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The Practice of Statistics

• Statistics is the science of learning from ex-
perience, especially experience that arrives
a little bit at a time.

• Most people are not natural-born statisti-
cians.

– We are not very good at picking out pat-
terns from a sea of noisy data.

– To put it another way, we all are too good
at picking out non-existent patterns that
happen to suit our purposes.

– Statistical theory attacks the problem from
both ends. It provides optimal methods
for finding a real signal in a noisy back-
ground, and also provides strict checks
against the overinterpretation of random
patterns.

• Statistical theory attempts to answer three
basic questions:

1. Data Collection: How should I collect
my data?

2. Summary: How should I analyze and
summarize the data that I’ve collected?

2



3. Statistical Inference: How accurate are
my data summaries?

• The bootstrap is a recently developed tech-
nique for making certain kinds of statistical
inferences.
It is only recently developed because it re-
quires modern computer power to simplify
the often intricate calculations of traditional
statistical theory.

• The idea of bootstrap method is close to
that of simulation. The main difference is
to plug in an estimate of the underlying un-
known random mechanism F .
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Motivated Example

• Illustrate the just mentioned three basic sta-
tistical concepts using a front-page news from
the New York Times of January 27, 1987.

• A study was done to see if small aspirin
doses would prevent heart attacks in healthy
middle-aged men.

• The data for the aspirin study were collected
in a particularly efficient way: by a con-
trolled, randomized, double-blind study.

– One half of the subjects received aspirin
and the other half received a control sub-
stance, or placebo, with no active ingre-
dients.

– The subjects were randomly assigned to
the aspirin or placebo groups.

– Both the subjects and the supervising
physicians were blind to the assignments,
with the statisticians keeping a secret code
of who received which substance.

– Scientists, like everyone else, want the
subject they are working on to succeed.
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– The elaborate precautions of a controlled,
randomized, blinded experiment guard against
seeing benefits that don’t exist, while max-
imizing the chance of detecting a genuine
positive effect.

• The summary statistics in the study are very
simple:

heart attacks subjects
(fatal plus non-fatal)

aspirin group: 104 11,037
placebo group: 189 11,034

• What strikes the eye here is the lower rate
of heart attacks in the aspirin group.

• The ratio of the two rates is

θ̂ =
104/11037

189/11034
= 0.55.

It suggests that the aspirin-takers only have
55% as many as heart attacks as placebo-
takers.

• We are not interested in θ̂.
What we would like to know is θ, the true
ratio, that is the ratio we would see if we
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could treat all subjects, and not just a sam-
ple of them.

• The tough question is how do we know that
θ̂ might not come out much less favorably
if the experiment were run again? This is
where statistical inference comes in.

• Statistical theory allows us to make the fol-
lowing inference: the true value of θ lies in
the interval 0.43 < θ < 0.70 with 95% con-
fidence.

Note that

θ = θ̂ + (θ − θ̂) = 0.55 + [θ − θ̂(ω0)],

where θ and θ̂(ω0) (= 0.55) are two numbers.

• Since ω0 cannot be observed, we use θ−θ̂(ω)

to describe θ − θ̂(ω0) in statistics.

• What is the fluctuation of θ − θ̂(ω) among
all ω?

• If, for most ω, θ − θ̂(ω) is around zero, we
can conclude statistically that θ is close to
0.55 (= θ̂(ω0)).
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• (Recall the definition of consistency.) If

P (ω : |θ − θ̂(ω)| < 0.1) = 0.95,

we claim that with 95% confidence that θ−
0.55 is no more than 0.1.

• In the aspirin study, it also track strokes.
The results are presented as the following:

strokes subjects
aspirin group: 119 11,037
placebo group: 98 11,034

• For strokes, the ratio of the two rates is

θ̂ =
119/11037

98/11034
= 1.21.

It now looks like taking aspirin is actually
harmful.

• However, the interval for the true stroke ra-
tio θ turns out to be 0.93 < θ < 1.59 with
95% confidence. This includes the neutral
value θ = 1, at which aspirin would be no
better or worse than placebo.

• In the language of statistical hypothesis test-
ing, aspirin was found to be significantly
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beneficial for preventing heart attacks, but
not significantly harmful for causing strokes.

