Financial Time Series

Topic 10: Revisit Linear and Nonlinear Time Series

Hung Chen
Department of Mathematics
National Taiwan University 6/12/2002

OUTLINE

- 1. Basic Concepts
- 2. Linear Time Series:
 - -AR(p) Processes
 - -MA(q) Processes
 - -ARMA(p,q) Processes
 - ARIMA Processes (Non-stationary)
- 3. Nonlinear Time Series:

Basic Concepts

Time series is a sequence of random variables measuring certain quantity of interest over time.

- A time series is a record of values of certain quantity of interest taken at different time points.
- Usually, data are observed at equally spaced time intervals, resulting in a discrete-time series.
- If treated as a stochastic process over time (continuous time), then we have a continuous-time time series.
- X_t can be a continuous variable or a discrete random variable, e.g. counts.

The objective of time series analysis is to find the dynamic dependence of X_t on its past values $\{X_{t-1}, X_{t-2}, \ldots\}$.

• Consider $\phi(B)X_t = c$ where c is a constant and $\phi(B) = \sum_{i=0}^p \phi_i B^i$.

This equation is used in time series analysis to describe the dynamic dependence of X_t on its past values.

- A variety of dynamic dependence patterns of X_t can be generated by considering the ra-tional lag polynomial $\pi(B) = \phi(B)/\theta(B)$.
- Consider $\pi(B) = 1/(1 \theta B)$.
 - We have

$$\frac{1}{1-\theta B}X_t = \sum_{i=0}^{\infty} \theta^i X_{t-i}.$$

- If the $\{X_t\}$ sequence is bounded, we might want the resulting sequence to be bounded as well. This is achieved by requiring $|\theta| < 1$.
- This special rational polynomial shows that X_t is an infinite-order moving average of its past values, $\{X_{t-1}, X_{t-2}, \ldots\}$, with weights decaying exponentially.
- First-order Difference Equations
 - $-X_t = \phi X_{t-1} + c + ba_t$ where a_t is a forcing variable, which follows a well-defined probability distribution.
 - Write the model as

$$(1 - \phi B)X_t = c + ba_t.$$

- The solution is

$$X_t = \frac{c}{1 - \phi B} + \frac{b}{1 - \phi B} a_t + \gamma \phi^t.$$

Or,

$$X_{t} = \frac{c(1 - \phi^{t})}{1 - \phi} + b \sum \phi^{i} a_{t-i} + \phi^{t} X_{0}.$$

- If $|\phi| < 1$ and a_t is bounded with mean zero, then X_t approaches $c/(1-\phi)$ from any starting point.
- Second-order Difference Equations

$$-X_t = \phi_1 X_{t-1} + \phi_1 X_{t-2} + \delta + ba_t$$

- Write the model as

$$(1 - \phi_1 B - \phi_2 B^2) X_t = \delta + ba_t.$$

- Write $1 \phi_1 B \phi_2 B^2$ as $(1 \lambda_1 B)(1 \lambda_2 B)$.
- The solution of $(1 \phi_1 B \phi_2 B^2)X_t = 0$ is

$$X_t = c_1 \lambda_1^t + c_2 \lambda_2^t.$$

Here $1/\lambda_1$ and $1/\lambda_2$ are the zeros of the polynomial $1 - \phi_1 B - \phi_2 B^2$.

If the solution is to remain bounded, we

would require $|\lambda_i| < 1$ for i = 1, 2, or equivalently that the zeros of the polynomial $1 - \phi_1 B - \phi_2 B^2$ lie outside the unit circle (modulus ξ 1.

- For a second-order equation, we have three possibilities: (a) distinct real roots, (b) equal real roots, and (c) complex roots.
- Consider complex roots, we can write

$$X_{t} = c_{1}r^{t}e^{it\theta} + c_{2}r^{t}e^{-it\theta}$$

$$= r^{t}[(c_{1} + c_{2})\cos(t\theta) + i(c_{1} - c_{2})\sin(t\theta)]$$

$$= kr^{t}\cos(t\theta + w).$$

We can see how oscillatory solutions are possible.

