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Comparison of Several Populations

• When some measurement, such as height or
aptitude for a particular job, is made on sev-
eral individuals, the values vary from person
to person.

– The variability of a quantitative scale is
measured by its variance.

– If the set of individuals is stratified into
more homogeneous groups, the variance
of the measurements within the more ho-
mogeneous group will be less than that
of the measurements in the entire group;
that is what “more homogeneous” means.

• As an example, consider the heights of pupils
on an elementary school.

– Fact 1: The variance of the heights of
pupils on an elementary school is usually
greater than the variance of heights of
pupils in just the first grade, the variance
in the second grade, and the variance in
each of the other grades.
The within-grade variances are less than
the overall variance
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– Fact 2: The average height of pupils also
varies from grade to grade.
The averages vary between grades.

– The total variability (of heights) is made
up of two components: the variability of
individuals within groups (grades) and
the variability of means between groups
(grades).
Recall

V ar(Y ) = EV ar(Y |X)+V ar(E(Y |X)).

Y refers to the height of students and X
refers to the grades.

– At the extreme, all of the variability of
a measured variable may be within the
groups and none of it between groups,
that is, the means of the subgroups are
equal. Mathematically, it refers to the
case that E(Y |X) = E(Y ).

• The analysis of variance is a set of statisti-
cal techniques for studying variability from
different sources and comparing them to un-
derstand the relative importance of each of
the sources.
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– It is also used to make inferences about
the population through tests of signifi-
cance, including the very important com-
parison of the means of two or more sep-
arate populations.

– The analysis of variance is the most straight-
forward way to examine the association
between a categorical variable (“groups”)
and a numerical variable (the measure on
which the means are based)?

– In the above example, we try to find the
association between height of student and
grade of student.
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One-Way Analysis of Variance

Suppose that we wish to compare the means of
three populations on some measured dependent
variable.

• The population means are represented as
µ1, µ2, and µ3.

• A hypothesis that may be tested is

H0 : µ1 = µ2 = µ3

that is, that the means of the three popula-
tions are equal.

• The hypothesis is rejected if the population
means are different in any way, for example,
if one of the means differs from the other
two or if all three means are different.

• The procedure for testing H0 through the
analysis of variance parallels that for other
tests of significance.

• Samples of data are obtained and a test statis-
tics is computed. The test statistic is pro-
posed based on the following idea.
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– The total variability of the data is allo-
cated to two sources: variability among
the group means and variability of the
observations within the groups.

– Two measures of variability are computed,
Mean Square between Groups and Mean
Square within Groups, respectively.

– The hypothesis that the 3 population means
are equal is tested by comparing the mag-
nitude of these two mean squares.
It is the ratio of Mean Square Between
Groups to Mean Square Within Groups.

– We need a reference, the F -distribution,
to provide significance points for deciding
if the ratio is large enough to reject the
hypothesis of equal means.

• In this application the test statistic reflects
the extent to which variation among the sam-
ple means is greater than variation among
observations within the groups.

• If the test statistic is large enough (that is,
if it exceeds the corresponding significance
point) then H0 is rejected.
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• If the sample means are close together and
hence the test statistic is small, then H0 is
accepted.

• Can we apply this procedure for comparing
the means of two populations?

• When only two groups are being compared,
it is obvious from knowledge of the sample
means which group has a significantly higher
mean than the other.

– When there are three or more groups,
however, rejection of H0 only means that
at least one population mean is different
from the others.

– It is necessary to follow the test of signif-
icance by additional analysis-of-variance
procedures to determine which if the pop-
ulation means are different from which
other means.

– What are these follow-up procedures?
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Set-Up

• The “groups” compared through analysis of
variance may be created in a number of dif-
ferent ways.

– In many studies the data are already clas-
sified into groups, such as states, coun-
tries, gender groups, medical diagnostic
categories, or religious affiliations.

– In other instances, the statistician may
define the groups based on one or more
measured characteristics.
For example, socioeconomic classifications
may be created by combining individu-
als’ educational levels, incomes, and em-
ployment statuses according to some set
of rules. The result might be, say, three
or four or five separate socioeconomic cat-
egories.

– A medical research might classify patients
as “high risk” or “low risk” for some dis-
ease based on a number of indicators, for
example, age, family history, and health
behaviors.
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– In conducting surveys, groups are fre-
quently formed from the respondents’ an-
swers, for example, all people who sup-
port a particular political issue, those who
are opposed, and those who have no opin-
ion.

– In an experiment, the groups are defined
by the various experimental conditions or
“treatments,” such as instructional meth-
ods, psychological or social interventions,
or dosages or different forms of a drug.
In these situations, individuals are as-
signed to the conditions by the researcher.
When possible, the assigned should be
done randomly so that the only differ-
ence between the groups is the explained
by differences in the treatments received
and not by other factors that are irrele-
vant to the study.
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EXAMPLE 1

A psychologist is interested in comparing the
effects of three different informational “sets” in
children’s ability to memorize words.

• Eighteen 7-year-old children were randomly
assigned to one of three groups.

– In condition 1, the children were shown a
list of 12 words and were asked to study
them in preparation for a recall test.

