Financial Time Series

Examples in Chapter 3

Hung Chen
Department of Mathematics
National Taiwan University
4/24/2000

OUTLINE

- 1. Unit Root Test:
 - The UK interest rate spread: Example 3.1
 - The dollar/sterling exchange rate: Example 3.1
 - The dividend yield on the UK All share index: Example 3.1
- 2. DS versus TS:
 The UK FTA All Share index. Example 3.2.
- 3. More than one unit root: UK interest rate. Example 3.3.
- 4. Structural Breaks: US stock prices. Example 3.4.
- 5. Persistence and Mean Reversion: US stock prices. Example 3.6.
- 6. Long memory and Fractional Differencing: exchange rates and stock returns. Example 3.7.

Ex. 3.1: The UK interest rate spread

- Figure 3.6 shows plots of the UK short and long interest rates.
- Example 2.2: Try an AR(2) process.
- Example 2.4: Try an I(1) process without drift.

Examination of SACF and SPACF of $\triangle x_t$ suggests that either ARIMA(1,1,0) or ARIMA(0,1,1) gives good fit.

- Example 2.7: Illustrate the difference between AR(2) and I(1) in terms of prediction.
 - -AR(2): The forecast error variances converge to the sample variance.
 - -I(1): The forecast error variances increase with h.
- Purpose: Apply a unit root test to discriminate between the two models.
- Fitted I(1) model: $w_t = \Delta x_t$

$$w_t = -0.0002(\pm .0198) + 0.201(\pm .043)w_{t-1} + \hat{a}_t,$$

$$\hat{\sigma} = 0.453$$

Or,

$$x_t = -0.0002 + 1.201x_{t-1} -0.201x_{t-2} + \hat{a}_t.$$

• Fitted AR(2) model:

$$x_t = 0.045(\pm .023) + 1.182(\pm .043)x_{t-1} -0.219(\pm .043)x_{t-2} + \hat{a}_t$$

• Rewrite the above as

$$x_t = 0.045(\pm .023) + 0.963(\pm .011)x_{t-1} + 0.219(\pm .043) \triangle x_{t-1} + \hat{a}_t.$$

- Test 1: T = 526, $T(\hat{\phi} - 1) = T(0.963 - 1) = -19.5$

It is significant at the 2.5 per cent level.

- Test 2:

$$\tau_{\mu} = (0.963 - 1)/0.011 = -3.52$$

It is significant at the 1 per cent level.

• Confirmation:

Rewrite the above as

$$\Delta x_t = 0.045(\pm .023) - 0.037(\pm .011)x_{t-1} -0.219(\pm .043) \Delta x_{t-1} + a_t.$$

— Non-parametric τ_{μ} statistic:

$$Z(\tau_{\mu}) = -3.49$$
 with $\ell = 5$

Reject a unit root at the 1 per cent level.

- Test of $\theta_0 = 0, \phi = 1$:

$$\Phi = 6.19$$

It is significant at the 2.5 per cent level.

• Conclude that the appropriate model for the spread is a stationary AR(2) process.

Ex. 3.1: The dollar/sterling exchange rate

- Figure 2.13: Plots of daily observations of both the level and first differences of the dollar/sterling exchange rate from January 1974 to December 1994 (5192 observations).
- The differences are stationary. Suggest I(1) process or a unit root.
- Test for a unit root.
- Fitted model:

$$\Delta x_t = 0.0015(\pm .0009) - 0.00093(\pm .00052)x_{t-1} + 0.071(\pm .014) \Delta x_{t-1} + a_t.$$

- $T = 5192, T(\hat{\phi} 1) = -4.83,$ $\tau_{\mu} = -1.79, \Phi = 1.93,$ $Z(\tau_{\mu}) = -1.90 \text{ with } \ell = 9.$
- All are clearly insignificant.

 Confirm that the appropriate model is indeed a random walk.

Ex. 3.1: The dividend yield (D/P) of the UK All share index

- Figure 3.4: Plots of D/P for the period January 1965 to December 1995.
- Example 2.6: Model it by an ARIMA(1,3) process.
- The figure does not show a trend but its wandering pattern could be a consequence of it being generated by an I(1) process.
- Unit root versus ARMA(1,3)
- Try an ADF test with the lag augmentation $k = [T^{0.25}].$
- T = 372, k = 4, $\tau_{\mu} = -3.46$, Significant at the 1 per cent level.
- Nonparametric test: $Z(\tau_{\mu}) = -3.26$ with $\ell = 5$. Significant at the 2.5 per cent level.
- Reject the null of a unit root in favor of the alternative that the dividend yield is stationary.

Ex. 3.2: Are UK equity prices trend or difference stationary?