According to introductory statistics course,
we can put the above problem into the frame-
work of two-sample problem with binomial dis-
tribution. Asymptotic analysis will then be used
to give an approximation on the distribution of
θ̂.

In this note, we demonstrate an alternative.
Apply the bootstrap method in the stroke ex-
ample.

1. Create two pseudo populations based on
the collectd data:

– Pseudo population 1: It is consist of
119 ones and 11037 − 119 = 10918
zeros.

– Pseudo population 2: It is consist of 98
ones and 11034− 98 = 10936 zeros.

2. (Monte Carlo Resampling) Draw with re-
placement a sample of 11037 items from
the first pseudo population, and a sample
of 11034 items from the second pseudo
population. Each of these is called a
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bootstrap sample.

3. Derive the bootstrap replicate of θ̂:

θ̂∗ =
prop. of ones in bootstrap sample #1

prop. of ones in bootstrap sample #2
.

4. Repeat this process (1-3) a large number
of times, say 1000 times, and obtain 1000
bootstrap replicates θ̂∗.

The above procedure can be implemented eas-
ily using the following R code.

• n1 < −11037; s1 < −119; p1 < −s1/n1

• n2 < −11034; s2 < −98; p2 < −s2/n2

• Write a function named stroke.

• stroke < −function(n1, p1, n2, p2){
control < −rbinom(1, n1, p1)
treat < −rbinom(1, n2, p2)
theta < −(control/n1)/(treat/n2)
return(theta)
}

• Suppose that we would like to do 1000 repli-
cations.
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• result < −rep(1, 1000) which is used to

store the 1000 boostrap replicates of θ̂.

• for (i in 1 : 1000) result[i] < −stroke(n1, p1, n2, p2)

My simulation gives

• The standard deviation turned out to be
0.17 in a batch of 1000 replicates that we
generated.

• A rough 95% confidence interval is (0.93, 1.60)
which is derived by taking the 25th and 975th
largest of the 1000 replicates.

• The above method is called the percentile
method.

Project 1.1 Do a computer experiment to
repeat the above process one hundread times
and answer the following questions.

• (a) Give a summary of those 100 confidence
intervals. Do they always contain 1? If not,
is it statistical correct?

• (b) How do you describe the distribution of

bootstrap replicates of θ̂? Is it close to nor-
mal?
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Odds Ratio

• If an event has probability P (A) of occur-
ring, the odds of A occurring are defined
to be

odds(A) =
P (A)

1− P (A)
.

• Let X denote the event that an individual is
exposed to a potentially harmful agent and
D denote the event that the individual be-
comes diseased.
Denote the complementary events as X̄ and
D̄.

• The odds of an individual contracting the
disease given that he is exposed are

odds(D|X) =
P (D|X)

1− P (D|X)

and the odds of contracting the disease given
that he is not exposed are

odds(D|X̄) =
P (D|X̄)

1− P (D|X̄)
.

• The odds ratio ∆ = odds(D|X)
odds(D|X̄) is a measure

of the influence of exposure on subsequent
disease.
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We will consider how the odds and odds ratio
could be estimated by sampling from a popu-
lation with joint and marginal probabilities de-
fined as in the following table:

D̄ D
X̄ π00 π01 π0.

X π10 π11 π1.

π.0 π.1 1

With this notation,

P (D|X) =
π11

π10 + π11
P (D|X̄) =

π01

π00 + π01

so that

odds(D|X) =
π11

π10
odds(D|X̄) =

π01

π00

and the odds ratio is

∆ =
π11π00

π01π10

the product of the diagonal probabilities in the
preceding table divided by the product of the
off-diagonal probabilities.

Now we will consider three possible ways to
sample this population to study the relationship
of disease and exposure.
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• Random sample:

– From such a sample, we could estimate
all the probabilities directly.

– If the disease is rare, the total sample size
would have to be quite large to guaran-
tee that a substantial number of diseased
individuals was included.

• Prospective study:

– A fixed number of exposed and nonex-
posed individuals are sampled and then
followed through time.

– The incidences of disease in those two
groups are compared.

– In this case the data allow us to estimate
and compare P (D|X) and P (D|X̄) and,
hence, the odds ratio.

