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Empirical finding on return distributions

e Characteristics:

— Fat tails

— High peakedness (excess kurtosis)
— Skew

e Three return series: Figure 5.1

— daily returns of the London FT30 from
1935 to 1994

— daily returns of the S&P500

— daily dollar/sterling exchange rate

e Descriptive statistics:
Splus command summary: It gives min, 1st
Qu, median, mean, 3rd Qu, max.
mean: 0.022, 0.020, —0.008
sd: 1.004, 1.154, 0.647
median: 0.000, 0.047, 0.000
range: 23.1, 33.1, 13.2
kurt: 14.53, 25.04, 6.51



e Graphical representations:

— smoothed function of the histogram

— Q-Q plots: Plot empirical cumulative dis-
tribution against normal distribution.

Histogram
e pdf:
P(—h/2 < X < h/2)=["}3, f(x
e law of large numbers:
P(=h/2 < X < h/2) ~n'#{X; € [-h/2,h/2)}
e approximation:
P(=h/2 < X < h/2) ~ f(€)h
e density estimate:

fa(x) = (nh)™ ZZ](XEB)](a:EBj)

i=1
Consider the kernel density estimate

fulz) = 1hzZ1K( th'),

where K is a kernel function with the following
properties




e Kernel function is symmetric around 0 and
integrate to 1.

e Kernel is a density function and the kernel
estimate is a density too.

e Kernel estimates do not depend on any choice
of origin.

Quantile-Quantile plots

e If X is a continuous random variable with
a strictly increasing distribution function,

F', the pth quantile ofthe distribution is the
value of x such that F(z) = p or z, =

F~(p).

e In a O)-Q plot, the quantiles of one distribu-
tion are plotted against those of another.

e Suppose G(y) = F(y — h). Then
Yp = Tp+ h

and a Q-Q plot would be a straight line with
slope 1 and intercept h.

e Let rq,---,r, be the returns of a portfolio
in the sample period.
The order statistics of the sample are these
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values arranged in increasing order.
r(1) 18 the sample minimum and r(,) the
sample maximum.

e For / = np,
Vn(re — rp) ~ N(0,p(1 — p)/]d(xp))a
if f(x,) # 0.



Models for Return Distributions

e fat-tailed and highly peaked

e Stable distributions
[t is a generalization of normal in that they
are stable under addition.
But non-normal stable distributions do not
have a finite variance.

e Mixture distributions
Hierarchical model approach: regression
Facts:

- FEX = E(E(X|Y)), X|Y ~ Bin(Y,p),
Y ~ Poisson(\)

—VarX = E(Var(X|Y))+Var(E(X|Y))

— Mixed discrete-continuous distribution

Slice a data set into different, supposedly
more homogeneous, subsets.

— Scale-Mixture Normals
As an example, consider

re ~ (1 —a)N(u,01) + aN(u,03),

where 0 < o < 1, 0% is small, and o3 is
large.



The large value of o2 enables the mix-
ture to put more mass at the tails of its
distribution.
Note that
E(ry) = FE(r|l)=FEu=pu
Viry) = EV(rI)+ V(E(rl))
= Eo7+V(p)
= (1 —a)ot + aos
— Normal and Stable
— Student or double Weibull distributions

e Stable distributions:

— Characteristic function:
o(t) = [, explita)dF (x)

— The symmetric (about zero) stable char-
acteristic function:

p(t) = exp(—a”[t|*)
where 0 < a < 2 is the characteristic
exponent and o is a scale paramter.
— Probability distribution

RN

F(X) = o J-oo exp(—a®|t|*) exp(—it X)dt
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_ 71T [ exp(—0®|t]*) cos(tX)dt. (1)

— Normal distribution: o = 2

— For a < 2, all moments greater than a
are infinite.

— Fat tail: relative to the normal
— regular variation at infinity
. 1= F(sX)
lim
The stable distribution displays a power
declining tail, X =%, rather than an ex-

ponential decline as is the case with the
normal.