– In condition 2, the children were told that
the words comprised three global cate-
gories, flowers, animals, and foods, and
were asked to study the list.

– In condition 3, the children were told that
the words comprised 6 more detailed cat-
egories.

• After studying the word list for 10 minutes,
each youngster was asked to list all of the
words that he/she could remember.

• The number of correctly recalled words was
the measured outcome variable of the study.

EXAMPLE 2
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A study was performed to see if school grades
are related to television viewing habits among
high-school juniors.

• Respondents were monitored for 15 week-
days during the year and classified into 4
groups according to the average amount of
television they viewed on those days (0−0.5
hour; 0.5− 1.5 hours; 1.5− 3.0 hours; more
than three hours).

• Each student’s grade-average (GPA) was recorded
for all courses taken during the year.

• Mean GPAs were compared among the four
television viewing groups.

EXAMPLE 3

In the study The Academic Mind by Lazarsfeld
and Thielens, a total of 2451 social science fac-
ulty members from 165 of the larger American
colleges and universities were interviewed in or-
der to assess the impact of the McCarthy era
on social science faculties.

• At each college, the number of “academic
freedom incidents” was counted.
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• These were incidents mentioned by more than
one respondent as an attack in the academic
freedom of the faculty.

• They ranged from small-scale matters, such
as a verbal denunciation of a professor by
a student group, to large-scale matters, in-
cluding a Congressional investigation.

• It was of interest to examine whether and
how the institutional basis of a school’s sup-
port and control affected the number of “in-
cidents” occurring there.

• Hence, each college was classified as pub-
licly controlled, privately controlled, or con-
trolled by some other institution. (Teachers’
colleges and schools controlled by a religious
institution were included in the “other” cat-
egory.)

• The distributions of numbers of “incidents”
in the different types of institutions were
studied.

EXAMPLE 4

A large manufacturing firm employs high-school
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dropouts, high-school graduates, and individu-
als who attended college as production-line work-
ers.

• The company management speculated that
job proficiency was related to educational
attainment.

• If so, only high-school graduates, or perhaps
only individuals who had attended college,
would be hired in the future.

• To test their idea, the job performance of a
sample of employees was rated by their su-
pervisors on an extensive rating scale that
yield possible proficiency scores ranging from
0 to 200.

• The mean ratings of the three education groups
(high-school dropouts, high-school graduates,
college attendees) were compared by the anal-
ysis of variance.

13



A Complete Example with equal sample size

The analysis of variance indicates whether pop-
ulation means are different by comparing the
variability among sample means with variability
among individual observations within groups.
The following data gives the numbers of words
memorized by 18 children given three different
information sets as described in Example 1.

No information 3 categories 6 categories
2 9 4
4 10 5
3 10 6
4 7 3
5 8 7
6 10 5

Sums 24 54 30
Sample means 4 9 5

• The scores for three samples and pooled sam-
ple can be graphed by box plot.

• The means of the three samples are 4, 9, and
5, respectively.

• There is clear variability from group to group.
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• The variability in the entire pooled sample
of 18 is much larger than the variability of
these three groups.

• Variability within Groups: The measure of
variability among observations within the
groups is called the Mean Square Groups
and is denoted MSw.

– MSw is the variance of all the scores, but
computed separately for each of the three
samples and then combined.

– Like the sample variance, MSw has a
sum of squared deviations in the numera-
tor and the corresponding number of de-
grees of freedom in the denominator.

– The numerator is called the Sum of Squares
within Groups and the denominator is
called the degrees of freedom within groups.

– The Sum of Squares within Groups (SSw)
is the sum of squared deviations of indi-
vidual scores from their subgroup means.
In this example, SSw = 10+8+10 = 28.

– The degrees of freedom within groups (dfw)
is the total number of degrees of freedom
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of the deviations within the groups.
In this example, dfw = (6− 1) + 5 + 5 =
15.

• Variability between Groups

– The measure of variability among the group
means is called the Mean Square between
Groups and is denoted MSB.

– MSB is similar to a variance but is com-
puted from the three subgroup means, 4,
9, and 5.

– MSB also has a sum of squared devia-
tions in the numerator and a correspond-
ing number of degrees of freedom in the
denominator is called the Sum of Squares
between Groups and the denominator is
called the degrees of freedom between groups.

– The sum of Squares between Groups (SSB)
is the sum of squared deviations of the
subgroup means from the overall or “pooled”
mean.

∗ The pooled mean of all 18 observa-
tions is 6.

∗ The squared deviations of the group
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means from the pooled mean are (4−
6)2 + (9 − 6)2 + (5 − 6)2 = 14.

∗ Before dividing by the degrees of free-
dom between groups, one additional
adjustment is necessary.
To test the null hypothesis of equal
means, SSB is going to be compared
to SSw by converting each to a mean
square and then dividing one mean
square by the other.
SSB cannot be meaningfully compared
to SSw because SSB reflects variabil-
ity among means while SSW reflects
variability among individual measure-
ments.
Put SSB in a comparable scale to SSw,
it is multiplied by the number of ob-
servations in each subgroup, that is, 6
in this example.