- Figure 14: Suggest a pronounced tendency to drift upwards.
- Example 2.6: Use ARIMA(3, 1, 0) to model the logarithms of the UK FTA All Share index.
- D(ifference)S versue T(rend)S
- Test the null hypothesis that the series contains a unit root against the alternative that it is generated as stationary deviations about a linear trend.
- Four possible models:

$$\Delta x_{t} = 0.128(\pm 2.59) + 0.00026(\pm 2.56)t$$

$$-0.0287(\pm .052)x_{t-1} + \sum_{i=1}^{3} \hat{\delta}_{i} \Delta x_{t-i} + \hat{a}_{t}$$

$$\Delta x_{t} = 0.0043(\pm .67) + 0.00001(\pm 2.56)t$$

$$+ \sum_{i=1}^{3} \hat{\delta}_{i} \Delta x_{t-i} + \hat{a}_{t}$$

$$\Delta x_{t} = 0.0121(\pm .61) - 0.00087(\pm .27)x_{t-1}$$

$$+ \sum_{i=1}^{3} \hat{\delta}_{i} \Delta x_{t-i} + \hat{a}_{t}$$

$$\Delta x_t = 0.0069(\pm 2.15) + \sum_{i=1}^{3} \hat{\delta}_i \Delta x_{t-i} + \hat{a}_t.$$

- Model (i): A τ_{τ} test cannot reject the DS null.
- Model (ii): β_1 is found to be insignificant under this null.
- Model (iii): A τ_{μ} test cannot reject the null.
- Model (iv):
 A unit root cannot be rejected.
- Confirm that equity prices do follow an I(1) process
- The model tried in example 2.6 is indeed the appropriate one.

Ex. 3.3: Do UK interest rates contain two unit roots?

- Figure 3.6: Plots of the UK short and long interest rates
- RS_t : short rate; $R20_t$: long rate
- differencing twice? Consider

$$\triangle^2 R S_t = -0.007(\pm .023) - 0.714(\pm .042) \triangle R S_{t-1}$$
 and

$$\Delta^2 R20_t = 0.005(\pm .014) - 0.702(\pm .042) \Delta R20_{t-1}.$$

- $\tau_{\mu} = -17.05$ and -16.83Reject the hypothesis of two unit roots.
- Observe that

$$\Delta^{2}RS_{t} = -0.137(\pm .053) - 0.017(\pm .006)RS_{t-1}$$
$$-0.708(\pm .042) \Delta RS_{t-1},$$
$$\Delta^{2}R20_{t} = 0.077(\pm .040) - 0.008(\pm .004)R20_{t-1}$$
$$-0.699(\pm .042) \Delta R20_{t-1}.$$

• For the estimates of β_1 , $\tau_{\mu} = -2.69$ and -1.90.

Provide no evidence against the hypothesis that both series contain a single unit root.

Ex. 3.4: Unit roots and structural breaks in US stock prices

- Figure 3.7: the logarithms of the nominal annual (January average) return on S&P stock index for the period 1872 to 1997
- Purpose of Studying this Example: Unit Roots and Structural Breaks
- Unit root test: $\tau_{\tau} = -1.15$ There is no evidence $(\tau_{\tau,0.10} = -3.15)$ to reject the null hypothesis that they are DS (difference stationary).
- Consider the possibility of both a change in level and an increase trend rate of growth of the series in the wake of the Great Crash of 1929.
- Set the break point $T_B = 1929$. Then

$$x_{t} = 0.034(\pm .089) + 0.731(\pm .058)x_{t-1} +0.0066(\pm .0017)t - 0.235(\pm .065)DU_{t} +0.012(\pm .003)DT_{t}^{*} + 0.184(\pm .181)DTB_{t} +0.128(\pm .088) \triangle x_{t-1}$$

• The t-ratio for testing $\phi = 1$: -4.65

Significant at the 5 per cent level. (T_B/T) is around 0.5.)

- θ , β and γ are all significant.
- Conclude that x_t may be generated by a segmented trend process.
- Segmented trend process:

$$x_t = 1.335(\pm .206) + 0.0175(\pm .0053)t$$

 $+0.0430(\pm .0074)DT_t^* - 0.346(\pm .156)DU_t$
 $+u_t$
 $u_t = 0.883(\pm .089)u_{t-1} - 0.194(\pm .090)u_{t-2} + e_t,$
where $\hat{\sigma}_e = 0.1678$.

- The crash provokes a decrease of almost 25 per cent in the trend level.
- Prices grew at a trend rate of growth of
 1.75 per cent per annum up to 1929 and
 6.05 per cent thereafter.
- No evidence of any nonstationary.
- Determine the break point T_B by the data. It is found to be 1931.
- The significance of the estimate of θ implies

that the trend function is not continuous at the break point.