- Consider equal root case.

$$(1 - \lambda B)^2 X_t = 0.$$

The solution is

$$X_t = c_1 \lambda^t + C_2 t \lambda^t.$$

Stationary Time Series

Weak stationary: $\{X_t\}$

- If we would like to predict the future of the process, we must be able to identify some key features of the distribution of the process that are **time invariant**.
- A particular time-invariant feature which has proven to be useful is the stationarity.
- \bullet A time series $\{X_t\}$ is (strictly) stationary if

$$F_{X_t,\dots,X_{t+s}}(*) = F_{X_{t+r},\dots,X_{t+r+s}}(*)$$

for all r and s.

- Weak stationarity: Both the mean of X_t and covariance between X_t and $X_{t-\ell}$ are time-invariant.
- Correlation coefficient between two random variables X and Y:

$$\begin{split} \rho_{X,Y} &= \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} \\ &= \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sqrt{E(X - \mu_X)^2 E(Y - \mu_Y)^2}}. \end{split}$$

A sample estimate is

$$\hat{\rho}_{X,Y} = \frac{\sum_{t=1}^{T} (x_t - \bar{x})(y_t - \bar{y})}{\sqrt{\sum_{t=1}^{T} (x_t - \bar{x})^2 \sum_{t=1}^{T} (y_t - \bar{y})^2}}.$$

• Law of Large Numbers: Chebyschen inequality:

$$P(|U - E(U)| > \epsilon) < \frac{Var(U)}{\epsilon^2}.$$

Consistency: $\{T_n\}$

$$\lim_{n \to \infty} P(|T_n - c| > \epsilon) = 0$$

for any given $\epsilon > 0$.

• For a weak stationary process X_t , the lag-k autocorrelation is

$$\rho_{\ell} = Cov(X_{t-\ell}, X_t) / Var(X_t).$$

- Treating ρ_k as a function of k, we call ρ_k the autocorrelation function of X_t .
- How do we estimate the parameters of a particular time series model using observations of a single realization?
 - Since a stationary time series is time invariant, the distribution of X_t is the same as the distribution of X_s .

- We can treat the single realization X_1, X_2, \ldots, X_n as a sample of n observations from a distribution.
- The mean μ of X_t can be estimated by

$$\hat{\mu} = n^{-1} \sum_{i=1}^{n} X_i.$$

- $-\hat{\mu}$ is a *time* average.
- If a time series satisfies the requirement that the *time* averages converges to the *ensemble* averages, then the series is said to be ergodic.
- the lag- ℓ sample autocorrelation, $0 \le \ell < T-1$,

$$\hat{\rho}_{\ell} = \frac{\Sigma_{t=\ell+1}^{T} (X_{t-\ell} - \bar{X})(X_{t} - \bar{X})}{\Sigma_{t=1}^{T} (X_{t} - \bar{X})^{2}}$$

where $\bar{X} = \sum_{t=1}^{T} X_t / T$.

• Assume that $\rho_j = 0$ for all $j > \ell$ and r_t is weakly stationary with finite ℓ -th order moment.

The asymptotic variance of $\hat{\rho}_{\ell}$ is

$$T^{-1}\left(1+2\sum_{i=1}^{\ell-1}\rho_i^2\right).$$

• The above result can be used to perform the hypothesis testing $H_0: \rho_\ell = 0$ versus $H_a: \rho_\ell \neq 0$.

Linear time series

• Linear filter representation: It can be written as

$$X_t = \mu + \sum_{i=0}^{\infty} \psi_i a_{t-i}$$

where $\psi_0 = 1$ and $\{a_t\}$ is a sequence of independent N(0,1) random variables.