∗ SSB = 6 × 14 = 84.

– The degrees of freedom between groups
(dfB) is the number of independent devi-
ations summarized in SSB.
In this example, dfB = 3 − 1 = 2.
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– In this example, MSB = 84/2 = 42.

• The Test Statistic:

– The test statistic to test H0 : µ1 = µ2 =
µ3 is the ratio of MSB/MSw, or 42/1.867 =
22.50.
How do you connect them with V ar(Y )
and V ar(E(Y |X))?

– This ratio seems to indicate that the vari-
ability among groups is much greater than
that within groups.
However, we know that different samples
would give us different values of the ra-
tio even of the three population means
are equal.

– The calculated ratio of 22.50 is compared
to values from the F -distribution to see
if the test statistic is large enough for 3
samples and 18 observations to reject H0.

• Conclusion: If we are using a 1% significance
level, the significance point from the table of
the F -distribution with 2 and 15 degrees of
freedom is 6.36.
Thus the calculated ratio of 22.50 is very sig-
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nificance and we conclude that there are real
differences in the average number of words
memorized depending on the amount of or-
ganizing information that is provided.

• The follow-up question remains, specifically:
Which of the three means are significantly
different from which others?
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The Algebra of ANOVA

• Suppose the number of groups being com-
pared is k.

• The null hypothesis is

H0 : µ1 = µ2 = · · · = µk,

that is, the k population means are equal.

• Notation and Data:
Group

1 2 · · · k
Population Mean µ1 µ2 · · · µk

Variance σ2
1 σ2

2 · · · σ2
k

Sample Observations x11 x21 · · · xk1

x12 x22 · · · xk2
... ... ...

Sample size n1 n2 · · · nk

Mean x̄1 x̄2 · · · x̄k

Variance s2
1 s2

2 · · · s2
k

• In R, try help.search(“anova”) and look at
the help files of aov and manov.

• The number of sampled observations in a
“typical” group, group g, is denoted by ng
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and the total number of observations is n =
n1 + n2 + · · · + nk.

• Each observation has two subscripts, the first
indicating the group to which the observa-
tion belongs and the second indicating the
observation number within that group. Thus,
xgi represents the ith observation in group
g.

– The sample mean of the ith subgroup is
denoted by x̄g = n−1

g
∑

i xgi.

– The overall mean is denoted by x̄ = n−1 ∑
g

∑
i xgi.

• The ANOVA Decomposition: The “decom-
position” of a single typical score xgi as

xgi − x̄ = (x̄g − x̄) + (xgi − x̄g).

– This expression shows that the deviation
of a score from the overall mean x̄ (V ar(Y ))
can be decomposed as the sum of two
parts, the deviation of the group mean
from the overall mean (V ar(E(Y |X)))
and the deviation of an observation from
its group mean (V ar(Y |X)).

– The terms on the right-hand side of the
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above expression are the fundamental el-
ements of “between-group” and “within-
group” variability, respectively.

– By squaring and summing the terms in
the expression we obtain exactly the sum-
of-squares partition essential for the anal-
ysis of variance.

• Total Sum of Squares:

SST =
∑
g

∑
i
(xgi − x̄)2.

• By the property of least squares method, we
have

SST = SSB + SSw.

• Between-group Sum of Squares and Mean
Square:

SSB =
∑
g

ng(x̄g − x̄)2

and MSB = SSB/dfB where dfB = k − 1.

• Within-group Sum of Squares and Mean Square:

– SSw can be obtained by subtracting SSB

from SST . (Recall the geometric interp-
tation of least squares method.)
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– dfw is the number of independent devia-
tions of observed values from their sub-
group means. There are ng observations
in subgroup g, then the number of inde-
pendent deviations in that group is ng −
1.
Summing these across the k groups, we
have dfw = n− k.

– The Mean Square within Groups is MSw =
SSw/dfw.

• The F -ratio, F = MSB/MSw.
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Validity Conditions for the F -test

The analysis of variance rests on a set of as-
sumptions that should be considered before the
procedure is applied.

• The most inflexible assumption is that the
n observations must be independent.

– Sampling observations at random is an
important step in assuring that this con-
dition is met.

– Steps should be taken to assure that the
response on the measured outcome vari-
able of no respondent is in any way af-
fected by other respondents.
If observations are humans, they should
not have the opportunity to hear, see,
or otherwise be influenced by other sub-
jects’ answers of behavior.

– If the assumption of independence is not
met, then the analysis of variance tests
of significance are not generally valid.

• The sampling distribution of the subgroup
means should be nearly normal.
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– This condition is usually met in analysis
of variance, especially if the subgroup n’s
are moderate to large, since the Central
Limit Theorem assures us that means based
on large sample sizes are nearly normally
distributed.

– The normality condition will also be met
if the distribution of the underlying mea-
sured variable is normal, whether or not
the sample sizes are large.

– It is always advisable to make histograms
of the data to see whether there are any
gross irregularities in the distributions,
however.

– If the sample sizes are small and the dis-
tribution of the measured variable is highly
non-normal, then the analysis of variance
of ranks should be used in place of the
ANOVA methods presented so far.