• Try LSTR model:

$$x_t = 1.389(\pm .054) + 0.0171(\pm .0012)t$$

$$-2.714(\pm .352)S_t(0.738, 0.637)$$

$$+0.0418(\pm .0034)tS_t(0.738, 0.637)DT_t^* + u_t.$$

- midpoint of the smooth transition: 1951
- The transition takes about six years to complete. ($\hat{\gamma} = 0.738$)
- Apply a unit root test to the residuals,
 we obtain -5.27.
 Significant at the 5 per cent level.
- Fit the residuals by the AR(2) process $u_t = 0.883(\pm .089)u_{t-1} 0.194(\pm .090)u_{t-2} + e_t,$ where $\hat{\sigma}_e = 0.1596$.
- The standard error is smaller than that obtained from the segmented trend model.

Ex. 3.5: Estimating expected real rate of interest.

• Data: the broadest-based stock index in the UK:

Financial Times Actuaries (FTA) All Share Index

- Question: Model its return
- Figure 2.14: monthly observations from January 1965 to December 1995 (T=371)
- Figure 3.4: monthly dividend yield (D/P) from 1965 to 1995
- Based on the plot in Figure 2.14, this series exhibit a prominent upward, but not linear, trend, with pronounced and persistent fluctuations about it, which increase in variability as the level of the series increases.
- Use logarithmic transformation and the transformed observations are shown in Figure 2.14.
- Effect of taking logarithms: linearize the trend and stabilize the variance

Fit the ARMA model to the data

- Q(12) = 26.4, significance level: 0.009
- Table 2.3: Give the SACF and SPACF up to k = 12.
- Both r_k and $\hat{\phi}_{kk}$ at lags k=1 and 2 are greater than two standard errors.
- What can be done now? Try the ARMA process.
- Based on the plot, we actually use a stationary process to model a non-stationary series. What is our best strategy without knowing the non-stationarity?
- Choose an appropriate model among the ARMA based on certain objective.
- Specification of possible models: $\bar{p} = \bar{q} = 3$ based on the SACF and SPACF.
- AIC selects ARMA(2,2):

$$x_{t} = 1.57(\pm .10) - 1.054(\pm .059)x_{t-1}$$
$$-0.822(\pm .056)x_{t-2} + \hat{a}_{t}$$
$$+1.204(\pm .049)\hat{a}_{t-1} + 0.895(\pm .044)\hat{a}_{t-2},$$
$$\hat{\sigma} = 5.89$$

• BIC selects MA(1):

$$x_t = 0.55(\pm .04) + \hat{a}_t + 0.195(\pm .051)\hat{a}_{t-1},$$

 $\hat{\sigma} = 5.98$

• Table 2.4: Give AIC and BIC for all possible models.

Ex. 2.7: ARIMA forecasting of financial time series

UK interest spread (Example 2.2)

AR(2) model:

$$x_t = 0.045(\pm .023) + 1.182(\pm .043)x_{t-1}$$
$$-0.219(\pm .043)x_{t-2} + \hat{a}_t$$
$$\hat{\sigma} = 0.448$$

- Last two observations: $x_{T-1} = 1.63$ and $x_T = 1.72$
- Forecasts:

$$f_{T,1} = 1.182x_T - 0.219x_{T-1} = 1.676$$

 $f_{T,2} = 1.182f_{T,1} - 0.219x_T = 1.604$
 $f_{T,3} = 1.182f_{T,2} - 0.219f_{T,1} = 1.529$
 $\cdots = \cdots$

It can be shown that the forecasts eventually tend to 1.216, the sample mean of the spread.

• The ϕ -weight:

$$\phi_1 = \psi_1 = 1.182$$

$$\phi_2 = \psi_1^2 + \psi_2 = 1.178$$

$$\phi_3 = \psi_1^3 + 2\psi_1\psi_2 = 1.134$$

$$\phi_4 = \psi_1^4 + 3\psi_1^2\psi_2 + \psi_2^2 = 1.082$$

The forecast error variances are

$$V(e_{T,1}) = 0.448^2 = 0.201$$

 $V(e_{T,2}) = 0.448^2(1 + 1.182^2) = 0.482$
 $V(e_{T,3}) = 0.448^2(1 + 1.182^2 + 1.178^2) = 0.761$
 $V(e_{T,4}) = 0.448^2(1 + 1.182^2 + 1.178^2 + 1.134^2) = 1.019$

The forecast error variances converges to the sample variance of the spread, 3.53.

ARIMA(0,1,1) model:

- $\hat{\theta} = 0.2$ and $\hat{\sigma} = 0.452$.
- Last observation: $x_T = 1.72$
- Final residual: $\hat{a}_T = 0.136$
- Forecasts:

$$f_{T,1} = 1.72 - 0.2(0.136) = 1.693$$

 $f_{T,h} = f_{T,1} = 1.693$.

The forecasts will not converge to the sample mean.

• The forecast error variances are

$$V(e_{T,h}) = 0.452^{2}[1 + 0.64(h - 1)]$$

= 0.204 + 0.131(h - 1).

The forecast error variances increase with h.