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Capital Asset Pricing Model(CAPM)

e The investors in stock markets expect a re-
turn better than that offered on riskless in-
vestments like government debt.

e The standard equilibrium model for stock

returns 1s CAPM.
e r4: the return on a risk-free asset

e 7,,: the returns on the overall market port-
folio

e Let 7, denote a particular small portfolio’s
return and the associated risk o,, which is
measured by the standard deviation of re-
turns.

e CAPM postulates a linear relationship be-
tween the expected risk and return of hold-
ing a portfolio of financial assets.

rp—1f = (0p/Om) - (rm — 1) (1)

where o,, 18 the standard deviation of the
returns on the overall market portfolio.

e r, — r: the risk premium for portfolio p



e 1, — rs: the overall market’s risk premium
Usually, it is estimated from the historic an-
nual or monthly return.

o Write r, —7¢ =y, 7y — 75 =z, and 8 =
Op/Om.
Add an intercept term « and a stochastic
error term u, the CAPM becomes the simple
linear regression

y=a+ Bz +u. (2)

— Portfolios having BS in excess of unity
are relatively risky

— Portfolios having Bs less than unity are
much less sensitive to market movement



Stock Return

e The predictability of price changes on com-
modity and stock

e Test the hypothesis that price changes (or
logarithmic price changes) are independent.
This hypothesis is called the random walk
model.

e The random walk model:
Pt Pt 1 + ay (3)

where P, is the price observed at the begin-
ning of time ¢ and a; is an error term which
has zero mean and whose values are inde-
pendent of each other.

The price change, AP, = P, — P,_1 = a; 1s
independent of past price changes.

Pt Z a;
=1
The random walk model implies that prices

are indeed generated by Working’s cumula-
tion of purely random changes.

e Return on a stock from ¢ to ¢ + 1 i1s defined
as the sum of the dividend yield and the
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capital gain.
Py + Dy — B (4)
b

where Dy is the dividend paid during period
L.

Tt+1 =

e Question: Are the returns a fair game?
Is the expected return a constant?

Et<rt+1) =T,

where Fy() is the expectation conditional
on information available at time .



Ex. 2.1: Returns on the S & P 500

e Data: the real return on the annual Stan-
dard & Poor (S & P) 500 stock index for
the US

e Figure 2.6: annual observations from 1872
to 1995

e Based on this plot, this series appears to
be stationary about a constant mean, esti-
mated to be 3.08 per cent per annum.

e Confirm by the SACF.
e Table 2.1: Give the SACF up to k = 12.

e None of SACF are individually significantly
different from zero, thus suggesting that the
series is white noise.

e (Question: How do we calculate the level of
significance for the above testing procedure?

e An alternative procedure on testing the hy-
pothesis that { X;} is a white noise process.

Proposal 1: Box and Pierce (1970)

k
Q(k) =T X 1} = xi.

7

6



k I se i) Q(k)
] 0.043 G0 0.24 [0.62]
2 —0.169 0.093 3.89 [0.14]
3 0.108 0.093 5.40 [0.14]
4 —0.057 0.094 583 ]0.21
5 —0.117 0.094 ol 0
6 0050 0.094 L3 26
7 0.096 0.094 8.96 [0.25]
8 —0.076 0.096 9.74 [0.28]
g —0.000 0.697 9. 74 [0.37]
10 0.086 0.097 1076 [0.38]
1 —0.038 0.099 10.96 [0.45]
12 —0.148 0.099 14.00 {0.30]
Note: Figures in [..] give B > OR).
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Proposal 2: Ljung and Box (1978)

Qk) = T(T +2) > (T — i) 12 5 2.

1=1

Purpose of Studying this Example:

e time series plot

e How do we test on a white noise process?
Programming;:

e A regular time series is a sequence of obser-
vations obtained at regular intervals.

e [t is characterized by four time parameters.
They are (1) the time of the first observa-
tion (2) the interval between
observation times, (3) the sampling rate, and
(4) the time of the last observation.

e Let a be the vector containing the S&P 500

stock index from 1872 to 1995. We first use
the function rts to create a regular time se-
ries object from a by

a.rts < —rts(a, start = 1856, deltat = 1,
units = "years”)



e To get Figure 2.6, we just do the following:

tsplot(a.rts, zlab = "S&P 500 returns”,
ylab = "% per annum”)

e To estimate autocovariance, autocorrelation
or partial autocorrelation, we can use the
function act. It is of the form

acf(a,lag.max = 12, type =" correlation”
plot =T).