• The F -test is based on an assumption that
the population variances are all equal, that
is σ2

1 = · · · = σ2
k.

– This condition is especially important if
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the sample sizes (n1, n2, . . . , nk) are not
equal.

– Sample variances should be computed prior
to conducting the analysis of variance to
see if they are in the same general range
as one another.
If they appear to be very different, a for-
mal test of equality of the σ2’s may be
conducted.

– If the test indicates that the variances are
not homogeneous, several options may be
available.
The data may be transformed to a scale
on which the variances are more equal.
For example, this might involve analyz-
ing the logarithms of the original observed
values, the square roots of the observed
values, or some other function of the data.
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Which Groups Differ from Which, and by How
Much?

The F -test gives information about all the means
µ1, µ2, . . . , µk simultaneously.

• If the hypothesis of equal means is accepted,
the conclusion is that the data do not indi-
cate differences among the population means.

• If the null hypothesis is rejected, the conclu-
sion is that there are some differences; then
the researcher may want to know which spe-
cific means are significantly different from
which other and the direction and the mag-
nitudes of the differences.

What is the methods for comparing two means?

• Construct a confidence interval for the dif-
ference of the two means as follows:

(x̄1−x̄2−tn−2(α/2)s
√
n−1

1 + n−1
2 , x̄1−x̄2+tn−2(α/2)s

√
n−1

1 + n−1
2 ).

Extend the above idea to the comparison of
three or more groups.

• When three or more groups are compared
by the analysis of variance, several specific
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comparisons may be made after the overall
hypothesis of equality is rejected.

– For example, if there are three groups
and H0 is rejected, µ1 may be compared
with µ2, µ1 may be compared with µ3,
and µ2 may be compared with µ3.

– It is up to the researcher to decide which
comparisons to make. The decision rests
partially on the design of the research.
For example, if group 1 is a control group
and groups 2 and 3 are two different ex-
perimental conditions, then it would be
sensible to compare µ2 with µ1 and µ3

with µ1, that is, both experimental con-
ditions with the control.

– If students from four different universi-
ties are being compared on mean scores
on the Law School Admissions Test, ev-
ery school’s mean might be routinely com-
pared to every other school’s mean. In
the latter case, the number of pairwise
comparisons among k means is k× (k−
1)/2.
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– The procedure for any one of these com-
parisons is very much like comparing two
groups as described before.

– But one additional factor needs to be
considered: the probability of making a
Type I error when performing several tests
of significance from the same data set.

– If, indeed, all the µ’s were equal, so that
there were no real differences, the proba-
bility that any particular one of the pair-
wise differences would exceed the corre-
sponding t-value is α.
However, the probability of making at
least one Type I error out of two or more
pairwise comparisons is greater than this.
That is, when many differences are tested,
the probability that some will appear to
be “significant” when the corresponding
population means are equal is greater than
the nominal significance level α. The
more comparisons that are made, the greater
the probability of making at least one
Type I error.

• How can a researcher protect against too
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high a Type I error rate?

– One widely used approach is based on
the Bonferroni inequality.

– The Bonferroni inequality states that the
probability of making at least one Type
I error out of a given set of comparisons
is less than or equal to the sum of the α’s
used for the separate comparisons.

– For example, if we make 2 comparisons
among 3 group means and use an α level
of 0.05 for each comparison, the proba-
bility of making at least one Type I error
is no greater than 0.10.

– This overall α level for the pair or “fam-
ily” of tests is called the familywise (or
experimentwise) Type I error rate.

– The Bonferroni inequality can be put to
use to keep the familywise error rate ac-
ceptably small.

– Suppose that we wish to make m spe-
cific pairwise comparisons. We can then
decide on a reasonable familywise error
rate (α) and divide this value by m to
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obtain a significance level to be used for
each comparison separately; call this re-
sult α∗.

– If α∗ is used for each of m comparisons,
the probability of making at least one
Type I error out of the set is not greater
than m× α∗ = α.
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Analysis of Variance of Ranks

• In ANOVA, its basic idea is to compare the
distributions of a variable in several popula-
tions by focusing on the means of the sam-
ples.

– The ANOVA is based on the conditions
that the sample means have a normal dis-
tribution and that the populations being
compared have the same variance σ2.

– When these conditions are not met, or
when the raw data are ordinal, can we
still use ANOVA technique to compare
several populations?

– Consider the test procedure developed by
Kruskal and Wallis (1952).

• Another approach to compare the distribu-
tions of a variable in several populations:

– The locations of distribution can also be
compared through an analysis of ranks.

– This approach can be applied even when
the data are ordinal, and does not require
the assumption of normality or equal vari-
ances.
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– The null hypothesis is that the locations
of the populations are the same, and the
alternative hypothesis is that they are
not.

• Kruskal and Wallis (1952) considered the
daily outputs of three bottle-cap machines.

– Use the following 12 values to test whether
the three machines produce equal num-
bers of bottle caps.
Machine A 340, 345, 330, 342, 338
Machine B 339, 333, 344
Machine C 347, 343, 349, 355

– Instead of using the above data, we use
the following ranks instead.

