Financial Time Series

Topic 7: ARCH Related Models

Hung Chen
Department of Mathematics
National Taiwan University
5/15/2002

OUTLINE

- 1. Stock Volatility
- 2. Empirical Properties of Returns
- 3. Martingales and Random Walks
- 4. Testing the Random Walk Hypothesis
- 5. Stochastic Volatility Model
- 6. ARCH Processes
- 7. Detour to Pricing Theory
- 8. ARCH and Asset Pricing
- 9. Estimation

Stock Volatility

- Volatility: the conditional variance of the underlying asset returns
- Black-Scholes option pricing formula states that the price of a European call option is

$$c_t = P_t \Phi(x) - K r^{-\ell} \Phi(x - \sigma_t \sqrt{\ell}),$$

where

$$x = \frac{\ln(P_t/Kr^{-\ell})}{\sigma_t\sqrt{\ell}} + \frac{1}{2}\sigma_t\sqrt{\ell}.$$

- -K: striking price
- $-\ell$: the time to expiration
- $-P_t$: current price of the underlying stock
- -r; risk-free interest rate
- $-\sigma_t$: the conditional standard deviation of the log return of the specified stock
- The conditional variance of a stock return plays an important role in the pricing formula.
- How do we model the evolution of stock volatility?

- Conditional heteroscedastic models
 - Shocks of asset returns are NOT serially correlated, but dependent.
 - See ACF of squared and absolute returns of some stocks.
- Univariate volatility models:
 - ARCH: Engle (1992, Econometrica)
 - G(eneralized)ARCH: Bollerslev (1986, J. of Econometrics)
 - E(xponential)GARCH: Nelson (1991, Econometric Theory)
 Modeling asymetry in volatility
 - Stochastic volatility model: Melino and Turnball (1990, J. of *Econometrics*)
- Stock volatility is not directly observable.
 - The daily volatility is not directly observable from the daily returns.
 - If intra-daily prices are available, one can discuss the daily volatility.

Empirical Properties of Returns

- Empirical research on returns distributions has been ongoing since the early 1960s.
 - Daily returns of the market indexes and individual stocks tend to have high excess kurtoses.
 - Monthly returns have higher standard deviations than daily returns.
 - The skewness is not a serious problem for both daily and monthly returns.
- Volatility process: Study the evolution of conditional variances of the return over time.
 - Figures 2 and 3: The variabilities of returns vary over time and appear in clusters.
 - Extremes of a return series: large positive or negative returns
 - Volatility clusters: high for certain time periods and low for other periods
 - Volatility evolves over time in a continuous manner.

- Volatility varies within some fixed range.
 Volatility is stationary.
- Volatility seems to react differently to a big positive return and a big negative return.

EGARCH: capture the asymmetry in volatility induced by big positive and negative asset returns.

Study on Volatility

- x_t : the log return of a stock at time index t
- x_t is serially uncorrelated or with minor lower lag serial correlations, but it is dependent.
- Volatility models attempt to capture such dependence in the return series.
- Let \mathcal{F}_{t-1} be the information available at time t-1. Consider conditional mean and variance

$$\mu_t = E(x_t | \mathcal{F}_{t-1}) = g(\mathcal{F}_{t-1}),$$

$$\sigma_t^2 = Var(x_t | \mathcal{F}_{t-1}) = h(\mathcal{F}_{t-1}),$$

where $g(\cdot)$ and $h(\cdot)$ are well-defined functions with $h(\cdot) > 0$.

- It is common to assume that $\mu_t = \mu$.
- For a linear series, $g(\cdot)$ is a linear function of \mathcal{F}_{t-1} and $h(\cdot) = \sigma_a^2$.

 In statistical literature, they focus on $g(\cdot)$.

 Model x_t as a stationary ARMA(p,q).

$$x_t = \mu_t + a_t, \mu_t = \phi_0 + \sum_{i=1}^p \phi_i x_{t-i} - \sum_{i=1}^q \theta_i a_{t-i}.$$

• σ_t^2 is $Var(a_t|\mathcal{F}_{t-1})$.

Martingales and Random Walks

- A martingale is a stochastic process $\{x_t\}$ with the following properties:
 - $-E(|x_t|) < \infty$ for each t;
 - $-E(x_t|\mathcal{F}_s) = x_s$, whenever $s \leq t$.