Ex. 2.2: Modeling the UK interest rate spread

e Data: the spread between 20 Year UK Gilts
and 91 day Treasury Bills

e spread: the difference between long and short
Iinterest rates

e (Question: Model the spread

e Figure 2.7: monthly observations for the pe-
riod from 1952 to 1995 (T = 526)

e Based on this plot, the spread seems to be
considerably smoother than one would ex-
pect if it was a realization from a white-noise
process.

e Table 2.2: Give the SACF and SPACF up
to k =12.

e SACF': all of whose values are positive and
significant

e SPACF: qgll and qug significant

e In practice, the order p of an AR time series
is unknown. It must be specified using the

data. Here we describe the first approach
by using PACF'.



e Tentative model: an AR(2) process.
Use OLS regression technique, it leads to

z; = 0.045(4.023) + 1.182(+.043)z;_,
—0.219(+.043) 25 + @y
& = 0.448

e Here we assume that SPACF of an AR(p)
process has the following nice properties:

— qu,p converges to ¢, as the sample size T’
goes to infinity:.
— qgg’g converges to zero for all £ > p.

— The asymptotic variance of qg&g is 71
for £ > p.

Model Checking:

e Approach 1: If the model is adequate, then
the residual series should behave as a white
noise.

Are the residuals a; behave as white noise?
Use either @ or Q*. (df=k —p —q)
Conclusion: No evidence of model inade-
quacy
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Table 2.2. SACF and SPACF of the UK spread

k Ik s.e.(re) Pk s.e.(Brr)
1 0.969 0.044 0.969 0.044
> 0.927 0.075 o 0.044
3 0.884 0.094 0.011 0.044
4 0.844 0.109 0.028 0.044
5 0.803 0.121 —0.057 0.044
6 0.761 0.131 —0.041 0.044
7 0.719 0.139 —0.007 0.044
3 0.678 0.146 —0.004 0.044
9 0.643 0.152 0.057 0.044

10 0.613 0.157 0.037 0.044

] 0.586 0.162 0.008 0.044

12 0.560 0.166 —0.020 0.044
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Figure 2.7 UK interest rate spread (monthly 1952.03-1995.12)



e For an AR(p) model, the Ljung-Box statis-
tic Q(m) follows asymptotically a chi-square
distribution with m — p degrees of freedom.

e Approach 2: overfitting
Construct Nested Models:
Here we consider AR(3) process or ARM A(2, 1)

process.

x; = 0.044(£.023) 4+ 1.185(£.044) ;4

—0.235(£.067)xs—2 + 0.013(£.044) 243

+ay,

0.449

7 = 0.046(=£.025) + 1.137(%£.196)7_;
—0.175(£.191)xs 2 + ay
+0.048(+£.199) a1,

o = 0.449

Q>
|

In both models, the additional parameter is
insignificant.
Confirm the adequacy an AR(2) process.

Purpose of the Study:

e Familiarity of AR and ARMA
e Nested Model and Model Checking
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e Unit Root

— fitted mean: 1 = 0p/(1 — ¢1 — @) =
1.204 with SE= 0.529

— check stationarity:

b1 + By = 0.963, =y + by = —1.402,
and —py = —0.219.
—roots: g1 = 0.95 and go = 0.23

— closeness of g; to unity?

e To be continued in Ex. 2.4, 3.1
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Ex. 2.3: Modeling returns on the FTA-All
share index

e Data: the broadest-based stock index in the
UK:
Financial Times Actuaries (FTA) All
Share Index

e (Question: Model its return

e Figure 2.14: monthly observations from Jan-
uary 1965 to December 1995 (T = 371)

e Figure 3.4: monthly dividend yield (D/P)
from 1965 to 1995

e Based on the plot in Figure 2.14, this series
exhibit a prominent upward, but not linear,
trend, with pronounced and persistent fluc-
tuations about it, which increase in variabil-
ity as the level of the series increases.

e Use logarithmic transformation and the trans-
formed observations are shown in Figure 2.14.

e BEiffect of taking logarithms: linearize the
trend and stabilize the variance

Fit the ARMA model to the data
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e (Q(12) = 26.4, significance level: 0.009

e Table 2.3: Give the SACF and SPACF up
to k = 12.

e Both r, and ggkk at lags k = 1 and 2 are
greater than two standard errors.

e THe ACF and PACF are not informative in
determining the order of an ARMA model.

e What can be done now?
Try the ARMA process.

e Based on the plot, we actually use a station-
ary process to model a non-stationary series.
What is our best strategy without knowing
the non-stationarity?

e Choose an appropriate model among the ARMA

based on certain objective.