Ranks
Machine A 5, 9, 1, 6, 3
Machine B 4, 2, 8
Machine C 10, 7, 11, 12

– The test applies ANOVA formulas to these
ranks. We have

SST =
n(n + 1)(2n + 1)

6
− n

n + 1

2


2

=
n(n + 1)(n− 1)

12
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and MST = n(n + 1)/12.

– The F -ratio in ANOVA is F = MSB/MSw.

– Unlike ANOVA, we consider H = MSB/MST .

– Observe that

SSB =
∑
g

(∑
i rgi)

2

ng
− n

n + 1

2


2

.

– In this example,

H =
12

12 × 13

242

5
+

142

3
+

402

4

−3×(12+1) = 5.66.

• The null hypothesis of no difference between
the locations of the three populations is equiv-
alent to tandom sampling, that is, that the
ranks have been allocated at random to the
k groups.

– When this hypothesis is true, the sam-
pling distribution of H is approximately
χ2 with k − 1 degrees of freedom if the
sample sizes are large.

– Why? What is F -distribution?
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Introduction to Logistic Regression

There are many situations in which we want to
forecast events which cannot be modeled as a
continuous variable. Examples include

• Whether a consumer will purchase a prod-
uct from a menu of products, click on a web
button, respond to a direct mail offer.

• Whether a firm will decide to repurchase
stock, change accounting procedures, or write-
off an asset.

• In these cases, the Y variable is not only dis-
crete but takes only two values (1 “Event”
or 0 “No Event”).
This is the simplest type of random variable,
a Bernoulli random variable. The classic ex-
ample of this variable is the outcome of a
coin toss.

• We want to make predictions about this dis-
crete Y on the basis of some other explana-
tory variables.

– For example, we want to study how prod-
uct attributes and price influence con-
sumer choice from an array of products
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or how industry and firm financial con-
ditions affect the decision to write-off as-
sets.

– To make the conditional predictions, we
need to incorporate the X variables into
a prediction about Y .

– Unfortunately, the standard linear regres-
sion of Y on the X variables is inappro-
priate.
Our forecasts should be probabilities!

• If we think back to the introduction of re-
gression, we viewed the regression model as
a model for the conditional mean of Y given
the X variables.

• For a Bernoulli random variable, the condi-
tional mean will be a probability.

E(Y |X) = P (Y = 1|X)

• The logit model is one very convenient and
useful way of forming probabilties from x
variables.

P (Y = 1|x) =
exp(β0 + β1X1 + · · · + βkXk)

1 + exp(β0 + β1X1 + · · · + βkXk)
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– Think of V = β0 + β1X1 + · · · + βkXk

as a “score.”

– As V gets large, the probability Y = 1
should increase (but never exceed 1).

– For example, if a firm is considering write-
off an asset, then V might be the “desir-
ability” of the write-off.
If V is negative, the write-off is not de-
sired.

– The logit model is a particular form for
how V gets mapped into a probability.

P (Y = 1) =
exp(V )

1 + exp(V )
.

What does this probability curve or locus
look like?

– Use R to plot it by yourself.
There are several keys aspects to notice
about this curve:
i) As V increases to levels very much
above or below 0 the probability of pur-
chase goes very close to to 1 or 0.
ii) The sensitivity to changes in V varies
depending on the level of utility and as-
sociated probability. Around prob = 0.5,
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the slope is at its maximum of 0.25. but
at low or high probs the slope declines to
very small numbers. This is because of
the “Logistic” or S-shaped curve.

How do we estimate unknown parameters in
such a model?

Use the method called Maximum Likelihood Es-
timation (“MLE!L).

• Form a “likelihood function!L for each ob-
servation.

∏
i

 exp(Vi)

1 + exp(Vi)


Yi

 1

1 + exp(Vi)


1−Yi

where Vi = b0 + b1Xi1 + · · · + bkXik.

• Consider the logarithm of the likelihoods for
all the observations.

• Find the values of b0, b1, b2, . . . that make
this sum (log likelihood function) as large
as possible.

• In R, try help(glm) and help(family) to find
the MLE estimate.

– Logistic regression is a special case of gen-
eralized linear model.
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– We need to specify the error distribution
and the link function.

– For logistic regression, the error distri-
bution is binomial distribution and logit
is being used to link the linear predictor
and the mean of the error distribution.

– In glm, the “binomial” family admits the
links “logit”, “probit”, “log, and “cloglog”
(complementary log-log).
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An Example of Logistic Regression

In “Causes and Effects of Discretionary Asset
Write-Offs” by Francis, Hanna and Vincent (JAR
1996),

• The authors investigate the decision of firms
to write-off assets by gathering a large sam-
ple of firms that made and did not make
write-offs in the 1989-92 period.

