem, we see thatL[UD−1

π Ut] = L[∑d
i=1 λiZ

2
i ],

where λi are the eigenvalues of

B = D
−1/2
π (Dπ−πtπ)D

−1/2
π = I−

√
πt
√

π,

where
√

π = (
√

π1, . . . ,
√

πk).

• Now it remains to find the eigenvalues of
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B. Since B2 = B and B is symmetric,
the eigenvalues of B are all either 1 or 0.
Moreover,

k∑
i=1

λi = tr(B) = k − 1.

• Therefore, we establish the result that un-
der the simple hypothesis H0, Pearson’s chi-
square statistic X2 has an asymptotic chi
square distribution with k − 1 degrees of
freedom.

Remarks:

• We already examined the limiting distribu-
tion of the Pearson chi square statistic under
H0 by employing δ method.

• In essence, the δ method requires two ingre-
dients:
first, a random variable (which we denote

here by θ̂n) whose distribution depends on a
real-valued parameter θ in such a way that

L[
√

n(θ̂n − θ)] → N(0, σ2(θ)); (1)

and second, a function f (x) that can be dif-
ferentiated at x = θ so that it possesses the
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following expansion about θ:

f (x) = f (θ)+(x−θ)f
′
(θ)+o(|x−θ|) as x → θ.

(2)

• The δ method for finding approximate means
and variances (asymptotic mean and asymp-
totic variance) of a function of a random
variable is justified by the following theo-
rem.
Theorem (The one-dimensional δ method.)

If θ̂n is a real-valued random variable and
θ is a real-valued parameter such that (1)
holds, and if f is a function satisfying (2),

then the asymptotic distribution of f (θ̂n) is
given by

L[
√

n(f (θ̂n)−f (θ))] → N(0, σ2(θ)[f
′
(θ)]2).

(3)
Proof. Set Ωn = R, Ω = Ω1 × Ω2 × · · · ×
Ωn×· · · = ×∞

n=1Ωn, and Pn to be the prob-

ability distribution of θ̂n on R. Note that
Ω is the set of all sequences {tn} such that
tn ∈ Ωn. We define two subsets of Ω:

S = {{tn} ∈ Ω : tn − θ = O(n−1/2)},
T = {{tn} ∈ Ω : f (tn)− f (θ)− (tn − θ)f

′
(θ) = o(n−1/2)}.
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Since f satisfies (2), then S ⊂ T . By (1),
we have

n1/2(θ̂n−θ) = OP (1) and hence θ̂n − θ = OP (n−1/2).
(4)

Note that S occurs in probability and hence
T also occur in probability since S ⊂ T .
Finally,

f (θ̂n)− f (θ)− (θ̂n − θ)f
′
(θ) = oP (n−1/2)

(5)
or
√

n(f (θ̂n)−f (θ)) =
√

n(θ̂n−θ)f
′
(θ)+oP (1).

(6)

Now let Vn =
√

n(f (θ̂n) − f (θ)), Un =√
n(θ̂n − θ), and g(x) = xf

′
(θ) for all real

numbers x. Then (6) may be rewritten as

Vn = g(Un) + oP (1).
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Goodness-of-Fit to Composite Multinomial Models

Consider a sample from a population in genetic
equilibrium with respect to a single gene with
two alleles. If we assume the three different
genotypes are identifiable, we are led to suppose
that there are three types of individuals whose
frequencies are given by the so-called Hardy-
Weinberg proportions

p1 = θ2, p2 = 2θ(1− θ), p3 = (1− θ)2,

where 0 < θ < 1.

• In the Hardy-Weinberg model, the probabil-
ity model to describe the data is multinomial
with parameter falling in

Θ = {θ : θi ≥ 0, 1 ≤ i ≤ 3,
3∑

i=1
θi = 1}.

• The theory we want to test can be described
by a multinomial with parameter falling in

Θ0 = {(η2, 2η(1− η), (1− η)2, 0 ≤ η ≤ 1},
which is a one-dimensional curve in the two-
dimensional parameter space Θ.

• To test the adequancy of the Hardy-Weinberg
model means testing H0 : θ ∈ Θ0 versus
H1 : θ ∈ Θ1 where Θ1 = Θ− Θ0.
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In general, we can describe Θ0 parametrically
as

Θ0 = {(θ1(η), . . . , θk(η)) : θ(η ∈ Ξ},

where η = (η1, . . . , ηq)
T , is a subset of q-dimensional

space, and the map η → (θ1(η), . . . , θk(η))T

takes Ξ into Θ0. To avoid trivialities we assume
q < k − 1.