— X

— o the tail index

— Why the stable distribution should be an

appropriate generating process for finan-
cial data?
Mandelbrot (1963): The limiting distri-
bution of an appropriately scaled sum of
independent and identically distributed
random variables exists then it must be
a member of the stable class, even if these
random variables have infinite variance.
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— If daily returns follow a stable distribu-
tion, then weakly, monthly and quarterly
returns can be viewed as the sum of daily
returns, they too will follow stable dis-
tributions having identical characteristic
exponents.

e Volatility clustering

— GARCH class of models: serial correla-
tion of conditional variances

— Consider ARCH (1) with normal inno-

vations’ process for X;.
¢

Xt = UtO't (2)
where Uy ~ NI1D(0,1) and
of = w+ X} . (3)

From the above two equations, we have

X} =wU} + BUIX? | = B, + A X} .

(4)

— X; is serially uncorrelated but is not in-
dependent.

— ARCH (1) process may also exhibit fat
tails.



de Haan et al. (1989) show that the X
of (4) regularly varies at infinity and has
a tail index ( defined explicitly by the
equation

r (52“) _ 21228 <12
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Determining the tail shape of a return
distribution
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Estimation of p and o in Ito’s process

e Treating price of an asset as a random vari-
able that evolves over time, the prices series
forms a stochastic process.

e The observed price series is a realization of
the underlying stochastic process.

e Consider two types of stochastic processes.

— Discrete-time stochastic process: Consider
the daily closing price of IBM stock on
the NYSE. Here the price change occurs
only at the closing of a trading day.

— Continuous-time stochastic processes: As-
sume the price changes continuously even
when the stock is not traded.

— A continuous-time continuous stochastic
process can be written as {x(n, t) }, where
t denotes time and is continuous in |0, 00).
For a given ¢, x(n, t) is a continuous ran-
dom variable defined on a probability space
and n is an element of the space.

— For a given n, {x(n,t)} is a time series
with value depending on time.
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— The counterpart of white noise process
to a discrete-time econometric model in
a continuous-time model is the Wiener
Process, which is also known as Brown-
1an motion.

A continuous-time stochastic process {w;} is
a Wiener Process if it satisfies

o Nwy = wipnr — wy = €y/At, where € ~
N(0,1).
— Awt ~ N(O, At)
— Define N = t/At. Then

N
Wy — Wy = 'Zl Gi\/Kt ~ N(O,t)

e Aw; is independent of w; for all j < ¢.
— This is a Markov property.

— WAt — Wy and Wiy Aot — Wi, AIC n-
dependent for any two non-overlapping
time intervals A7 and As.

This suggests that we can simulate Wiener
process on the unit time interval [0, 1] using the
following statistical property.

Property:

13



e Assume that {2}, is a sequence of inde-
pendent standard normal random variables.

e For any t € |0, 1], let [nt] be the integer part
of nt.

_ t
® Define wy,; =n 1/2 zﬁﬂ 2.

® w, ; converges in distribution to the Wiener
process w; as n goes to infinity.

Let P, be the price of a security at time ¢,
which is continuous in |0, 00). In the literature,
it 1s common to assume that P; follows the fol-
lowing Ito’s process

dPt — /L(Pt, t)dt + O'(Pt, t)th (5)
Here

e i, and o are referred to as the drift and
volatility parameters of the process F;.

e W, is a Wiener process.

e Use the notation dy for a small change in
the variable y.

e When u(P;,t) = pbP; and o(P,t) = oF,

where 4 and o are constants, apply the Ito’s
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lemma to obtain
9

dIn(P) = (u - 02) dt + odW,.

Hence, the change in logarithm of price (log
return) between current time ¢ and some
future time 7' is normally distributed with
mean (p—o0?/2)(T —t) and variance o(T —
t).

e To simulate F;, we can use the following re-
cursive form

InPop =P+ (u—02/2)A+oAY2Z,
where Z ~ N(0,1).