– The aspirin study described in the previ-
ous section can be viewed as this type of
study.

• Retrospective study:

– A fixed number of diseased and undis-
eased individuals are sampled and the
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incidences of exposure in the two groups
are compared.

– From such data we can directly estimate
P (X|D) and P (X|D̄).

– Since the marginal counts of diseased and
nondiseased are fixed, we cannot estimate
the joint probabilities or the important
conditional probabilities P (D|X) and P (D|X̄).

– Observe that

P (X|D) =
π11

π01 + π11
,

1− P (X|D) =
π01

π01 + π11
,

odds(X|D) =
π11

π01
,

odds(X|D̄) =
π10

π00
.

The odds ratio can also be expressed as
odds(X|D)/odds(X|D̄).

Now we describe the study of Vianna, Green-
wald, and Davies (1971) to illustrate the retro-
spective study.

• In this study they collected data compar-
ing the percentages of tonsillectomies for a
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group of patients suffering from Hodgkin’s
disease and a comparable control group:

Tonsillectomy No Tonsillectomy
Hodgkin’s 67 34
Control 43 64

• Recall that the odds ratio can be expressed
as odds(X|D)/odds(X|D̄) and an estimate
of it is n00n11/(n01n10), the product of the
diagonal counts divided by the product of
the off-diagonal counts.

• The data of Vianna, Greenwald, and Davies
gives an estimate of odds ratio is

67× 64

43× 34
= 2.93.

• According to this study, the odds of con-
tracting Hodgkin’s disease is increased by
about a factor of three by undergoing a ton-
sillectomy.

• As well as having a point estimate 2.93, it
would be useful to attach an approximate
standard error to the estimate to indicate
its uncertainty.
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• We will use simulation (parametric boot-
strap) to approximate the distribution of ∆.

– We need to generate random numbers
according to a statistical model for the
counts in the table of Vianna, Green-
wald, and Davies.

– The model is that the count in the first
row and first column, N11, is binomially
distributed with n = 101 and probability
π11.

– The count in the second row and second
column, N22, is binomially distributed
with n = 107 and probability π22.

– The distribution of the random variable

∆̂ =
N11N22

(101−N11)(107−N22)

is thus determined by the two binomial
distributions, and we could approximate
it arbitrarily well by drawing a large num-
ber of samples from them.

– Since the probabilities π11 and π22 are
unknown, they are estimated from the
observed counts by π̂11 = 67/101 = 0.663
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and π22 = 64/107 = 0.598.

– A one thousand realizations generated on
a computer gives the standard deviation
0.89.

Project 1.2 Do a computer experiment to
run the above process in the setting of retro-
spective study. Give a 95% confidence interval
of ∆ and describe the distribution of bootstrap
replicates of ∆̂?
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Bootstrap Method

• The bootstrap method introduced in Efron
(1979) is a very general resampling proce-
dure for estimating the distributions of statis-
tics based on independent observations.

– The bootstrap method is shown to be
successful in many situations, which is
being accepted as an alternative to the
asymptotic methods.

– It is better than some other asymptotic
methods, such as the traditional normal
approximation and the Edgeworth expan-
sion.

– There are some counterexamples that show
the bootstrap produces wrong solutions,
i.e., it provides some inconsistent estima-
tors.

Consider the problem of estimating variabil-
ity of location estimates by the Bootstrap method.

• If we view the observations x1, x2, . . . , xn

as realizations of independent random vari-
ables with common distribution function F ,
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it is appropriate to investigate the variabil-
ity and sampling distribution of a location
estimate calculated from a sample of size n.

• Denote the location estimate as θ̂.

– Note that θ̂ is a function of the random
variables X1, X2, . . . , Xn and hence has
a probability distribution, its sampling
distribution, which is determined by n
and F .

– How do we derive this sampling distribu-
tion?

• We are faced with two problems:

1. F is unknown.

2. F is known, but θ̂ may be such a com-
plicated function of X1, X2, . . . , Xn that
finding its distribution would exceed
our analytic abilities.

• To address the second problem when F is
known.