Now we consider the likelihood ratio test for
H0 versus H1.

• Let p(n1, . . . , nk, θ) denote the frequency
function.

– Maximizing p(n1, . . . , nk, θ) for θ ∈ Θ0.

– Denote the maximizer by η̂ = (η̂1, . . . , η̂q).

– The logarithm of

sup
θ∈Θ0

L(θ;x)

is ∑k
i=1 ni log θi(η̂) up to a constant.

• The logarithm of

sup
θ∈Θ

L(θ;x)

is ∑k
i=1 ni log(ni/n) up to a constant.
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• Suppose that we can define θ
′
j = gj(θ), j =

1, . . . , r, where gj is chosen so that H0 be-

comes equivalent to (θ
′
1, . . . , θ

′
q)

T ranges over
an open subset of Rq and θj = θ0j, j =
q + 1, . . . , r for specified θ0j.
For example, to test the Hardy-Weinberg
model we set θ

′
1 = θ1, θ

′
2 = θ2 − 2

√
θ1(1 −√

θ1) and test H1 : θ
′
2 = 0.

• Apply the standard result on likelihood ratio
test, under H0, λn approximately has a χ2

r−q

distribution for large n.

Example 1 Consider Hardy-Weinberg model.

• η̂ = (2n1 + n2)/2n

• Reject H0 if λn ≥ χ2
1(1− α) with

θ(η̂) =


2n1 + n2

2n


2

,
(2n1 + n2)(2n3 + n2)

2n2
,

2n3 + n2

2n


2

T

.

For the Wald statistic and Rao score statis-
tic, they are approximately χ2

r−q distributed for
large n under H0.

• Wald statistic:

Wn =
k∑

j=1

[Nj − nθj(η̂)]2

nθj(η̂)
.
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• Rao score statistic:

Sn =
k∑

j=1

[Nj − nθj(η̂)]2

θj(η̂)
.

• They are identical to Pearson’s χ2 statistic

SUM
(Observed− Expected)2

Expected
.

Example 2 (The Fisher Linkage Model).

• A self-crossing of maize heterozygous on two
characteristic (starchy versus sugary; green
base leaf versus white base leaf) leads to
four possible offspring types: (1) sugary-
white; (2) sugary-green; (3) starchy-white;
(4) starchy-green.

• (N1, . . . , N4) has a MN(n, θ1, . . . , θ4) dis-
tribution.

• Fisher (1958) specifies that

θ1 =
1

4
(2 + η), θ2 = θ3 =

1

4
(1− η), θ4 =

1

4
η

where η is an unknown number between 0
and 1.
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• To test the validity of the linkage model we
would take

Θ0 = {(1
4
(2+η),

1

4
(1−η),

1

4
(1−η),

1

4
) : 0 ≤ η ≤ 1}

a “one-dimensional curve” of the three-dimensional
parameter space Θ.

• The likelihood equation under H0 becomes

n1

2 + η
− n2 + n3

1− η
+

n4

η
= 0.

• We obtain critical values from χ2
1 table.
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Testing Independence of Classification in
Contingency Tables

• Many important characteristics have only
two categories.

• An individual either is or is not inoculated
against a disease; is or is not a soker; is male
or female; and so on.

• We often want to know whether such char-
acteristics are linked or are independent.
For example, do smoking and lung cancer
have any relation to each other?

• Let us call the possible categories or states
of the first characteristic A and Ā and of the
second B and B̄.

– A randomly selected individual from the
population can be one of four types AB,
AB̄, ĀB, ĀB̄.

– Denote the probabilities of these types by
θ11, θ12, θ21, θ22, respectively.

• Independent classification means that the
events (being an A) and (being a B) are
independent or in terms of the θij,

θij = (θi1 + θi2)(θ1j + θ2j).

20



• The data are assembled in what is called a
2× 2 contingency table.

• Testing independence can be put as H0 :
θ ∈ Θ0 versus H1 : θ 6∈ Θ0 where Θ0 is a
two-dimensional subset of Θ given by

Θ0 = {(η1η2, η1(1−η2), η2(1−η1), (1−η1)(1−η2)) : 0 ≤ η1, η2 ≤ 1}.

The degree of freedom of chi2 test is 1.

• For θ ∈ Θ0, η̂1 = (n11 + n12)/n and η̂2 =
(n11 + n21)/n.

• Pearson’s statistic is

n
2∑

i=1

2∑
j=1

[Nij − (Ni1 + Ni2)(N1j + N2j)/n]2

(Ni1 + Ni2)(N1j + N2j)
.