 \mathcal{F}_s : the σ -algebra comprising events determined by observations over the interval [0, t]

 $\mathcal{F}_s \subset \mathcal{F}_t$ when $s \leq t$

- Right continuous: $\mathcal{F}_t = \bigcap_{s>t} \mathcal{F}_s$
- $\mathcal{F}_t = \sigma(x_s; s \leq t)$: the past history of $\{x_t\}_0^t$ itself

$$E(x_t - x_s | \mathcal{F}_s) = 0, \quad s \le t. \tag{1}$$

• (1) can be written equivalently as

$$x_t = x_{t-1} + a_t$$

where a_t is the martingale increment or martingale difference.

Is it a random walk model?

- The martingale rules out any dependence of the conditional expectation of x_t-x_{t-1} on the information available at t.

- The random walk rules out not only any dependence of the conditional expectation of $x_t x_{t-1}$ on the information available at t also dependence involving the higher conditional moments of $x_t x_{t-1}$.
- Financial series are known to go through protracted quiet periods and also protracted periods of turbulence.

 This type of behavior could be modelled by a process in which successive conditional variances of $x_t x_{t-1}$ (but not successive levels) are positive correlated.

 Such a specification would be consistent with a martingale, but not with the more restrictive random walk.
- Submartingale: $E(x_t x_s | \mathcal{F}_s) \ge 0, s \le t$.
- Supermartingale: $E(x_t x_s | \mathcal{F}_s) \leq 0, s \leq t$. Non-Linearity
- For random walk, a_t is $WN(0, \sigma^2)$. (i.e., stationary, uncorrelated, from a fixed distribution) a_t is $SWN(0, \sigma^2)$ (i.e., independent too)

- For martingale differences, a_t can be non-stationary.
- Why do we consider the dependence between conditional variances?
- Financial time series often go through protracted quiet periods interspersed with bursts of turbulence.
- Use non-linear stochastic processes to model such volatility.
- Suppose x_t is generated by the process $\Delta x_t = \eta_t$ with

$$\eta_t = a_t + \beta a_{t-1} a_{t-2},$$

where a_t is $SWN(0, \sigma^2)$.

• Properties of η_t :

$$E(a_t) = 0,$$

$$V(a_t) = constant,$$

$$E(\eta_t \eta_{t-k}) = E(a_t a_{t-k} + \beta a_{t-1} a_{t-2} a_{t-k} + \beta a_{t-1} a_{t-k-2} a_{t-k-1} a_{t-k-2} a_{t-k-1} a_{t-k-2} a_{t-k-1} a_{t-k-2}).$$

- For all $k \neq 0$, each of the term in the ACF has zero expectation. η_t behaves like an independent process.
- The conditional expectation is

$$\hat{\eta}_{t+1} = E(\eta_{t+1} | \eta_t, \eta_{t-1}, \cdots) = \beta a_t a_{t-1}.$$

• x_t is not a martingale because

$$E(x_{t+1} - x_t | \eta_t, \eta_{t-1}, \cdots) = \hat{\eta}_{t+1} \neq 0.$$

Testing the Random Walk Hypothesis

• Autocorrelation tests:

- Suppose $w_t = \Delta x_t$ is $SWN(0, \sigma^2)$.
- The sample autocorrelations (standardized by \sqrt{T}) calculated from the realization $\{w_t\}_1^T$ will be N(0,1).
- Reject the hypothesis if, for example, $\sqrt{T}|r_1| > 1.96$.
- Portmanteau tests: $Q^*(K)$ and Q(K).
- Those tests rely on the assumption that the random walk innovation is strict white noise.

Refer to page 126 for further discussion.

• Calendar effects:

- Consider autocorrelations associated with specific timing patterns.
- January effect: Stock returns in this month are exceptionally large.
- Weekend effect: Monday mean returns are negative rather than positive as for all other weekdays.

- Holiday effect: a much larger mean return for the day before holidays
- Turn-of-the-month effect: the four-day return around the turn of a month is greater than the average total monthly return
- Intramonth effect: the return over the first half of a month is significantly larger than the return over the second half

Stochastic Volatility

- Allow the variance (or the conditional variance) of the process to change either at certain discrete points in time or continuously.
- A stationary process must have a constant variance, certain conditional variances can change.
- For a non-linear stationary process x_t , the variance $Var(x_t)$ is a constant for all t, but the conditional variance $Var(x_t|x_{t-1}, x_{t-2}, \ldots)$ can change from period to period.
- Non-stationary variance or variance dependent on past observations and additional variables
- The models are non-linear, have high **kur-tosis**, and positive autocorrelation between *squared* returns.

Stochastic volatility (SV) models

• $\{x_t\}_{1}^{t}$: the product process

$$x_t = \mu + \sigma_t U_t \tag{2}$$

where

$$E(U_t) = 0$$
 and $Var(U_t) = 1$ for all t , $Var(x_t|\sigma_t) = \sigma_t^2$, and σ_t is a positive random variable.