– How could we find the probability distri-
bution of θ̂ without going through incred-
ibly complicated analytic calculations?
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– The computer comes to our rescue-we
can do it by simulation.

– We generate many, many samples, say B
in number, of size n from F ; from each
sample we calculate the value of θ̂.

– The empirical distribution of the result-
ing values θ̂∗1, θ̂

∗
2, . . . , θ̂

∗
B is an approxi-

mation to the distribution function of θ̂,
which is good if B is very large.

– If we wish to know the standard devia-
tion of θ̂, we can find a good approxima-
tion to it by calculating the standard de-
viation of the collection of values θ̂∗1, θ̂

∗
2, . . . , θ̂

∗
B.

– We can make these approximations arbi-
trarily accurate by taking B to be arbi-
trarily large.

Simulation Let G be a distribution and let
Y1, . . . , YB be iid values drawn from G.

• By the law of large numbers, B−1 ∑B
j=1 Yj

converges in probability to E(Y ).

• We can use B−1 ∑B
j=1 Yj as an estimate of

E(Y ).
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• In a simulation, we can make B as large as
we like in which case, the difference between
B−1 ∑B

j=1 Yj and E(Y ) is negligible.

All this would be well and good if we knew
F , but we don’t. So what do we do? We will
consider two different cases.

• In the first case, F is unknown up to an
unknown parameter η, i.e. F (x|η).

– Without knowing η, the above approxi-
mation cannot be used.

– The idea of the parametric bootstrap
is to simulate data from F (x|η̂) where η̂
should be a good estimate of η.

– It utilizes the structure of F .

• In the second case, F is completely unknown.

• The idea of the nonparametric boot-
strap is to simulate data from the empirical
cdf Fn.

• Here Fn is a discrete probability distribution
that gives probability 1/n to each observed
value x1, · · · , xn.
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• A sample of size n from Fn is thus a sample
of size n drawn with replacement from the
collection x1, · · · , xn. The standard devia-
tion of θ̂ is then estimated by

sθ̂ =

√√√√√√ 1

B

B∑
i=1

(θ∗i − θ̄∗)2

where θ∗1, . . . , θ
∗
B are produced from B sam-

ple of size n from the collection x1, · · · , xn.

Now we use a simple example to illustrate this
idea.

• Suppose n = 2 and observe X(1) = c <
X(2) = d.

• X∗
1 , X

∗
2 are independently distributed with

P (X∗
i = c) = P (X∗

i = d) = 1/2, i = 1, 2.

• The pairs (X∗
1 , X

∗
2 ) therefore takes on the

four possible pairs of values

(c, c), (c, d), (d, c), (d, d),

each with probability 1/4.

• θ∗ = (X∗
1 + X∗

2 )/2 takes on the values c,
(c+d)/2, d with probabilities 1/4, 1/2, 1/4,
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respectively, so that θ∗ − (c + d)/2 takes
on the values (c − d)/2, 0, (d − c)/2 with
probabilities 1/4, 1/2, 1/4, respectively.

For the above example, we can easily calcu-
late its bootstrap distribution.

• When n is large, we can easily imagine that
the above computation becomes too compli-
cated to compute directly.

• Use simple random sampling to approximate
bootstrap distribution.

• In the bootstrap literature, a variety alter-
natives are suggested other than simple ran-
dom sampling.

Project 1.3 Use parametric bootstrap and
nonparametric bootstrap to approximate the dis-
tribution of median based on a data with sam-
ple size 20 from a standard normal distribution.
The following is a sample R-code.

• n < −20

• x < −rnorm(n) # Create some data.

• theta.hat < −median(x)
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• B < −1000; theta.boot < − rep(0,B)

• for(i in 1 : B)) {
xstar < − sample(x,size=n,replace=T) #
draw a bootstrap sample
theta.boot[i] < − median(xstar) # com-
pute the statistic
}

• var.boot < − var(theta.boot)

• se¡- sqrt(var.boot); print(se)
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We now introduce notations to illustrate the
bootstrap method.

• Assumed the data X1, · · · , Xn, are indepen-
dent and identically distributed (iid) sam-
ples from a k-dimensional population distri-
bution F .