- The coefficients ψ_i are called the ψ -weights in the time series literature.
- Mean and autocorrelations:

$$E(X_t) = \mu + \sum_{i=0}^{\infty} \psi_i E(a_{t-i}) = \mu,$$

$$Var(X_t) = Var(\mu + \sum_{i=0}^{\infty} \psi_i a_{t-i})$$

$$= \sum_{i=0}^{\infty} \psi_i^2 Var(a_{t-i}),$$

$$\rho_{\ell} = \frac{\sum_{i=\ell}^{\infty} \psi_i \psi_{i-\ell}}{1 + \sum_{i=1}^{\infty} \psi_i^2}.$$

Properties of AR models

$$AR(1)$$
: $X_t = \phi_0 + \phi_1 X_{t-1} + a_t$

• Note that

$$\mu = \phi_0 + \phi_1 \mu, E(X_t) = \mu = \frac{\phi_0}{1 - \phi_1}$$

by
$$E(X_t) = \phi_0 + \phi_1 E(X_{t-1})$$
.

• Using $\phi_0 = (1 - \phi_1)\mu$, AR(1) can be written as

$$X_t - \mu = \phi_1(X_{t-1} - \mu) + a_t.$$

• Note that $Cov(X_{t-1}, a_t) = 0$. We have

$$Var(X_t) = \phi_1^2 Var(X_{t-1}) + \sigma_a^2$$
$$Var(X_t) = \frac{\sigma_a^2}{1 - \phi_1^2}$$

provided that $\phi_1^2 < 1$.

$$AR(2)$$
: $X_t = \phi_0 + \phi_1 X_{t-1} + \phi_2 X_{t-2} + a_t$

• Note that

$$E(X_t) = \mu = \frac{\phi_0}{1 - \phi_1 - \phi_2}$$

if $\phi_1 + \phi_2 \neq 1$.

• Using $\phi_0 = (1 - \phi_1 - \phi_2)\mu$, AR(2) can be written as

$$X_t - \mu = \phi_1(X_{t-1} - \mu) + \phi_2(X_{t-2} - \mu) + a_t.$$

• Multiplying the above equation by $X_{t-\ell} - \mu$, we have

$$\gamma_{\ell} = \phi_1 \gamma_{\ell-1} + \phi_2 \gamma_{\ell-2}$$

for $\ell > 0$ and

$$\rho_{\ell} = \phi_1 \rho_{\ell-1} + \phi_2 \rho_{\ell-2}$$

for $\ell > 2$.

• ACF satisfies the 2nd order difference equation

$$(1 - \phi_1 B - \phi_2 B^2)\rho_{\ell} = 0.$$

AR(p):

$$X_t = \phi_0 + \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + a_t.$$

• Note that

$$E(X_t) = \mu = \frac{\phi_0}{1 - \phi_1 - \dots - \phi_p}.$$

• ACF satisfies the difference equation

$$(1 - \phi_1 B - \dots - \phi_p B^p) \rho_\ell = 0.$$

- parameter estimation: conditional least squares method
 - fitted model:

$$\hat{X}_t = \hat{\phi}_0 + \hat{\phi}_1 X_{t-1} + \dots + \hat{\phi}_p X_{t-p}$$

- residual: $\hat{a}_t = X_t \hat{X}_t$
- variance estimate:

$$\hat{\sigma}_a^2 = \frac{\sum_{t=p+1}^T \hat{a}_t^2}{(T-p) - (p+1)}$$

- Multi-step ahead forecast:
 - one step:

$$\hat{X}_h(1) = E(X_{h+1}|X_h, X_{h-1}, \cdots)$$

= $\phi_0 + \sum_{i=1}^p \phi_i X_{h+1-i}$

– forecast error: $X_{h+1} - \hat{X}_h(1) = a_{h+1}$

- uncertainty in ϕ_i
- two-step:

$$\hat{X}_h(2) = E(X_{h+2}|X_h, X_{h-1}, \cdots)
= \phi_0 + \phi_1 \hat{X}_h(1) + \sum_{i=2}^p \phi_i X_{h+2-i}$$

- forecast error:

$$X_{h+2} - \hat{X}_h(2) = a_{h+2} + \phi_1 a_{h+1}$$

Properties of MA models

An AR model with infinite order:

$$X_t = \phi_0 + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + a_t.$$

Put constraint on the parameters ϕ_i 's.