How do we estimate these two unknown pa-
rameters p and o

e Assume that we have n + 1 observations of
stock price P; before time ¢ at equally spaced
time interval A.

e Denote the observed prices as { Py, Py, -+, Pp}
and let r; = In(P;)—In(P_y) fori =1,...,n.

e 1; is normally distributed with mean (p —
0?/2)A and variance oA,
ris are not serially correlated.
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e Let 7 and s, be the sample mean and stan-
dard deviation of the data.

e Estimate o by s,/v/A and u by

f+62
A2

e Consider the daily log returns of IBM in
1998.

— It has 252 observations.

— The sample ACF of the data indicates
that the log returns are indeed serially
uncorrelated. The Ljung-Box statistic
gives (10) = 4.9, which is highly in-
significant compared with a chi-square
distribution with 10 degrees of freedom.

— Assume that the price of IBM in 1998
follows the Ito’s process.

— 7 = 0.002276, s, = 0.01915, and A =

1/252 year.
— 6 = s./vA = 0.3040.
— /1 = 0.6198

— The estimated expected return is 61.98%
and the standard deviation is 30.4% per
annum for IBM in 1998.
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Distributions of stock prices and log returns

e Conditional on the price P; at time ¢, the
log price at time T" > t is

In(Pr) = In(P) + Xip (6)
Xir ~ N((p— o /2)(T —t),0%(T — t)).
This gives the information on the future price

of PT.

e Lognormal distribution with parameters p
and o?:
E(Y) = exp(p+0°/2)
V(Y) = exp(2u + o?)[exp(c?) — 1].

e The conditional mean and variance of Pr
given FP; are
E(Pr) = Pyexp[u(T —t)],
V(Pr) = P exp[2u(T — t){exp[o*(T — t)] — 1}.

e Suppose the current price of stock A is $50,
the expected return is 15% per annum, and
the volatility is 40% per annum.

Then the expected price and variance of stock
A in 6-month are

E(Pr) = 50 exp(0.15 x 0.5) = 53.89
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and

V(Pr) = 2500 exp(0.3 x 0.5)[exp(0.16 x 0.5) — 1]
= 241.92.

The standard deviation is around 15.55.

e Let r be the continuously compounded rate

of return per annum from time ¢ to 1.

Note that
Pr = Pyexp[r(T — t)]
and
r= : In PT.
T—t P
e The distribution of r is
N(p—0®/2,0° /(T —1)).

e Consider a stock with an expected rate of
return of 15% per annum and a volatility of
10% per annum.

The distribution of 7 is N(.15—.01/2, (.1/+/2)?).
A 95% CI for ris (0.145 £ 1.96 x 0.071) =
(0.6%, 28.4%).

What is the effect on using estimated p and
29
o

Refer to next topic for the European call option.
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Revisit the Pricing of Enropean Option

Black-Scholes Pricing Formulas

Risk-Neutral World

e The expected return on all securities is the
risk-free interest rate r.

e The present value of any cash flow can be
obtained by discounting its expected value
at the risk-free rate.

e Under the no arbitrage assumption, the port-
folio V; must be riskless during the small
time interval.

Here V; is the value of the portfolio.

The portfolio must instantaneously earn the
same rate of return as other short-term risk-
free securities.

e The expected value of a European call op-
tion at maturity in a risk-neutral world is

F,|max(Ppr — K,0)]
where E, denotes expected value in a risk-

neutral world.

19



e The price of the call option at time ¢ is

c; = exp|—r(T — t)|Emax(Pr — K, 0)].
(7)

We need to specify the distribution of Pr.

e In a risk-neutral world, we have y = r and
by (6),
In(Pr) ~ In(F)
+N((r —o?/2)(T —t),0%(T — t)).

e Let g(Pr) be the probability density func-
tion of Pr. Then the price of the call option
in (7) is

Ct — eXp[—T<T—t)] /?(PT—K)Q<PT)dPT

The above formular holds for general price

process.