• Estimate the distribution

Hn(x) = P{Rn ≤ x},

where Rn = Rn(Tn, F ) is a real-valued func-
tional of F and Tn = Tn(X1, · · · , Xn), a
statistic of interest.

• Let X∗
1 , · · · , X∗

n be a “bootstrap” samples
iid from Fn, the empirical distribution based
on X1, · · · , Xn, T ∗

n = Tn(X
∗
1 , · · · , X∗

n), and
R∗

n = Rn(T
∗
n , Fn). Fn is constructed by

placing at each observation Xi a mass 1/n.
Thus Fn may be represented as

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x), −∞ < x < ∞.

• A bootstrap estimator of Hn is

Ĥn(x) = P∗{R∗
n ≤ x},
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where for given X1, · · · , Xn, P∗ is the con-
ditional probability with respect to the ran-
dom generator of bootstrap samples.

• Since the bootstrap samples are generated
from Fn, this method is called the nonpara-
metric bootstrap.

– Note that Ĥn(x) will depend on Fn and
hence itself is a random variable.

– To be specific, Ĥn(x) will change as the
data {x1, · · · , xn} changes.

– Recall that a bootstrap analysis is run
to assess the accuracy of some primary
statistical results.

– This produces bootstrap statistics, like
standard errors or confidence intervals,
which are assessments of error for the pri-
mary results.

• As a further remark, the empirical distribu-
tion Fn is called the nonparametric maxi-
mum likelihood estimate (MLE) of F .

As illustration, we consider the following three
examples.
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Example 1. Suppose that X1, · · · , Xn ∼ N(µ, 1)
and Rn =

√
n(X̄n − µ). Consider the estima-

tion of

P (a) = P{Rn > a|N(µ, 1)}.

The nonparametric bootstrap method will esti-
mate P (a) by

PNB(a) = P{
√

n(X̄∗
n − X̄n) > a|Fn}.

• Observe data x1, · · · , xn with mean x̄n.

• Let Y1, . . . , Yn denote a bootstrap sample
of n observations drawn independently from
Fn.

• Let Ȳn = n−1 ∑n
i=1 Yi.

• P (a) is estimated by

PNB(a) = P{
√

n(Ȳn − x̄n) > a|Fn}.

• In principle, PNB(a) can be found by con-
sidering all nn possible bootstrap sample.

– If all Xi’s are distinct, then the number
of different possible resamples equals the
number of distinct ways of placing n in-
distinguishable objects into n numbered
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boxes, the boxes being allowed to contain
any number of objects. It is known that
it is equal to C(2n−1, n) ≈ (nπ)−1/222n−1.

– When n = 10(20, respect.), C(2n−1, n) ≈
92375(6.9× 1010, respect.).

– For small value of n, it is often feasible to
calculate a bootstrap estimate exactly.

– For large samples, say n ≥ 10, this be-
comes infeasible even at today’s computer
technology.

• Natural questions to ask are as follows:

– What are computationally efficient ways
to bootstrap?

– Can we get bootstrap-like answers with-
out Monte Carlo?

• Address the question of “evaluating” the per-
formance of bootstrap method.

– For the above particular problem, we need
to estimate PNB(a)−P (a) or supa |PNB(a)−
P (a)|.

– As a remark, PNB(a) is a random vari-
able since Fn is random.
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– Efron (1992) proposed to use jackknife
to give the error estimates for bootstrap
quantities.

• Suppose that additional information on F
is available. Then it is reasonable to utilize
this information in the bootstrap method.

• In this example, F known to be normally
distributed with unknown mean µ and vari-
ance 1.

– It is natural to use x̄n to estimate µ and
then estimate P (a) = P{Rn > a|N(µ, 1)}
by

PPB(a) = P{
√

n(Ȳn−x̄n) > a|N(x̄n, 1)}.

– Since the bootstrap samples are gener-
ated from N(x̄n, 1) which utilizes the in-
formation from a parametric form of F ,
this method is called the parametric boot-
strap.

– In this case, it can be shown that PPB(a) =
P (a) for all realization of X̄n.

– If F is known to be normally distributed
with unknown mean and variance µ and
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variance σ2 respectively, PPB(a) is no
longer equal to P (a).

