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Basic Concepts

Time series is a sequence of random variables
measuring certain quantity of interest over time.

e A time series is a record of values of certain
quantity of interest taken at different time
points.

e Usually, data are observed at equally spaced
time intervals, resulting in a discrete-time
series.

e If treated as a stochastic process over time
(continuous time), then we have a continuous-
time time series.

e X, can be a continuous variable or a discrete
random variable, e.g. counts.

The objective of time series analysis is to find
the dynamic dependence of X; on its past values

{ X1, X4 9,...}
e Consider ¢(B)X; = ¢ where ¢ is a constant
and §(B) = sy 6:B
This equation is used in time series analysis
to describe the dynamic dependence of X;
on its past values.



e A variety of dynamic dependence patterns of
X; can be generated by considering the ra-

tional lag polynomial m(B) = ¢(B)/0(B).
e Consider 7(B) =1/(1 — 6B).
— We have

1 —19BXt - i§0 O X

— If the { X; } sequence is bounded, we might
want the resulting sequence to be bounded
as well. This is achieved by requiring
6] < 1.

— This special rational polynomial shows
that X; is an infinite-order moving aver-
age of its past values, {X;_ 1, X;_o,...},
with weights decaying exponentially.

e First-order Difference Equations

— X; = ¢ X;_1 + c+ ba; where a; is a forc-
ing variable, which follows a well-defined
probability distribution.

— Write the model as
(1 —¢B)X; = c+ bay.

3



— The solution is

C b

X = L
t 1_¢B—|—1_¢Bat—|—’7¢
Or,
1 — ¢t :
X = o a6

—If |¢| < 1 and a; is bounded with mean
zero, then X; approaches ¢/(1 — ¢) from
any starting point.

e Second-order Difference Equations

— X; = 01 X1 + 01 X4—o + 0 + bay
— Write the model as
(1 — B — 2B X, = 6 + bay.
— Write 1 — ¢1B — ¢QBQ as (1 — )\13)(1 —
Ao B).
— The solution of (1 —¢1B — ¢$B*)X; =0
1S
Xt = Cl)\ﬁ + 02)\5.

Here 1/A; and 1/ are the zeros of the
polynomial 1 — ¢; B — ¢ B*.
If the solution is to remain bounded, we
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would require |N\;| < 1 for ¢ = 1,2 or
equivalently that the zeros of the poly-
nomial 1 — ¢ B — ¢»B? lie outside the
unit circle (modulus ¢ 1.

— For a second-order equation, we have three
possibilities: (a) distinct real roots, (b)
equal real roots, and (c¢) complex roots.

— Consider complex roots, we can write

Xt _ 61Tt62t9-|—62?"t6_2t9

= 7'[(c1 + ¢2) cos(th) + i(er — c2) sin(t0)]
= kr'cos(tf + w).

We can see how oscillatory solutions are
possible.

— Consider equal root case.
(1 - \B)*X, = 0.
The solution is

Xt = Cl)\t + Cgt)\t.



Stationary Time Series

Weak stationary: {X;}

o If we would like to predict the future of the
process, we must be able to identify some
key features of the distribution of the pro-
cess that are time invariant.

e A particular time-invariant feature which has
proven to be useful is the stationarity.

e A time series { X;} is (strictly) stationary if

FXt:"'aXt-i-S(*) — FXt+r,"',Xt+r+s<*)
for all r and s.

e Weak stationarity:
Both the mean of X; and covariance be-
tween X; and X;_, are time-invariant.

e Correlation coefficient between two random

variables X and Y:
Cov(X,Y)
WVar(X)Var(Y)
_ BIX = px)(Y — py))
VE(X — pux)PE(Y — py)?

PXy =




A sample estimate is

Sy — ) (e — 7)

PxXy = —.
\/Et (ze —z2)? sy (ye — 9)?

e Law of Large Numbers:
Chebyschen inequality:

Var(U
P(U — E(U)| > ¢) < #
Consistency: {T,}

lim P(|T, —c| >¢€) =0

for any given € > 0.

€

e For a weak stationary process X;, the lag-k

autocorrelation 1s

= Cov(X;_4, Xy)/Var(Xy).

e Treating p; as a function of k, we call p; the

autocorrelation function of Xj.

e How do we estimate the parameters of a par-
ticular time series model using observations

of a single realization?