Under Black-Scholes model, the distribution
is log-normal with mean In(P;)+(r—o?/2)(T—
t) and variance o*(T — t).

e By changing variable in the integration and
some algebraic calculations, we have

¢ = P®(hy)— K exp|—r(T—1t)|®(hs) (8)
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where ®(z) is the cumulative distribution
function of the standard normal random vari-
able evaluated at x,

In(B/K) + (r +0%/2)(T — t)

= T =1
B, — In(B/K) + (r —o?/2)(T —t)

o1 —t
— hl—O'\/T—t.

e Similarly, the price of a European put option
1S
pr = Kexp|—r(T — t)|®(hy) — PP(hy).
(9)

e How the price ¢; depends on the estimated
29
o

differentiate ¢; with respect to o

e Can we solve ¢; without using analytic tech-
nique?
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Example 2

e Suppose the current price of Intel stock is
$80 per share with volatility o = 20% per
annum.

e The risk-free interest is 8% per annum.

e Find the price of a European call option on
Intel with as striking price of $90 that will
expire in 3 months?

— P, =80, K=90,T—t=0.25 0 =0.2
and r = 0.08.

— We have
In(80/90) + (.08 + .2%/2)0.25

By —
! 0.2¢/0.25
— _0.9278

ho = hy —0.2v/0.25 = —1.0278.
— ®(—0.9278) = 0.1768, $(—1.0278) = 0.1520.
— The price of a European call option is

¢ = $80 x d(—0.9278)
—$90 x ®(—1.0278) exp(—0.02) = $0.46.

— The stock price has to rise by $1.05 for
the purchaser of the put option to break
even
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e $90 may be too high.
Now we find the price of a European call
option on Intel with as striking price of $85
that will expire in 3 months?

— P, =80, K =85T—-t=0.25 06 =0.2
and r = 0.08.

— We have
_— In(80/85) + (.08 + .22/2)0.25
b 0.21/0.25
— —0.356246

ho = hi — 0.2v/0.25 = —0.456246.
— ®(—0.356246) = 0.3608, ¢(—0.456246) =
0.3241.
— The price of a European call option is

¢t = $30 x ©(—0.356246)
—$85 x B(—0.456246) exp(—0.02) = $1.86.

— The stock price has to rise by $6.86 for
the purchaser of the put option to break
even

e Under the above assumptions, the price of a
Europrean put option is

pr = $85 exp(—0.02)P(0.456246)
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—$80 x $(—0.356246) = $5.18.

The stock has to fall 0.18 for the purchaser
of the put option to break even.
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Call values when conditional variances change
(product process)

e The Black-Scholes formula assumes the price
logarithm followed a continuous-time Wiener
process:daily returns then have independent
and identical distributions.

e Suppose the conditional standard deviations
Oty O441, * * -, 0 are generated by the Gaus-
slan process

In(o14n) — o = @[In(op1p-1) —a]+n; (10)
for 1 <h<T —twith0 < ¢ <1.

e The unconditional distribution of In(oyy ) is
N (e, 3%), the unconditional variance of oy,
is 07 = exp(2c + 23%) and the 7; are inde-
pendently distributed as N (0, 8%[1 — ¢%]).

e Suppose the return X} has distribution N (u, o)
for some constant .

o At time t, we know P; and o;. Then

T—t
ID(PT) = ln(Pt) + ;:1 Tt1q
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where 14, = In Py —In Py 1.

To determine c¢;, we need to find the dis-
tribution of /= r,,;. Under the above as-
sumption, In(Pr) is normally distributed with
conditional mean In(FP;)+ (T —t)u and con-
ditional variance

. B0} 4]o1) (11)

because the returns r;,; are uncorrelated.
e (11) can be evaluated via (10) to give
n(orynlor) ~ N(a+¢"[In(or)—al, B7[1—¢"))
and hence
E(o? ,lo1) = exp{2a + 2¢"In(0y) — @]
+20°[1 — ¢™}.
e Note that we can still use ¢; derived under

Black-Scholes model but we need to make
corresponding change on different variance.

e Replace ov/T — t by o1 and 0 by o} /(T —
t).
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