Project 1.4. (a) Show that PPB(a) = Φ(a/sn)
where s2

n = (n− 1)−1 ∑n
i=1(xi − x̄n)

2.
(b) Prove that PPB(a) is a consistent estimate
of P (a) for fixed a.

(c) Prove that supa |PPB(a)− P (a)| P→ 0.
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For the question of finding PNB(a), we can in
principle write down the characteristic function
and then apply the inversion formula. However,
it is a nontrivial job. Therefore, Efron (1979)
suggested to approximate PNB(a) by Monte Carlo
resampling. (i.e., Sample-size resamples may be
drawn repeatedly from the original sample, the
value of a statistic computed for each individual
resample, and the bootstrap statistic approxi-
mated by taking an average of an appropriate
function of these numbers.)

Now we state Levy’s Inversion Formula which
is taken from Chapter 6.2 of Chung (1974).

Theorem If x1 < x2 and x1 and x2 are
points of continuity of F , then we have

F (x2)−F (x1) = lim
T→∞

1

2π

∫ T
−T

e−itx1 − e−itx2

it
f (t)dt,

where f (t) is the characteristic function.
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Example 2. Estimating the probability of
success

• Consider a probability distribution F putting
all of its mass at zero or one.

• Let θ(F ) = P (X = 1) = p.

• Consider R(X, F ) = X̄ − θ(F ) = p̂− p.

• Observed X = x, the bootstrap sample

X∗
1 , · · · , X∗

n ∼ Bin(1, θ(Fn)) = Bin(1, x̄n).

Note that

R(X∗, Fn) = X̄∗
n − x̄n,

E∗(X̄
∗
n − x̄n) = 0,

V ar∗(X̄
∗
n − x̄n) =

x̄n(1− x̄n)

n
.

Recall that nX̄∗
n ∼ Bin(n, x̄) and nX̄n ∼

Bin(n, p).

• It is known that if min{nx̄n, n(1−x̄n)} ≥ 5,

nX̄∗
n − nx̄n√

nx̄n(1− x̄n)
=

√
n(X̄∗

n − x̄n)√
x̄n(1− x̄n)

∼ N(0, 1);

and if min{np, n(1− p)} ≥ 5,

nX̄n − np√
nθ(1− p)

=

√
n(X̄n − p)√
p(1− p)

∼ N(0, 1).
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• Based on the above approximation results,
we conclude that the bootstrap method works
if min{nx̄n, n(1− x̄n)} ≥ 5.

• The question remained to be studied is whether

P{min(nX̄n, n(1− X̄n)) ≥ 5} → 0?
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Example 3. Estimating the median

• Suppose we are interested in finding the dis-
tribution of n1/2{F−1

n (1/2)−F−1(1/2)}where
F−1

n (1/2) and F−1(1/2) are the sample and
population median respectively.

• Set θ(F ) = F−1(1/2).

• Fin a bootstrap approximation of the above
distribution.

• Consider n = 2m − 1. Then the sample
median F−1

n (1/2) = X(m) where X(1) ≤
X(2) ≤ · · · ≤ X(n).

• Let N ∗
i denote the number of times xi is se-

lected in the bootstrap sampling procedure.
Set N∗ = (N ∗

1 , · · · , N ∗
n).

It follows easily that N∗ follows a multino-
mial distribution with n trials and the prob-
ability of selection is (n−1, · · · , n−1).

• Denote the order statistics of x1, . . . , xn by
x(1) ≤ · · · ≤ x(n).

• Set N ∗
[i] to be the number of times of choos-

ing x(i). Then for 1 ≤ ` < n, we have

Prob∗(X
∗
(m) > x(`)) = Prob∗{N ∗

[1] + · · · + N ∗
[`] ≤ m− 1}
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= Prob

Bin
n,

`

n

 ≤ m− 1


=

m−1∑
j=0

C(n, j)
 `

n


j 1− `

n


n−j

.

Or,

Prob∗(T
∗ = x(`) − x(m)) = Prob

Bin
n,

`− 1

n

 ≤ m− 1


− Prob

Bin
n,

`

n

 ≤ m− 1

 .