• For MA(1): $\phi_i = -\theta_1^i$ for $i \ge 1$. Note that

$$\phi_0 + a_t = X_t + \theta_1 X_{t-1} + \theta_1^2 X_{t-2} + \cdots,$$

$$\phi_0 + a_{t-1} = X_{t-1} + \theta_1 X_{t-2} + \theta_1^2 X_{t-3} + \cdots.$$

• Then

$$X_t = \phi_0(1 - \theta_1) + a_t - \theta_1 a_{t-1}$$

= $c_0 + a_t - \theta_1 a_{t-1}$.

It is a weighted average of shocks a_t and a_{t-1} .

• MA(2): $X_t = c_0 + a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2}$ MA(q):

$$X_t = c_0 + a_t - \theta_1 a_{t-1} - \dots - \theta_q a_{t-q}$$

• MA models are always weakly stationary because they are finite linear combinations of a white noise sequence.

•
$$E(X_t) = c_0$$
 and
$$Var(X_t) = (1 + \theta_1^2 + \dots + \theta_q^2)\sigma_a^2.$$

Maximum Likelihood Estimation

- Conditional MLE:
 - Assume that $a_t = 0$ for $t \leq 0$.
 - $-a_1 = X_1 c_0$, a_2 can be computed recursively.
- Exact likelihood method: Assume that a_t , $t \leq 0$, as additional parameters.
- Exact estimates are preferred over the conditional one.
- The two types of MLE are close to each other if the sample size is large.

Forecasting:

- short memory
- \bullet MA(1):

$$\hat{X}_h(1) = E(X_{h+1}|X_h, X_{h-1}, \cdots) = c_0 - \theta_1 a_h,
e_h(1) = X_{h+1} - \hat{X}_h(1) = a_{h+1},
\hat{X}_h(2) = E(X_{h+2}|X_h, X_{h-1}, \cdots) = c_0,
e_h(2) = X_{h+2} - \hat{X}_h(2) = a_{h+2} - \theta_1 a_{h+1}.$$

- For MA(1), $Var[e_h(2)] = (1 + \theta_1^2)\sigma_a^2$ and $\hat{X}_h(\ell) = c_0$
- For an MA(q) model, multi-step ahead forecasts go to the mean after the first q steps.

ARMA Models

- For the return series in finance, the chance of using ARMA models is not high.
- The idea of ARMA model is highly relevant in modeling the volatility of asset returns.
- Volatility is not directly measurable, it has some basic properties that are commonly seen in asset returns.
 - volatility clusters:
 Volatility may be high for certain time periods and low for other periods
 - volatility jump:
 Volatility evolves over time in a continuous manner, that is, volatility jumps are rare.
 - volatility stationarity:
 Volatility does not diverge to infinity. (Volatility varies within some fixed range.)
- Let X_t be the log return of a stock at time index t.
 - X_t is serially uncorrelated or with minor

lower lag serial correlations but it is dependent.

- A common approach is to model the squared returns X_t^2 by an ARMA model.
- Consider $\mu_t = E(X_t|F_{t-1})$ and

$$\sigma_t^2 = Var(X_t|F_{t-1})$$

where F_{t-1} denotes the information set available at time t-1.

Typically, F_{t-1} consists of all linear function of the past returns.

• It is common that the serial dependence in X_t is weak.

Therefore, it is assumed that $X_t = \mu_t + a_t$ and

$$\mu_t = \phi_0 + \sum_{i=1}^p \phi_i X_{t-i} - \sum_{i=1}^q \theta_i a_{t-i}.$$

• Note that

$$\sigma_t^2 = Var(X_t|F_{t-1}) = var(a_t|F_{t-1}).$$

We use conditional heteroscedastic models to model the evolution of σ_t^2 .