• The authors propose a set of independent
variables which might be expected to influ-
ence the write-off decision.
The set of explanatory variables are as fol-
lows:

1. ryear1 - cumulative abnormal return
over the preceding year

2. ryear5 - cumulative abnormal return

3. mtbdif - firm’s industry-adjusted Book
to Market ratio

4. mtbchg - change in firms B-t-M ratio

5. indmtb - change in industry’s B-t-M
ratio

6. roa - change in roa

7. indroa - change in industry roa
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8. history - number of yrs in which firm
reported special negative items

9. indhis - mean value of history for all
other firms in industry

10. dmgmt - 1 if management changed in
previsous year

11. poor - Unexpected earnings if UE <
0, 0 otherwise

12. good - UE- $amt of write-off, if > 0, 0
otherwise

13. lnsale - log of sales in yr preceding
write-off

14. unless otherwise stated, all variables
are averages of preceding 5 years

• They are interested in determining whether
write-offs are the result of managers attempts
to manipulate accounting performance or sim-
ply the result of declines in the value of as-
sets.

• The article relates the predicted probability
of write-off to changes in stock price, but
we will focus on the problem of predicting
write-offs given on the basis of the financial
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performance of the firm and the industry in
which the firm operates.
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Two-Way ANOVA; General Model

Two-way ANOVA has two factors of interest
that occur in all combinations.

• Sometimes there is only one observation on
each combination.

• Sometimes there are more (called “replica-
tions”).

• The general model with replications has ob-
servations labeled as Yijk.
The index i (i = 1, . . . , I) labels the value
of the first factor, j (j = 1, . . . , J) labels the
value of the second factor, and k labels the
replicated observations on the combination
ij.

• When we always have the same number of
replications for each ij combination, so that
k = 1, . . . , K. Such a model is called “bal-
anced”.

• There are two types of models - the “addi-
tive model” and the “additive model with
interactions”.
The second model needs K ≥ 2.
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Additive Model

• The additive model decomposes the popula-
tion means µij = E(Yij) as a sum of effects
of the corresponding i and j factors.

µij = µ + αi + βj

where ∑
i αi = 0 and ∑

j βj = 0..

• Without proper constraint on αi and βj,
those unknown parameters are not identi-
fiable.

• For the balanced model, µ, αs and βs can
be estimated in the natural way (like in the
one-way model) as µ̂ = Ȳ..., α̂i = Ȳi.. − Ȳ...,

β̂j = Ȳ.j. − Ȳ.... These formulas correspond
to the natural estimates of the βj. Thus

µ̂ij = Ȳi.. + Ȳ.j. − Ȳ....

(For non-balanced models the correspond-
ing formulas are more complicated, which is
why we treat only balanced models.)

• There is an overall null hypothesis to be
tested:

H0 : α1 = · · · = αI = 0 and β1 = · · · = βJ = 0

versus Ha : H0 is not true.
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It includes two sub-hypotheses of interest:

H0A : α1 = · · · = αI = 0 versus HaA : H0A is not true.

H0B : β1 = · · · = βJ = 0 versus H0B : H0B is not true

The Data:
Hourly arrivals of telephone calls to a

telephone call center

• The data in this example involve telephone
calls to a relatively small Israeli Bank tele-
phone call center in 1999.

• The caller desires to speak to a telephone
service agent.

• The call center managers want to be able to
predict the number of calls that will arrive
in any given hour.

– The working day at this center runs from
7am to 11:59pm.

– Look at data for all the full work-weeks
in November and December 1999.

– Divide each day up into hourly intervals;
from 7 − 8, 8 − 9, etc.
Label these intervals as i = 1, 2, . . . , 17.
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Thus interval i = 2 corresponds to 8am
V 9am and I = 17.

– There are 5 regular working days each
week (Sunday through Thursday in Is-
rael.).
Label these as j = 1, . . . , 5.
Thus j = 2 corresponds to a Monday
and J = 5.

– Let Nijk denote the number of calls arriv-
ing during hourly interval i, day-of-week
j, and week k. Note that K = 8.

• Use ANOVA to summarize this data set.

• How could we model Nijk?

– It is reasonable to conjecture that these
arrival times are well modeled by an in-
homogeneous Poisson process.

– The arrival rate for this process should
depend only on time of day, and perhaps
other calendar related covariates such as
month or day of the week.

– Theory suggests that they may have a
Poisson distribution with mean λij.
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– If the arrival process for a given call cat-
egory is as above then the number of ar-
rivals each day within any given interval
of time should be independent Poisson
variables with a parameter that depends
only on the given time interval.
If other covariates are involved (such as
day of the week) then the Poisson param-
eter may also depend on these.

– Poisson distribution an be approximated
by a normal distribution when λij is large.
If so they would not be homoscedastic
(since their variance would equal their
mean).

– Anscombe’s (1948, Biometrika) variance
stabilizing transformation suggests that
the variables

√
Nijk might be nearly ho-

moscedastic with variance 1/4.

– Consider Yijk =
√
Nijk + 1/4.

• Goal of the Manager:

– The manager of the call center would like
to be able to predict the number of cus-
tomers in any particular hour that will
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call the center desiring to speak to an
agent.

– Plan how many agents are needed at that
time of day.

– (Other considerations also enter into this
decision, such as the length of time that
it takes an agent to serve a customer.)

• Next page gives a plot that tells the manager
how to predict N for each hour on any day
2 (Monday).

• This plot also tells the manager what the
95% prediction intervals are for that predic-
tion.