 $\bullet \ E(x_t) = \mu,$

$$E(x_t - \mu)^2 = E(\sigma_t^2 U_t^2) = E(\sigma_t^2),$$

and autocovariance

$$E(x_t - \mu)(x_{t-k} - \mu) = E(\sigma_t \sigma_{t-k} U_t U_{t-k})$$

= $E(\sigma_t \sigma_{t-k} U_t) E(U_{t-k}) = 0.$

- Typically $U_t = (x_t \mu)/\sigma_t$ is assumed to be normal and independent of σ_t .
- (2) is motivated by the discrete time approximation to the stochastic differential equation

$$\frac{dP}{P} = d(\log(P)) = \mu dt + \sigma dW$$

where $x_t = \Delta \log(P_t)$ and W(t) is standard Brownian motion.

This is the usual diffusion process used to price financial assets in theoretical models of finance. • In the world of time series analysis, write the above sdf by setting dt = 1. We then have

$$\log(P_{t+1}) - \log(P_t) = \mu + \sigma(W_{t+1} - W_t).$$

• Although x_t is a white noise, the squared and absolute deviation, $S_t = (x_t - \mu)^2$ and $M_t = |x_t - \mu|$, can be autocorrelated.

$$Cov(S_t, S_{t-k}) = E(\sigma_t^2 \sigma_{t-k}^2) E(U_t^2 U_{t-k}^2) - (E(\sigma_t^2))^2$$

= $E(\sigma_t^2 \sigma_{t-k}^2) - (E(\sigma_t^2))^2$.

• Fact: Almost all sample paths W of Brownian motion are of unbounded variation. They are not differentiable.

How do we model σ_t ?

- The distribution of σ_t is skewed to the right. Consider a log-normal distribution.
- Define

$$h_t = \log(\sigma_t^2) = \gamma_0 + \gamma_1 h_{t-1} + \eta_t$$
 (3)

where $\eta_t \sim NID(0, \sigma_{\eta}^2)$ and is independent of U_t .

 h_t represents the random and uneven flow of new information into financial market.

- $x_t = \mu + U_t \exp(h_t/2)$, where U_t is always stationary. x_t will be stationary if and only if h_t is. Or, $|\gamma_1| < 1$.
- Moments of x_t or S_t : For even r,

$$E(x_t - \mu)^r = E(U_t^r)E(\exp(rh_t/2))$$

= $\frac{r!}{2^{r/2}r/2!}\exp\left(\frac{r}{2}\mu_h + \frac{r}{2}\frac{\sigma_h^2}{2}\right)$

where $\mu_h = E(h_t) = \gamma_0/(1 - \gamma_1)$ and $\sigma_h^2 = V(h_t) = \sigma_\eta^2/(1 - \gamma_1^2)$.

All odd moments are zero.

• kurtosis:

$$\frac{E(x_t - \mu)^4}{[E(x_t - \mu)^2]^2} = 3\exp(\sigma_h^2) > 3$$

The process has fatter tails than a normal distribution.

- autocorrelation: Refer to page 129.
- Taking logarithms of (2) yields

$$\log(S_t) = h_t + \log(U_t^2)$$

$$= \mu_h + \frac{\eta_t}{1 - \gamma_1 B} + \log(U_t^2)$$

$$\log(S_t) \sim ARMA(1, 1)$$

with non-normal innovations.

• The main difficulty with using SV models is that they are rather difficult to estimate.

ARCH Processes

- In (3), σ_t was dependent upon the information set $\{\eta_t, \sigma_{t-1}, \sigma_{t-2}, \ldots\}$.
- Now, consider the case that σ_t are a function of past values of x_t ,

$$\sigma_t^2 = h(x_{t-1}, x_{t-2}, \ldots).$$

- ARCH(1) process: Engle (1982)
- First-order autoregressive conditional heteroskedastic process:

Write ϵ_t as $\sigma_t U_t$ where $\{U_t\}$ is a sequence of iid r.v. with mean 0 and variance 1.

$$\sigma_t^2 = h(x_{t-1}) = \alpha_0 + \alpha_1 \epsilon_{t-1}^2,$$
 (4)

where $\alpha_0, \alpha_1 > 0$.

- The (mean-corrected) asset return x_t is serially uncorrelated but dependent.
- The dependence of x_t can be described by a simple quadratic function.
- Large deviations of x_{t-1} from the mean μ then cause a large variance for the next day.