— Now we introduce the second approach
for model selection using information cri-
terion function.

— Consider Akaike Information Criterion (Akaike,

1974)
—2 2

AIC = T ln(likelihood)—l—fx (number of parameters)
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where the likelihood function is evalu-
ated at the MLE and T is the sample
size. The second term of AIC is called

the penalty function of the criterion.
— For a Gaussian AR({) model, AIC re-

duces to

2
AIC(0) = In(67) + jf

where 67 is the MLE of o2,

e Specification of possible models:
p = ¢ = 3 based on the SACF and SPACF.

o AIC selects ARM A(2,2):

z; = 1.57(+.10) — 1.054(£.059)z;_;
—0.822(=.056)z;_5 +
+1.204(+£.049) a1 + 0.895(%.044)d_o,

& = 5.89

e BIC selects M A(1):

2y = 0.55(£.04) 4 a; + 0.195(%.051)ay_1,
& = 5.98

e Table 2.4: Give AIC and BIC for all possible

models.

15



Model Selection

e Possible objectives:
— Fit data well.
Dubious approach: too many parameters

— Find a true model. (Require consistency.)
Drawback: What are we doing if the prob-
ability model underlying the series is not

ARMA?
— Find the best ARMA model for future

prediction.
Problem: Does it fit to our need?

e Akaike’s (1974) Information Criteria:
AIC(p,q) =logo® +2(p+q)T""

e Schwarz’s (1978) Bayesian Information Cri-
terla

BIC(p,q) =logé*+ (p+q)T *logT

e General Criteria: estimated error variance
62 plus a penalty adjustment involving the
number of estimated parameters.

— Usually, 6% decreases as (p, q) increases.
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Table 2.3. SACF and SPACF of FTA All Share nominal returns
k Fk s.e.(rg) Cf;kk S-C)~(§5kk)
I 153 0.052 0153 0.052
2 —0.068 0053 —0.094 0.052
3 0.109 0.053 0 139 0.052
4 0093 0.054 0.046 0052
5 —0.066 0.054 —0.072 0852
6 =0 Qi 0.054 —0.006 0052
7 0.056 0.054 0.030 0.052
8 — 00 0.054 —0.030 0.052
9 0.101 0.055 0188 G52
10 0.044 0.055 — 0 0.052
11 —0.025 0.055 —0.014 0.052
12 0.019 0055 0.017 0052
Table 2.4. Model selection criteria for nominal returns
q 0 I 7 3
P
0 = 00 = —=5.632 =960
AlC L = = ol = ~— e
2 =0 —5.624 —5.649 —35.647
3 .65 — 0 - —5.646
0 —5.594 —5.603 = 6l = 5590
BIC l = 5600 — 0 —5.584 o
2 = — -5.596 —J o
3 =3 30 =976 —35.565 ~5.571







— Penalty term will increase as (p,q) in-
creases.
AIC(p, q) uses 2(p+q)T ! while BIC(p, q)
uses (p+q)T tlogT.

— Larger model has better chance with smaller
model bias but the uncertainty of esti-
mates of unknown parameters will increase.
How do we balance them?

To be continued in Ex. 2.6, 3.2.
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ARIMA modelling
Ex. 2.4: Modeling the UK interest rate spread

e Model it by an I(1) process.
Assume the first difference wy = Ay is sta-
tionary.

e Fxamine the behavior of the SACF and SPACF.

e Table 2.5 provides these estimates up to k =
12.

e Conclusion: Try an AR(1) or an MA(1)
since both SACF and SPACF cut-oftf at k =
L.

o Try AR(1):
wy = —0.0002(=£.0198) + 0.201(=£.043)w;_+

+ay,

o = 0.453

The residuals are effectively white noise
(Q(12) = 9.03) and the mean of w; is not

significantly different from zero.