— Since a stationary time series is time in-
variant, the distribution of X; is the same

as the distribution of X,.

7



— We can treat the single realization X, Xo, ...

as a sample of n observations from a dis-
tribution.

— The mean p of X; can be estimated by

AN

M — n_l £:1 Xz

— [L 18 a time average.

— If a time series satisfies the requirement
that the time averages converges to the
ensemble averages, then the series is said
to be ergodic.

e the lag-¢ sample autocorrelation, 0 < £ <
T—1,
5 = Zf:g+1(Xt—€ — X)EXt — X)

i (X — X2
where X = x| X;/T.

e Assume that p; = 0 for all 5§ > ¢ and r
is weakly stationary with finite /-th order
moment.

The asymptotic variance of py is

—1
T (1 +2% p?) .
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e The above result can be used to perform
the hypothesis testing Hy : p, = 0 versus

Haipg%o.



Linear time series

e Linear filter representation:
It can be written as

X =p+ ,i Vi

where 1)y = 1 and {a;} is a sequence of
independent N (0, 1) random variables.

e The coefficients 1); are called the -weights
in the time series literature.

e Mean and autocorrelations:

B(X)=p+ 3 iBlars) =

Var(X;) = Var(p+ §0 Vyiat—;)
£ iVar(o)

T2y
pe = 00 2°
1+ 522, 9

4
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Properties of AR models

AR(1): Xi = ¢o+ 1. Xe—1 + ay
e Note that

u = ¢+ P1i,

BXt) = n= 1 jboqbl

by E(X:) = ¢o + ¢p1E(X;i-1).

e Using ¢g = (1—¢1)u, AR(1) can be written
as

Xi— = d1( X1 — ) + ar.
e Note that Cov(X;_1,a;) = 0. We have

Var(X,) = ¢:Var(X;_,) + o>

0_2

Var(X;) = —*
R

provided that ¢7 < 1.
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AR(2): Xi = ¢o+ 01.Xi—1 + 92 Xi2 + a4

e Note that

&
S

E(X:) = p

if o1 + 9 7é 1.
o Using ¢g = (1 — ¢1 — ¢2)ut, AR(2) can be
written as

Xi—p=d1( X1 —p) + P Xio— ) +ay.

e Multiplying the above equation by X;_,—pu,
we have
Yo = P1Ve-1 + P22
for £ > 0 and

pe = Q101+ Gapr2
for £ > 2.
o ACF satisfies the 2nd order difference equa-

tion
(1 —¢1B — ¢2B%)py = 0.
AR(p):
Xt = @0+ 1 Xy—1 + -+ 0 Xy—p + ay.
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e Note that

Do
FE(X;)=n= :
(Xi) = p l—¢1— - — o,
o ACF satisfies the difference equation
(1—¢B—--—¢,B")py = 0.

e parameter estimation:
conditional least squares method

— fitted model:
Xt = ng T qngt—l + et quXt—p
— residual: a; = X; — Xt

— variance estimarte:

T 2

> a

. t=p+1 U
52 = Pt

© (T-p)—p+1)
e Multi-step ahead forecast:

— one step:
X,(1) = E(Xpi1|Xn, X1, )
p
= Qo + '§1 Qi X ht1—i

— forecast error: X1 — Xh(l) = Qp41
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— uncertainty in ¢,

— two-step:
Xh<2> — E<Xh+2‘Xh7 Xh—l) ©e )
. p
= G0+ 91 Xn(1) + X §iXpso
— forecast error:

Xpyo — Xh<2) = apt2 + Q10441
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Properties of M A models
An AR model with infinite order:
Xi=0¢o+ 1 Xi1+ G2 Xy o+ -+ ay.

Put constraint on the parameters ¢;’s.

o For MA(1): ¢; = —0" for ¢ > 1.
Note that

¢0+at — Xt‘|‘01Xt_1—|—0%Xt_2—|— SO
¢0 + a1 = Xt—l + elXt—Q —+ H%Xt—S + ...,

e Then
Xt = ¢o(1 —61) + ar — b1,y
— ¢co+ay — O1a4_1.