• Pearson’s statistic can be rewritten as Z2

where

Z =
 N11

N11 + N21
− N12

N12 + N22


√√√√√√√(N11 + N21)(N12 + N22)n

(N11 + N12)(N21 + N22)
.

Thus,

Z =
√

n[P̂ (A|B)−P̂ (A|B̄)]

P̂ (B)

P̂ (A)

P̂ (B̄)

P̂ (Ā)


1/2

where P̂ is the empirical distribution.
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• Z indicates what directions they deviate from
independence.

a× b Contingency Tables

• Consider contingency tables for two nonnu-
merical characteristics having a and b states,
respectively, a, b ≥ 2.

• If we take a sample of size n from a popu-
lation and classify them according to each
characteristic we obtain a vector Nij, i =
1, . . . , a, j = 1, . . . , b where Nij is the num-
ber of individuals of type i for characteristic
1 and j for characteristic 2.

• {Nij : 1 ≤ i ≤ a, 1 ≤ j ≤ b} are multi-
nomially distributed with {θij : 1 ≤ i ≤
a, 1 ≤ j ≤ b} where

θij = P (A randomly selected individual is of type i for 1 and j for 2).

• The hypothesis that the characteristics are
assigned independently becomes H0 : θij =
ηi1ηj2 for 1 ≤ i ≤ a, 1 ≤ j ≤ b where
the ηi1, ηj2 are nonnegative and ∑a

i=1 ηi1 =∑b
j=1 ηj2 = 1.

• Nij can be arranged in a a× b contingency
table. Write Cj = ∑a

i=1 Nij and Ri = ∑b
j=1 Nij.
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• Pearson’s χ2 for the hypothesis of indepen-
dence is

n
a∑

i=1

b∑
j=1

(Nij −RiCj/n)2

RiCj
,

which has approximately a χ2
(a−1)(b−1) dis-

tribution under H0.
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Logistic Regression for Binary Response

• Consider Bernoulli responses Y that can only
take on the values 0 and 1. Examples are

– medical trials where at the end of the
trial the patient has either recovered (Y =
1) or has not recovered (Y = 0),

– election polls where a voter either sup-
ports a proposition (Y = 1) or does not
(Y = 0),

– market research where a potential cus-
tomer either desires a new product (Y =
1) or does not (Y = 0)

– multiple-choice test where an examiner
either gets a correct answer ordoes not

• Assume the distribution of Y depends on
the known covariate vector z in Rp.

• Assume that the data are grouped or repli-
cated so that for each fixed i, we observe the
number of successes Xi = ∑mi

j=1 Yij where Yij

is the response on the jth of the mi trials in
block i, 1 ≤ i ≤ k.
Thus, we observe independent X1, . . . , Xk

with Xi binomial Bin(mi, π), where π =

24



π(z) is the probability of success for a case
with covariate vector zi.

• Consider the logistic transform g(π), usu-
ally called the logit, which is

η = g(π) = log[π/(1− π)].

• We choose the following parametric model
for π(z)

logit(π(z)) = zTβ.

This model will allow that each component
of z takes values on R.

• The above model is called the logistic lin-
ear regression model.
In practice, the probit g1(π) = Φ−1(π) where
Φ is the N(0, 1) cdf and the log-log trans-
form g2(π) = log[− log(1−π)]are also being
used.

• The log likelihood `(π(β)) ≡ `N(β) of β =
(β1, . . . , βp)

T is, if N = ∑k
i=1 mi,

`N(β) =
p∑

j=1
βjTj−

k∑
i=1

mi log(1+exp(ziβ))+
k∑

i=1
log

 mi

Xi



where Tj = ∑k
i=1 zijXi.
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• The likelihood equations are

ZT (X− µ) = 0,

where Z = (zij)m×p by observing

µi = E(Xi) = miπi

E(Tj) =
k∑

i=1
zijµi

• The MLE β̂ of β solves Eβ(Tj) = Tj, j =
1, . . . , p.

• To solve the above nonlinear equations, we
use the Newton-Raphson algorithm

• The Fisher information matrix is ZTWZ
where W = diag{miπi(1− πi)}k×k.

Testing

• Let ω = {η : ηi = zT
i β, β ∈ Rp}. Consider

two different kinds of tests.

– Let Ω = Rk. Test H0 : η ∈ ω versus
H1 : η ∈ Ω \ ω.

– Let ω0 be a q-dimensional linear subspace
of ω with q < r.. Test H0 : η ∈ ω0 ver-
sus H1 : η ∈ ω \ ω0.
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• For the first set of hypotheses, the MLEs
of πi and µi are Xi/mi and Xi. The log-
likelihood ratio test statistics is

2
k∑

i=1
[Xi log(Xi/µ̂i) + X

′
i log(X

′
i/µ̂

′
i)]

where X
′
i = mi −Xi and µ

′
i = mi − µ̂i.