• When n = 13, we have
` 2 or 12 3 or 11 4 or 10 5 or 9 6 or 8 7

probability 0.0015 0.0142 0.0550 0.1242 0.4136 0.2230

Quite often we use the mean square error
to measure the performance of an estimator,
t(X), of θ(F ). Or, EFT 2 = EF (t(X)−θ(F ))2.
Use the bootstrap to estimate EFT 2. Then the
bootstrap estimate of EFT 2 is

E∗(T
∗)2 =

13∑
`=1

[x(`)−x(7)]
2Prob∗{T ∗ = x(`)−x(7)}.

It is known that EFT 2 → [4nf 2(θ)]−1 as n
tends to infinity when F has a bounded con-
tinuous density. A natural question to ask is
whether E∗(T

∗)2 is close to EFT 2?
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Validity of the Bootstrap Method

We now give a brief discussion on the validity
of the bootstrap method. First, we state cen-
tral limit theorems and its approximation error
bound.

Perhaps the most widely known version of the
CLT is the following.
Theorem (Lindeberg-Levy Central Limit The-
orem) Let {Xi} be iid with mean µ and finite
variance σ2. Then

√
n

 1

n

n∑
i=1

Xi − µ
 d→ N(0, σ2).

The above theorem can be generalized to inde-
pendent random variables which are not neces-
sarily identically distributed.
Theorem (Lindeberg-Feller CLT) Let {Xi} be
independent with mean {µi}, finite variances
{σ2

i }, and distribution functions {Fi}.
• Suppose that B2

n = ∑n
i=1 σ2

i satisfies

σ2
n

B2
n

→ 0, Bn →∞ as n →∞.

• n−1 ∑n
i=1 Xi is N(n−1 ∑n

i=1 µi, n
−2B2

n) if and
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only if the following Lindeberg condition sat-
isfied

B−2
n

n∑
i=1

∫
|t−µi|>εBn

(t−µi)
2dFi(t) → 0, n →∞ , each ε > 0.

In the theorems just described, asymptotic
normality was asserted for a sequence of sums∑n

1 Xi generated by a single sequence X1, X2, . . .
of random variables. For the validality of boot-
strap, we may consider a double array of ran-
dom variables

X11, X12, · · · , X1K1;
X21, X22, · · · , X2K2;

... ... ... ...
Xn1, Xn2, · · · , XnKn;

... ... ... ...

For each n ≥ 1, there are Kn random variables
{Xnj, 1 ≤ j ≤ Kn}. It is assumed that Kn →
∞. The case Kn = n is called a “triangular”
array.

Denote by Fnj the distribution function of
Xnj. Also, put

µnj = EXnj,

An = E
Kn∑
j=1

Xnj =
Kn∑
j=1

µnj,
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B2
n = V ar

 Kn∑
j=1

Xnj

 .

We then have the following theorem.
Theorem (Lindeberg-Feller) Let {Xnj : 1 ≤
j ≤ Kn; n = 1, 2, . . .} be a double array with
independent random variables within rows. Then
the “uniform asymptotic negligibility” condi-
tion

max
1≤j≤Kn

P (|Xnj−µnj| > τBn) → 0, n →∞, each τ > 0,

and the asymptotic normality condition ∑Kn
j=1 Xnj

is AN(An, B
2
n) together hold if and only if the

Lindberg condition

B−2
n

n∑
i=1

∫
|t−µi|>εBn

(t−µi)
2dFi(t) → 0, n →∞each ε > 0

is satisfied. As a note, the independence is as-
sumed only it within rows, which themselves
may be arbitrarily dependent.

It is of both theoretical and practical interest
to characterize the error of approximation in the
CLT.
For the i.i.d. case, an exact bound on the error
of approximation is provided by the following
theorem due to Berry (1941) and Esseen (1945).
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Theorem If X1, . . . , Xn are i.i.d. with dis-
tribution F and if Sn = X1 + · · · + Xn, then
there exists a constant c (independent of F )
such that for all x,

sup
x

∣∣∣∣∣∣∣∣P
Sn − ESn√

V ar(Sn)
≤ x

 − Φ(x)

∣∣∣∣∣∣∣∣ ≤
c√
n

E|X1 − EX1|3

[V ar(X1)]3/2

for all F with finite third moment.