It is a weighted average of shocks a; and
ay_1.

o MA(Q) Xt = Cy + a; — Hlat_l — Hgat_g
M A(q):

Xe=co+ar—0a1 —---—0ya4_,
e M A models are always weakly stationary

because they are finite linear combinations
of a white noise sequence.
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o [/(X}) = ¢y and
Var(X,) = (1+ 607+ -+ 92)(72
Maximum Likelihood Estimation

e Conditional MLE:

— Assume that a; = 0 for ¢ < 0.
— a1 = X1 — ¢y, ay can be computed recur-

sively.

e Fixact likelihood method:
Assume that a;, t < 0, as additional param-
eters.

e Fixact estimates are preferred over the con-
ditional one.

e The two types of MLE are close to each
other if the sample size is large.

Forecasting:
e short memory
o MA(1):
Xa(1) = E(Xh1|Xn, Xn-1,- ) = co — bhan,
en(1) = X1 — Xu(1) = apsy,
Xn(2) = (Xh+2\Xh,Xh—1, - +) = cp,
en(2) = Xnpo — Xi(2) = anya — Oran,1.

N—— N N N
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e For MA(1), Var[en(2)] = (1 + 6})o; and
Xh(f) —

e For an M A(q) model, multi-step ahead fore-
casts go to the mean after the first ¢ steps.
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ARM A Models

e For the return series in finance, the chance
of using ARM A models is not high.

e Theidea of ARM A model is highly relevant
in modeling the volatility of asset returns.

e Volatility is not directly measurable, it has
some basic properties that are commonly
seen 1n asset returns.

— volatility clusters:
Volatility may be high for certain time
periods and low for other periods

— volatility jump:
Volatility evolves over time in a continu-
ous manner, that is, volatility jumps are
rare.

— volatility stationarity:
Volatility does not diverge to infinity. (Volatil-
ity varies within some fixed range.)

e Let X; be the log return of a stock at time
index t.
X; 1s serially uncorrelated or with minor
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lower lag serial correlations but it is depen-
dent.

e A common approach is to model the squared

returns X7 by an ARM A model.
e Consider u; = F(X;|F;_1) and
0't2 — VG/I”(Xt‘Ft_l)

where F}_1 denotes the information set avail-
able at time ¢ — 1.
Typically, F;_; consists of all linear function
of the past returns.

e [t is common that the serial dependence in
X; 1s weak.
Therefore, it is assumed that X; = pu; + a;
and

p q
pe = @o + El OiXt—i — El Oiai_;.
e Note that
of = Var(X| Fi_1) = var(a:| Fy_1).

We use conditional heteroscedastic models
to model the evolution of o?.
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ARM A Models
e ARMA(1,1) model:
Xt — 91 Xoo1 = Qo+ ar — O1as—1.

If 1 = 64, it reduces to a white noise series.

o ARM A(p, q) model:

(1—¢B—---—¢,B") X,
=¢p+(1—-60,B—---—0,B"a.
e AR representation:
B
?EB;:l—mB—mBQ%—---:W(B).
We have
Po
X p—
T 1—6— -6,

+m X + T Xpo+ e+ oay
— Show the dependence of the current re-
turn on the past return.

— When the 7 coefficient decay to zero as
1 Increases, it is said to be invertible.

— Consider X; = (1 — 6,B)ay.
[t is invertible if |61 < 1.
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In general, the zero of the equation §(B) =
0 are greater than unity in modulus.

o M A representation:

$:1+¢1B+¢232+'“:¢(B>
We have
- Po
A Py

+ar + Prai-1 + Poaro + - - -

— Show the impact of the past shock on the
current return.

— This representation is useful in comput-
ing the variance of forecast error.
The ¢-step ahead forecast:

Xh(f) = p+ Yeap + Ye1ap_1+ -,
where 11 = go/(1 = 1 — -+ — 6,

— forecast error:
en(l) = anpotrapro—1+- - -+ 1an41.
The variance of forecast error:
Varfea(0)] = (1+ 92 + -+ g2 o2
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— Mean reversion of a stationary time se-
ries:
x 1; — 0 as 1 — oo by the stationarity
« Xp(0) = pas { — oo
x In the long-term, the return series is
expected to approach its mean.
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Volatility Modeling
ARC'H models:

e The (mean-corrected) asset return a; = X;—
L is serially uncorrelated but dependent.