– Note that it just measure the distance
between the fit µ̂ based on the model ω
and the data.

– By the multivariate delta method, it has
asymptotically a χ2

k−p distribution for η ∈
ω as mi →∞, i = 1, . . . , k < ∞.

• For the second set of hypotheses, the log-
likelihood ratio test statistics is

2
k∑

i=1

Xi log

 µ̂i

µ̂0i

 + X
′
i log

 µ̂
′
i

µ̂′
0i




where µ̂0 is the MLE of µ under H0 and
µ
′
0i = mi − µ̂0i.

It has an asymptotical χ2
p−q distribution as

mi →∞, i = 1, . . . , k < ∞.
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Tests for A Simple Null Hypothesis

• Let X1, . . . , Xn be iid with X1 ∼ N(θ, 1).

– Test H0 : θ = 0 versus H1 : θ = θ0 > 0.

– How do we find a good test for the above
simple hypothesis?

• Consider testing H0 : θ = θ0 ∈ Rs versus
H1 : θ 6= θ0.

• We consider three large sample tests.

Likelihood Ratio Test

• A likelihood ratio statistic,

Λn =
L(θ0;x)

supθ∈Θ
L(θ;x)

was introduced by Neyman and Pearson (1928).

• Λn takes values in the interval [0, 1] and H0

is to be rejected for sufficiently small values
of Λn.

• The rationale behind LR tests is that when
H0 is true, Λn tends to be close to 1, whereas
when H1 is true, Λn tends to be close to 0,
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• The test may be carried out in terms of the
statistic

λn = −2 log Λn.

• For finite n, the null distribution of λn will
generally depend on n and on the form of
pdf of X .

• LR tests are closely related to MLE’s.

• Denote MLE by θ̂. For asymptotic analysis,
expanding λn at θ̂ in a Taylor series, we get

λn = −2

−
n∑

i=1
log f (Xi, θ̂) +

n∑
i=1

log f (Xi, θ
0)


= 2


1

2
(θ0 − θ̂)T

− n∑
i=1

∂2

∂θj∂θk
log f (x; θ)

∣∣∣∣∣∣∣∣θ=θ∗

 (θ0 − θ̂)

 ,

where θ̂ lies between θ̂ and θ0.

• Since θ∗ is consistent,

λn = n(θ̂−θ0)T
−1

n

n∑
i=1

∂2

∂θj∂θk
L(θ)

∣∣∣∣∣∣∣∣θ=θ0

 (θ̂−θ0)+oP (1).

By the asymptotic normality of θ̂ and

−n−1 n∑
i=1

∂2

∂θj∂θk
L(θ)|θ=θ0

P→ I(θ0),

λn has, under H0, a limiting chi-squared dis-
tribution on s degrees of freedom.
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Example 3 Consider the testing problem
H0 : σ2 = σ2

0 versus H1 : σ2 6= σ2
0 based

on iid X1, . . . , Xn from the normal distribution
N(µ0, σ

2).

• L(θ0;x) = (2πσ2
0)
−n/2 exp

[
− ∑

i(xi − µ0)
2/2σ2

0

]

• σ̂2 = n−1 ∑
i(xi − µ0)

2 (MLE) and

sup
θ∈Θ

L(θ;x) = (2πσ̂2)−n/2 exp(−n/2).

• We have

Λn =

σ̂2

σ2
0


n/2

exp

n

2
−

∑
i(xi − µ0)

2

2σ2
0


or under H0

λn = −n

ln
 1

n

n∑
i=1

Z2
i

 −
1−

 1

n

n∑
i=1

Z2
i




 ,

where Z1, . . . , Zn are iid N(0, 1).

• Fact: Using CLT, we have

n−1 ∑n
i=1 Z2

i − 1√
2/n

d→ N(0, 1)

or
n

2

 1

n

n∑
i=1

Z2
i − 1


2

d→ χ2
1.
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• Note that ln u ≈ −(1 − u) − (1 − u)2/2
when u is near 1 and n−1 ∑n

i=1 Z2
i → 1 in

probability by LLN.

• A common question to be asked in Tay-
lor’s series approximation is that how many
terms we should consider. In this exam-
ple, it refers to the use of approximation
ln u ≈ −(1− u) as a contrast to the second
order approximation we use. If we do use
the first order approximation, we will end
up the difficulty of finding limn anbn when
limn an = ∞ and limn bn = 0.