ARMA Models

• ARMA(1,1) model:

$$X_t - \phi_1 X_{t-1} = \phi_0 + a_t - \theta_1 a_{t-1}.$$

If $\phi_1 = \theta_1$, it reduces to a white noise series.

• ARMA(p,q) model:

$$(1 - \phi_1 B - \dots - \phi_p B^p) X_t$$

= $\phi_0 + (1 - \theta_1 B - \dots - \theta_q B^q) a_t$.

 \bullet AR representation:

$$\frac{\phi(B)}{\theta(B)} = 1 - \pi_1 B - \pi_2 B^2 + \dots = \pi(B).$$

We have

$$X_{t} = \frac{\phi_{0}}{1 - \theta_{1} - \dots - \theta_{q}} + \pi_{1} X_{t-1} + \pi_{2} X_{t-2} + \dots + a_{t}.$$

- Show the dependence of the current return on the past return.
- When the π coefficient decay to zero as i increases, it is said to be invertible.
- Consider $X_t = (1 \theta_1 B)a_t$. It is invertible if $|\theta_1| < 1$.

In general, the zero of the equation $\theta(B) = 0$ are greater than unity in modulus.

• MA representation:

$$\frac{\theta(B)}{\phi(B)} = 1 + \psi_1 B + \psi_2 B^2 + \dots = \psi(B)$$

We have

$$X_{t} = \frac{\phi_{0}}{1 - \phi_{1} - \dots - \phi_{p}} + a_{t} + \psi_{1} a_{t-1} + \psi_{2} a_{t-2} + \dots$$

- Show the impact of the past shock on the current return.
- This representation is useful in computing the variance of forecast error.

The ℓ -step ahead forecast:

$$\hat{X}_h(\ell) = \mu + \psi_{\ell} a_h + \psi_{\ell+1} a_{h-1} + \cdots,$$

where $\mu = \phi_0 / (1 - \phi_1 - \cdots - \phi_p).$

- forecast error:

$$e_h(\ell) = a_{h+\ell} + \psi_1 a_{h+\ell-1} + \cdots + \psi_{\ell-1} a_{h+1}.$$

The variance of forecast error:

$$Var[e_h(\ell)] = (1 + \psi_1^2 + \dots + \psi_{\ell-1}^2)\sigma_a^2.$$

- Mean reversion of a stationary time series:
 - * $\psi_i \to 0$ as $i \to \infty$ by the stationarity
 - $*\hat{X}_h(\ell) \to \mu \text{ as } \ell \to \infty$
 - * In the long-term, the return series is expected to approach its mean.

Volatility Modeling

ARCH models:

- The (mean-corrected) asset return $a_t = X_t \mu_t$ is serially uncorrelated but dependent.
- The dependence of a_t can be described by a simple quadratic function.
- \bullet ARCH(m):

$$a_t = \sigma_t \epsilon_t,$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \dots + \alpha_m a_{t-m}^2,$$

where $\{\epsilon_t\}$ are IID with mean zero and variance 1, $\alpha_0 > 0$, and $\alpha_i \geq 0$.

- Large past squared returns imply a large conditional variance σ_t^2 for the return a_t .
- Large returns tend to be followed by another large return.
- Alternative expression: $\{\eta_t\}$ is an un-correlated series with zero mean where $\eta_t = a_t^2 \sigma_t^2$. Then

$$a_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \dots + \alpha_m a_{t-m}^2 + \eta_t.$$

It is in the form of an AR(m) model for a_t^2 , except that $\{\eta_t\}$ is not an iid series. Recall that PACF is an effective method to determine AR order.

Estimation:

• Fact:

$$P(\bigcap_{i=1}^{n} A_i) = P(A_1) \prod_{i=2}^{n} P(A_i | \bigcap_{j=1}^{i-1} A_j).$$

• Under the normality assumption, the likelihood function of an ARCH(m) model is

$$f(a_1, \dots, a_T | \alpha)$$

$$= f(a_T | F_{T-1}) \dots f(a_{m+1} | F_m) f(a_1, \dots, a_m | \alpha)$$

$$\prod_{t=m+1}^{T} \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left[-\frac{a_t^2}{2\sigma_t^2}\right] \times f(a_1, \dots, a_m | \alpha),$$

where σ_t^2 can be evaluated recursively.