• Note that c in the above theorem is a univer-
sal constant. Various authors have thought
to find the best constant c.

• Originally, c is set to be 33/4 but it has been
sharpened to 0.7975.

• For x is sufficiently large, while n remains
fixed, the quantities

P [(Sn − ESn)/
√
V ar(Sn) ≤ x]

and Φ(x) each become so close to 1 that the
bound given by above is too crude.

• The problem in this case may be character-
ized as one of approximation of large devia-
tion probabilities, with the object of atten-
tion becoming the relative error in approxi-
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mation of

1− P [(Sn − ESn)/
√
V ar(Sn) ≤ x]

by 1− Φ(x) when x →∞.
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Inconsistent Bootstrap Estimator

Bickel and Freedman (1981) and Loh (1984)
showed that the bootstrap estimators of the dis-
tributions of the extreme-order statistics are in-
consistent.

• Let X(n) be the maximum of i.i.d. random
variables X1, . . . , Xn from F with F (θ) = 1
for some θ, and let X∗

(m) be the maximum
of X∗

(1), . . . , X
∗
(m) which are i.i.d. from the

empirical distribution Fn.

• Although X(n) → θ, it never equals θ. But

P∗{X∗
(n) = X(n)} = 1−(1−n−1)n → 1−e−1,

which leads to the inconsistency of the boot-
strap estimator.

• The reason for the inconsistency of the boot-
strap is that the bootstrap samples are drawn
from Fn which is not exactly F . Therefore,
the bootstrap may fail due to the lack of
“continuity.”

Consider the following problem.

• Let X1, . . . , Xn be independent, with a com-
mon N(µ, σ2) distribution.
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• Let s2 be the sample variance.

• Consider the pivot s2/σ2.
This is distributed, of course, as χ2

n−1/(n−
1).

• Consider the bootstrap approximation, namely
the distribution of s∗2/s2, where s∗2 is the
variance of the resampled data.

• For n = 20, the bootstrap approximation is
not good.

• One source of this problem is in the tails of
the normal: about 30% of the variance is
contributed by 5% of the distribution and
will be missed by typical samples of size 20.

• In other words, s2 is mean unbiased for σ2,
but quite skewed for moderate n: in most
samples, s2 is somewhat too small, coun-
terbalanced by the few samples where s2 is
huge. The variance of s∗2/s2 is largely con-
trolled by the sample fourth moment, which
is even more skewed.

• For large n, these problems go away: after
all, s2 and the bootstrap are consistent.
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Project 1.5 Use simulation to illustrate the
points made in the above two questions. For the
problem of estimating the end point, you can
assume that X is a uniform random variable
over [0, 1] (i.e., θ = 1).
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Bias Reduction via the Bootstrap Principle

• The bootstrap can also be used to estimate
bias and do bias reduction.

• Consider θ0 = θ(F0) = µ3, where µ =∫
xdF0(x). Set θ̂ = θ(Fn) = X̄3.

• Elementary calculations show that

E{θ(Fn)|F0} = E{µ + n−1 n∑
i=1

(Xi − µ)}3

= µ3 + n−13µσ2 + n−2γ,

where γ = E(X1 − µ)3 denotes population
skewness.

• Using the nonparametric bootstrap, we ob-
tain the following:

E{θ(F ∗
n)|Fn} = X̄3 + n−13X̄σ̂2 + n−2γ̂,

where σ̂2 = n−1 ∑(Xi−X̄)2 and γ̂ = n−1 ∑(Xi−
X̄)3 denote sample variance and skewness
respectively.

• Using the bootstrap principle, E{θ(F ∗
n)|Fn}−

θ(Fn) is used to estimate θ(Fn)− θ(F0).

• Note that θ0 = θ(Fn)− (θ(Fn)−θ0). Or, θ0

can be estimated by θ(Fn)−[E{θ(F ∗
n)|Fn}−

θ(Fn)] or 2θ(Fn)− E{θ(F ∗
n)|Fn}.
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• The bootstrap bias-reduced estimate is 2X̄3−
(X̄3 + n−13X̄σ̂2 + n−2γ̂). Or, θ̂NB = X̄3−
n−13X̄σ̂2 − n−2γ̂.

45