• Note that the prediction limits are pretty
wide.
THATS UNFORTUNATE,
but it cant be helped if we only know about
time-of-day and day-of-week.

• The 95% confidence intervals are also shown,
but probably aren’t as important to the man-
ager.

ANOVA Table
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The tests of these hypotheses are summarized
in an ANOVA table.
Summary of Fit
Rsquare 0.8127
Root Mean Square Error 0.7645
Mean of Response 7.889
Observations 680

Analysis of Variance

Source DF SS MS F Ratio
Model (I − 1) + (J − 1) = 20 1671.63 83.581 143.00
Error n− I − J + 1 = 659 385.17 0.585 Prob > F
C. Total n− 1 = 679 2056.80 < .0001

Effect Tests

Source Npar. DF SS F Ratio Prob > F
Hour 16 I − 1 = 16 1658.40 177.34 < .0001
day of week 4 J − 1 = 4 13.23 5.66 0.0002

• Sum of Squares for “C Total” is SST =∑
i

∑
j

∑
k(Yijk − Ȳ...)

2.

• Sum of Squares for “Error” is SSE = ∑
i

∑
j

∑
k(Yijk−

µ̂ij)
2.

• In the model, we consider two factors: hour
and day of the week.

SSModel = SSA + SSB.
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– SSModel = SST − SSE.

– SS(Hour) is SSA = ∑
j

∑
k

∑
i(Ȳi..−Ȳ...)

2.

– SS(day of week) is SSB = ∑
i

∑
k

∑
j(Ȳ.j.−

Ȳ...)
2.

• F -ratios:

– The first F -ratio (= 143 = MSM/MSE)
tests H0 and here has 20 and 659 df.

– The second F -ratio (= 177.34 = MSA/MSE)
tests H0A and here has 16 and 659 df.

– The third F -ratio (= 5.66 = MSB/MSE)
tests H0B and here has 4 and 659 df.

• The analysis tells us that knowing the day of
the week makes a statistically significant dif-
ference, but not a very important one; one
could do almost as well just knowing the
time of day. This means that there is not
much point from the service point of view in
the “manager” making different work sched-
ules for different weekdays.

• CONCLUSION: All three null hypotheses
are rejected, but the differences among the

50



factors B are much less striking than those
among the factors A.
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Model Checking: Checking the residuals

• Each RESIDUAL is the value of the OB-
SERVATION V ITS PREDICTION. Sym-
bolically, rijk = Yijk − µ̂ij.

• When the basic ANOVA analysis is com-
plete the residuals should then be examined
for adherence to the basic assumptions V

– homoscedasticity

– normality

• Standard graphical procedures: residual plot
and quantile plot

• Residual plot:

– Look at a plot of the residuals against
the values of Yijk or against the predicted
values µ̂ij.
This provides a check for homoscedastic-
ity. Refer to next page.

– What you are looking for is to see that
the vertical spreads of the data are ap-
proximately the same at each value of
µ̂ij. (You need to allow for random vari-
ation when evaluating such a plot V Our
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basic assumption is that such an equality
of spreads holds in the population.)

– CONCLUSION: So far as we can tell it
appears that the populations are homoscedas-
tic (apart from that one outlier).

• Normal probability plot

– Once it has been decided that the data
are acceptably homoscedastic it becomes
of interest to check whether the within ij
group residuals are also acceptably near
normality.

– R can give you the values of the residuals
and then form a Normal Quantile Plot to
check normality.

– This residual plot shows startlingly good
agreement with normality V except for
the one annoying outlier.

– Usually we’re satisfied with considerably
less convincing agreement to normality.

– What we want to avoid are heavily skewed
residual distributions.
These would suggest that the analysis
is invalid, and that some corrective ac-
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tion (such as a transformation of the Y -
variables) needs to be taken before re-
analyzing the data.

Model Checking: Compare it to a model with
interactions

• The ij population group means are modeled
as

µij = µ + αi + βj + γij,

where ∑
i αi = 0, ∑

j βj = 0, ∑
i γij = 0, and∑

j γij = 0.

• The γij are the new part of this model.
They describe the difference between the µij

here and their value in the additive model –
µ + αi + βj.

• This model imposes no restrictions on the
µij; they can take any value. Correspond-
ingly, it turns out that

µ̂ij = µ̂ + α̂i + β̂j + γ̂ij = Ȳij..

Data Analysis

The tests of these hypotheses are summarized
in an ANOVA table.
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Summary of Fit
Root Mean Square Error 0.7617
Mean of Response 7.889
Observations 680

Analysis of Variance

Source DF SS MS F Ratio
Model 84 1711.59 20.3760 35.1193
Error 595 345.21 0.5802 Prob > F
C. Total 679 2056.80 < .0001

Effect Tests
Source Npar. DF SS F Ratio Prob > F
Hour 16 16 1658.40 177.34 < .0001
day of week 4 4 13.23 5.66 0.0002
Hour × day of week 64 64 39.96 1.08 0.3272

• The “new” part of this table is the line for
Hour × day of week.

• This corresponds to a test of H0AB: all γij =
0 versus HaAB: not H0AB.