• We conclude that λn has a limiting chi-squared
distribution with 1 degree of freedom.

The Wald Test

• Let θ̂n denote a consistent, asymptotically
normal, and asymptotically efficient sequence
of solutions of the likelihood equations.

√
n(θ̂n − θ) d→ N(0, I−1(θ))

as n →∞.

• Because I(θ) is continuous in θ, we have

I(θ̂n)
P→ I(θ)
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as n →∞.

• Replace the matrix
−1

n
∑n

i=1
∂2

∂θj∂θk
L(θ)|θ=θ0


by I(θ̂n) in large sample approximation of
λn, we get a second statistic,

Wn = n(θ̂n − θ0)TI(θ̂n)(θ̂n − θ0),

which was introduced by Wald (1943).

• By Slutsky’s theorem, Wn converges in dis-
tribution to χ2

s.

• For the construction of confidence region,
one generates {θ0 : Wn ≤ χ2

s,α} which is
an ellipsoid in Rs.

• As a remark, for the construction of con-
fidence region based on λn, one generates
{θ0 : λn ≤ χ2

s,α} which is not necessary an
ellipsoid in Rs.

The Rao Score Tests

• Both the Wald and likelihood ratio tests re-
quires evaluation of θ̂n. Now we consider a
test for which this is not necessary.

• Denote the likelihood score vector

q(x; θ) = (q1(x; θ), . . . , qs(x; θ))T
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where

qj(x; θ) =
∂

∂θj
log f (x; θ).

• Write Q(θ) = ∑n
i=1 q(Xi; θ). By the central

limit theorem,

n−1/2Q(θ0) d→ N(0, I(θ0)).

• A third statistic,

Vn = [n−1/2Q(θ0)]TI−1(θ0)[n−1/2Q(θ0)]

= n−1Q(θ0)TI−1(θ0)Q(θ0),

was introduced by Rao (1948).
Again, it has a limiting χ2

s distribution.

Example 4. Consider a sample X1, . . . , Xn

from the logistic distribution with density

fθ(x) =
ex−θ

(1 + ex−θ)2
.

• q(x; θ) = −1 + 2ex−θ/(1 + ex−θ) and

Q(θ0) = −n + 2
n∑

i=1

exi−θ0

1 + exi−θ0 .

• I(θ) = 1/3 for all θ.
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• The Rao scores test therefore rejects H0 with
test statistic √√√√√√ 3

n

n∑
i=1

exi−θ0 − 1

1 + exi−θ0 .

• In this case, the MLE does not have an ex-
plicit expression and therefore the Wald and
likelihood ratio tests are less convenient.

Example 5. Consider a sequence of n in-
dependent trials, with s possible outcomes for
each trials.

• Let θj denote the probability of occurrence
of the jth outcome in any given trial.

• Let Nj denote the number of occurrences of
the jth outcome in the series of n trials.

• The MLE of θj’s are Nj/n.

• The three test statistics λn, Wn and Vn for
testing H0 : θ = θ0 against H1 : θ 6= θ0 are
easily seen to be

λn = 2
s∑

j=1
Nj log(

Nj

nθ0
j

),

Wn =
s∑

j=1

(Nj − nθ0
j )

2

Nj
,
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Vn =
s∑

j=1

(Nj − nθ0
j )

2

nθ0
j

.

• Both Wn and Vn are referred to as chi-squared
goodness of fit statistics; the latter often
called the Pearson chi-squared distribution.
The large sample properties was first derived
by Pearson (1900).
Pearson’s chi-square statistic is easily remem-
bered as

χ2 = sum
(Observed− Expected)2

Expected
.

Example 6. (Testing a Genetic Theory)

• In experiments on pea breading, Mendel ob-
served the different kinds of seeds obtained
by crosses from peas with round yellow seeds
and peas with wrinkled green seeds.

• Possible types of progeny were: (1) round
yellow; (2) wrinkled yellow; (3) round green;
and (4) wrinkled green.

• Assume the seeds are produced independently.
We can think of each seed as being the out-
come of a multinomial trial with possible
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outcomes numbered 1, 2, 3, 4 as above and
associated probabilities of occurrence θ1, θ2,
θ3, θ4.

• Mendel’s theory predicted that θ1 = 9/16,
θ2 = θ3 = 3/16, θ4 = 1/16.

• Data: n = 556, n1 = 315, n2 = 101, n3 =
108, n4 = 32.

• Pearson’s chi-square statistic is

(315− 556× 9/16)2

312.75
+

(3.25)2

104.25
+

(3.75)2

104.25
+

(2.75)2

34.75
= 0.47,

which has a p-
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