e The dependence of a; can be described by a
simple quadratic function.

e ARCH(m):
Ay = Ot€g,
2 2 2
o, = 0p+toa;_+ -+,

where {¢;} are IID with mean zero and vari-
ance 1, ag > 0, and a;; > 0.

e Large past squared returns imply a large
conditional variance o7 for the return a;.

e Large returns tend to be followed by another
large return.

e Alternative expression:
{n:} is an un-correlated series with zero mean
where 1; = a? — 0. Then

2 2 2
a; = Qo+ Q1a; 1+ QpQy_, + N
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It is in the form of an AR(m) model for a?,

except that {n;} is not an iid series.
Recall that PACF is an effective method
to determine AR order.
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Estimation:
e Fact:
PNy A) = P(A T P(A] M2 4).

e Under the normality assumption, the likeli-

hood function of an ARC'H(m) model is

flay, -+, ar|)
= flag|Fp-1) -+ - flamer|[Fm) flar, - -, am|a)
I oo [0 flananlo)
exp |——- a1, Q)
t=m+1 207 P 207 b

where o7 can be evaluated recursively.

— Conditional likelihood function: drop the
last term

— We may assume that ¢; follows a heavy-
tailed distribution such as a standardized
Student-t distribution
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GARCH Model

e The conditional mean u; can be adequately

described by an ARM A model.
® ; — Xt — M.
e GARCH (m,n):

ay = O,
2 = ag+ S ial + S Bpo?
Op = Qo T 2 Qily_; T 2. PmOy¢_j,
1=1 7=1
where {¢ } are IID with mean zero and vari-

ance 1.

e Alternative expression:
{n;} is an un-correlated series with zero mean
where 7; = a7 — 7. Then

5 max(m,n)

a; = oot .Zl (ozﬁﬁi)af_ﬁm—,Zlﬁjm_j.
1= )=

It is in the form of an ARM A model for a?.
Application of the ARM A idea to the squared

series a?.
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Model Identification

e Variance-stabilizing transformations

— If the variance of the series changes with
the level, then a logarithmic transforma-
tion will often stabilize the variance.

— Power transformation
e Degree of differencing

— When the series is not mean stationary,
we have to determine the proper degree
of differencing.

Watch for changing levels and slowly de-
caying autocorrelations.

— Examine plots of the time series.

— Examine plots of the SACF.

— Examine sample variances of the succes-
sive differences.

e Specification of p and ¢

e Inclusion of a trend parameter: Check for
the inclusion of a deterministic trend in the
model.
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Unit-root Nonstationarity

e In some studies, price series are of interest
which tend to be nonstationarity:.

e The nonstationarity is mainly caused by the
fact that there is no fixed level for price se-
ries.
unit-root time series

e The random walk model:

Dt = Pt—1 + Q4

where pg is the starting value of the process
and {a;} is a white noise series.

— If a; has a symmetric distribution around
zero, then conditional on p;_1, p; has 50—
50% to go up and down at random.

— Treat the random walk model as a special

AR(1) model.

— The coefficient of p;_; is unity, which does
not satisfy the weak stationarity condi-

tion of AR(1) model.

— A random walk series is called a unit-root
nonstationarity time series.
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Forecast under Random Walk Model

e The stock price is not predictable because

pr(1) = E(pnialpn, pr-1,- ) = pa-

[t is the price of the stock at the forecast

origin.
e The 2-step ahead forecast is

pu(2) = E(pny2|pn, pr1,- )

= E(ph+1 T a’h—|—2‘ph7ph—17 " ) = Ph-

e For any forcast horizon £ > 0, we have

pr(f) = pn.

e M A representation of the random walk model
1S

Pt =at + a1+ -,
e The /-step ahead forecast error is
en(l) = apye + -+ apy1,

do that var[e,(¢)] = o2, which diverges to
infinity as £ — oo.

e The model is not predictable.

e The unconditional variance of p; approach
infinity as £ increases.
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e The impact of any past shock a;_; on p; does
not decay over time.
The series has strong memory as it remem-
bers all of the past shocks.

e Random walk with a drift:
Pt = U+ pr1+ aq,

where pp = E(py — pi-1).
e /1. It represents the time-trend of the log
price py.

e If we graph p; against time index ¢, we have
a time trend with slope pu.
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