• It has df = (I−1)(J−1) = 64. (And, note
that the “Model” now has df = IJ − 1 =
84, so that the Error df = n − IJ = 595,
which is also not the same as in the additive
model.)
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• CONCLUSION: We DO NOT REJECT H0AB.
We conclude that there is no statistically sig-
nificant evidence of interaction effects. So
far as we can determine the additive model
fits this situation as well as the model with
interactions.

• Profile Plots:

– Graphical method for the detection of in-
teractions

– Plots of µ̂ij as a function of i for each
j are a good way to see the interaction
estimates. (Or plots for each j as a func-
tion of i.)
This produces a Profile Plot.

– If there were no interactions in the data
then we would have

µ̂ij = µ̂ + α̂i + β̂j

so that the functions displayed on the
profile plot would be exactly parallel.

– The degree to which they are not parallel
indicates how much interaction there is
in the data.
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Related R-commands

• interaction.plot

– Two-way Interaction Plot

– Plots the mean (or other summary) of
the response for two-way combinations of
factors, thereby illustrating possible in-
teractions.

• lm

– Fitting Linear Models

– “lm” is used to fit linear models. It can
be used to carry out regression, single
stratum analysis of variance and anal-
ysis of covariance (although “aov” may
provide a more convenient interface for
these).

– Models for lm are specified symbolically.
A typical model has the form “response
∼ terms” where response is the (numeric)
response vector and terms is a series of
terms which specifies a linear predictor
for response.
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– A terms specification of the form first +
second indicates all the terms in first to-
gether with all the terms in second with
duplicates removed.

– A specification of the form first:second
indicates the set of terms obtained by
taking the interactions of all terms in first
with all terms in second.

– The specification first*second indicates
the cross of first and second. This is the
same as first + second + first:second.

• g = lm(calltransf ∼ hour ∗ day, data)
anova(g)

– anova: It gives Anova Tables

– Compute analysis of variance (or deviance)
tables for one or more fitted model ob-
jects.

• Diagnostics checking on the residual

– qqnorm(g$res)

– plot(g$fitted,g$res,xlab=“Fitted”,ylab=“Residuals”,
main=“Square root response”)
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Blocking Designs and ANOVA

Suppose we want to compare 4 treatments and
have 20 patients available.

• In completely randomized designs (CRD),
the treatments are assigned to the experi-
mental units at random.
The one-way ANOVA can be used to ana-
lyze the resulting data to check on treatment
effects.

– This design is appropriate when the units
are homogenous.

– We may suspect that the units are het-
erogenous, but we can’t describe the form
it takes - for example, we may know a
group of patients are not identical but we
may have no further information about
them.

– In this case, it is still appropriate to use
a CRD.

– The randomization will tend to spread
the heterogeneity around to reduce bias.

– Under the null hypothesis, there is no
link between a factor and the response.
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In other words, the responses have been
assigned to the units in a way that is un-
linked to the factor. This corresponds to
the randomization used in assigning the
levels of the factor to the units. This is
why the randomization is crucial because
it allows us to make this argument.
If the difference in the response between
levels of the factor seems too unlikely to
have occurred by chance, we can reject
the null hypothesis.

• When the experimental units are heteroge-
nous in a known way and can be arranged
into blocks where the intrablock variation is
ideally small but the interblock variation is
large, a block design can be more efficient
than a CRD.

– We might be able divide the patients in
5 blocks of 4 patients each where the pa-
tients in each block have some relevant
similarity.

– We would then randomly assign the treat-
ments within each block.
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– Suppose we want to test 3 crop varieties
on 5 fields.
Divide each field into 3 strips and ran-
domly assign the crop variety.

– We prefer to have block size equal to the
number of treatments.
If this is not done or possible, an incom-
plete block design must be used.

– We just motivate randomized block de-
sign.
For the example we just described, we
have one factor (or treatment) at 3 levels
and one blocking variable at 5 levels.
We can use two-way ANOVA to check
for interaction and check for a treatment
effect.
We can also check the block effect but
this is only useful for future reference.

• Notice that under the randomized block de-
sign the randomization used in assigning the
treatments to the units is restricted relative
to the full randomization used in the CRD.

– Blocking is a feature of the experimen-
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tal units and restricts the randomized as-
signment of the treatments.

– This means that we cannot regain the
degrees of freedom devoted to blocking
even if the blocking effect turns out not
to be significant.

– Only use blocking where there is some
heterogeneity in the experimental units.
The decision to block is a matter of judg-
ment prior to the experiment.
There is no guarantee that it will increase
precision.

– How do we compare the efficiency of two
designs?

• Latin Squares: These are useful when there
are two blocking variables.

– Suppose, in a field used for agricultural
experiments, the level of moisture may
vary across the field in one direction and
the fertility in another.

– In an industrial experiment, suppose we
wish to compare 4 production methods
(the treatment) - A, B, C, and D.
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We have available 4 machines 1, 2, 3, and
4, and 4 operators, I, II, III, IV.

– A Latin square design is
1 2 3 4

I A B C D
II B D A C
III C A D B
IV D C B A

– Each treatment is assigned to each block
once and only once.
The design and assignment of treatments
and blocks should be random.

– Three-way ANOVA
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