- Conditional likelihood function: drop the last term
- We may assume that ϵ_t follows a heavytailed distribution such as a standardized Student-t distribution

GARCH Model

- The conditional mean μ_t can be adequately described by an ARMA model.
- $\bullet \ a_t = X_t \mu_t.$
- GARCH(m, n):

$$a_t = \sigma_t \epsilon_t,$$
 $\sigma_t^2 = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t-i}^2 + \sum_{j=1}^n \beta_m \sigma_{t-j}^2,$

where $\{\epsilon_t\}$ are IID with mean zero and variance 1.

• Alternative expression: $\{\eta_t\}$ is an un-correlated series with zero mean where $\eta_t = a_t^2 - \sigma_t^2$. Then

$$a_t^2 = \alpha_0 + \sum_{i=1}^{\max(m,n)} (\alpha_i + \beta_i) a_{t-i}^2 + \eta_t - \sum_{j=1}^n \beta_j \eta_{t-j}.$$

It is in the form of an ARMA model for a_t^2 . Application of the ARMA idea to the squared series a_t^2 .

Model Identification

- Variance-stabilizing transformations
 - If the variance of the series changes with the level, then a logarithmic transformation will often stabilize the variance.
 - Power transformation
- Degree of differencing
 - When the series is not mean stationary, we have to determine the proper degree of differencing.
 - Watch for changing levels and slowly decaying autocorrelations.
 - Examine plots of the time series.
 - Examine plots of the SACF.
 - Examine sample variances of the successive differences.
- \bullet Specification of p and q
- Inclusion of a trend parameter: Check for the inclusion of a deterministic trend in the model.

Unit-root Nonstationarity

- In some studies, price series are of interest which tend to be nonstationarity.
- The nonstationarity is mainly caused by the fact that there is no fixed level for price series.

unit-root time series

• The random walk model:

$$p_t = p_{t-1} + a_t$$

where p_0 is the starting value of the process and $\{a_t\}$ is a white noise series.

- If a_t has a symmetric distribution around zero, then conditional on p_{t-1} , p_t has 50-50% to go up and down at random.
- Treat the random walk model as a special AR(1) model.
- The coefficient of p_{t-1} is unity, which does not satisfy the weak stationarity condition of AR(1) model.
- A random walk series is called a unit-root nonstationarity time series.

Forecast under Random Walk Model

• The stock price is not predictable because

$$\hat{p}_h(1) = E(p_{h+1}|p_h, p_{h-1}, \cdots) = p_h.$$

It is the price of the stock at the forecast origin.

• The 2-step ahead forecast is

$$\hat{p}_h(2) = E(p_{h+2}|p_h, p_{h-1}, \cdots)
= E(p_{h+1} + a_{h+2}|p_h, p_{h-1}, \cdots) = p_h.$$

- For any forcast horizon $\ell > 0$, we have $\hat{p}_h(\ell) = p_h$.
- MA representation of the random walk model is

$$p_t = a_t + a_{t-1} + \cdots.$$

• The ℓ -step ahead forecast error is

$$e_h(\ell) = a_{h+\ell} + \dots + a_{h+1},$$

do that $var[e_h(\ell)] = \ell \sigma_a^2$, which diverges to infinity as $\ell \to \infty$.

- The model is not predictable.
- The unconditional variance of p_t approach infinity as ℓ increases.

• The impact of any past shock a_{t-i} on p_t does not decay over time.

The series has strong memory as it remembers all of the past shocks.

• Random walk with a drift:

$$p_t = \mu + p_{t-1} + a_t$$

where $\mu = E(p_t - p_{t-1})$.

- μ : It represents the time-trend of the log price p_t .
- If we graph p_t against time index t, we have a time trend with slope μ .