Model the spread as an ARIMA(1,1,0)
without drift.
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SACF and SPACF of the first difference of the UK spread

ri S Dk s.€(Grx)
0.201 0.044 0200 0.044
0.006 0.045 —0.036 0.044
—0.053 0.045 —0.048 0.044
0.014 0.045 0.036 0.044
0.028 0.045 0.018 0.044
—0.006 0.045 —0.019 0.044
—0.028 0.045 —0.021 0.044
—0.088 0.046 —0.079 0.044
—0.087 0.046 —0.059 0.044
—0.049 0.046 —0.025 0.044
—0.006 0.046 0.000 0.044
0.017 0.046 0.015 0.044




o Try an M A(1). (almost identical estimates)
The ACF is useful in identifying the order
of an M A model.

e Maximum likelihood estimation is commonly
used to estimate an MA model. There are
two approaches to evaluate the likelihood
function of an MA model.

— Approach 1: Assume that the initial shocks,
l.e. a; for t < 0, are zero. As such the
shocks are computed recursively from the
model, starting with a; = r; — ¢y. Pa-
rameter estimates obtained by this ap-
proach are called the conditional maxi-
mum likelihood estimates.

— Approach 2: Treat the initial shocks ay,
t < 0, as additional parameters of the
model and estimate them jointly with
other parameters. This approach is re-
ferred to as the exact likelihood method
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Ex. 2.5: Modeling the dollar/sterling exchange
rate

e Figure 13: Plots of daily observations of
both the level and first differences of the
dollar /sterling exchange rate from January
1974 to December 1994 (5192 observations).

e The SACF of the levels displays the slow,
almost linear, decline. (ry = 0.999, riy =
0.989, 199 = 0.933 and 7199 = 0.850.) Model
it by an I(1) process.

e The differences are stationary.

e Examine the behavior of the SACF and SPACF.
The only significant sample autocorrelation
1s r1 = 0.071.

e Conclusion: Try an AR(1) or an MA(1)
since both SACF and SPACF cut-off at k =
1.

The R? statistic was less than 0.005.
Refer to Ex 3.1 and 4.2 later on.
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Ex. 2.6: Modeling the FTA-AIl share index

e Figure 14: Suggest a logarithmic transfor-
mation.

e Table 2.6: SACF and SPACF of the first

difference
The 1x1s suggest an AR(3) process.

e Fitted model:

Az; = 0.0069(£.0032) + 0.152(£.052) Az
—0.140(=£.052) Azy_»
+0.114(£.052) Azy_s + ay,

& = 0.0603

Hence, 1o = 0.079.

e Ax;: the monthly growth of the index. (An-
nual mean growth rate: 9.5%.
x; = log(P;) where P; is the level of the
index.

e Eixample 2.3 discusses the nominal return on
the index. Consider
P+ Dy — P (Pt+Dt)
~ log
Pi_q P4
P, Dy Dy

=3 | — | = A —.

og(Pt 1)+ og( Pt) xt+Pt
21
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The nominal return is equal to the growth
of the index plus the dividend yield.

e Facts:
dividend yield: ARM A(1,3)
Axy: AR(3)
nominal return: ARM A(2,2)
Granger and Morris (1976) discussed the sum
of two independent ARM A processes.
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Ex. 2.7: ARIMA forecasting of financial time
series

UK interest spread (Example 2.2)
e AR(2) model:

2y = 0.045(£.023) + 1.182(+.043) 2
o = 0.448

e Last two observations: z7_; = 1.63 and
T — 1.72

e Forecasts:

fr1 = 11822y — 0.21927_; = 1.676
fro = 1.182fr1 — 0.21927 = 1.604
frs = 1.182fro —0.219f71 = 1.529

It can be shown that the forecasts eventu-
ally tend to 1.216, the sample mean of the
spread.

e The ¢-weight:

b1 = 1y = 1.182
Py = Y7+ 1Py = 1.178
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b3 = V> + 219y = 1.134
d1 = Vi + s + Y5 = 1.082

The forecast error variances are

V(er,) = 0.448% = 0.201

Viers) = 0.448%(1 + 1.182%) = 0.482

(er3) = 0.448%(1 + 1.182° + 1.178%) = 0.761
(e74) = 0.448%(1 +1.182% + 1.178

)

v
v
+1.134%) = 1.019

The forecast error variances converges to the
sample variance of the spread, 3.53.

ARIMA(0,1,1) model:
e0=02and & =0.452.
e Last observation: x7 = 1.72

e Final residual: ar = 0.136

e Forecasts:

fri = 1.72 —0.2(0.136) = 1.693
Jrn = fr1=1.693.

The forecasts will not converge to the sam-
ple mean.
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e The forecast error variances are

Viery) = 0.452*[1+0.64(h — 1)]
= 0.204 + 0.131(h — 1).

The forecast error variances increase with h.
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