Large returns tend to be followed by another large return

- Distribution of U_t : standard normal, standardized Student-t, or generalized error distribution.
- When $U_t \sim NID(0,1)$ and independent of σ_t ,

$$x_t = \mu + U_t \sigma_t$$

is white noise and conditionally normal, i.e.

$$x_t|x_{t-1}, x_{t-2}, \dots \sim NID(\mu, \sigma_t^2)$$

so that

$$Var(x_t|x_{t-1}) = \alpha_0 + \alpha_1(x_{t-1} - \mu)^2.$$

$$-E(x_t) = E[E(x_t|\mathcal{F}_{t-1})] = \mu$$

- Unconditional variance:

$$Var(x_t) = E[E(U_t^2 \sigma_t^2 | \mathcal{F}_{t-1})]$$

= $\alpha_0 + \alpha_1 E(x_{t-1} - \mu)^2$.

- Because x_t is a stationary process, we have $Var(x_t) = \alpha_0/(1 \alpha_1)$ if $\alpha_1 < 1$.
- It possesses constant variance yet changing conditional variance.

- When $0 < \alpha_1^2 < 1/3$, the fourth moment is finite.

$$E(U_t)^2 = 3[Var(U_t)]^2 \times \frac{1 - \alpha_1^2}{1 - 3\alpha_1^2}.$$

- The fourth moment of U_t is greater than that of a normal random variable when $\alpha_1 \neq 0$.

This implies that the U_t process is heavy-tailed and it is capable of producing clusters of outliers.

• Using (4), the series of $S_t = (x_t - \mu)^2$ satisfy

$$E(S_t|S_{t-1}) = \alpha_0 + \alpha_1 S_{t-1}.$$

a stationary AR(1) process

• ARCH(q) process:

$$\sigma_t = h(x_{t-1}, \dots, x_{t-q})$$

$$= \left(\alpha_0 + \sum_{i=1}^q \alpha_i (x_{t-i} - \mu)^2\right)^{1/2},$$

where α_0 and $\alpha_i \geq 0$, $1 \leq i \leq q$.

 S_t : an AR(q) process

• The process is weakly stationary if all the roots of the characteristic equation associ-

ated with the ARCH parameters, $\alpha(B)$, lie outside the unit circle, i.e., if $\sum_{i=1}^{q} \alpha_i < 1$.

• Unconditional variance:

$$\alpha_0/(1-\sum_{i=1}^q \alpha_i)$$

• Conditional variance:

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2$$

or

$$\epsilon_t^2 = \alpha_0 + \alpha(B)\epsilon_{t-i}^2 + v_t.$$

- Weakness of ARCH models:
 - This model treats *positive* and *negative* returns in the same manner, because it depends on the square of the previous returns.
 - In practice, it is well-known that for financial time series the prices respond differently to positive and negative returns.
 - The ARCH model is rather restrictive. For the ARCH(1) model of α_1^2 must be between 0 and 1/3. For higher-order ARCH models, the constraint is even stronger.

- ARCH models often over-predict the volatility, because they respond slowly to isolated large stocks to the return series.

Building ARCH Models

- Step 1: Remove the linear dependence of the return series and test for ARCH effects.
 - Mean Effect: Build an ARIMA model for the observed time series to remove any serial correlations in the data.
 - For most asset return series, this step amounts to remove the sample mean from the data if the sample mean is significantly different from zero.
 - Define $\epsilon_t = x_t \mu_t$.
 - Examine the squared series ϵ_t^2 to check for conditional heteroscedasticity.
- Step 2: Order determination If conditional heteroscedasticity is detected, we use the PACF of ϵ_t^2 to determine the ARCH order.
- Step 3: Estimation
 - Conditional MLE
 - Software: S-plus, RATS
- Step 4: The fitted ARCH model is carefully examined and refined if necessary.

skewness, kurtosis, standardized residuals, and etc

Likelihood Function and ARCH Estimation

• Note that

$$\sigma_t = \left(\alpha_0 + \sum_{i=1}^q \alpha_i (x_{t-i} - \mu)^2\right)^{1/2}.$$

 σ_t is a function of $x_{t-i} - \mu$ $(1 \le i \le q)$ and q+1 parameters α_i $(0 \le i \le q)$.

- Denote by ω the set of parameters μ , α_0 , $\alpha_1, \ldots, \alpha_q$.
- ullet The likelihood function for T observed returns is

$$L(x_1, x_2, \dots, x_T | \omega)$$

= $f(x_1 | \omega) f(x_2 | I_1, \omega) \cdots f(x_T | I_{T-1}, \omega).$

Here $f(x_t|I_{t-1},\omega)$ denotes the conditional density of x_t given the previous observations $I_{t-1} = \{x_1, x_2, \dots, x_{t-1}\}$ and the parameter vector ω .

• Under the normality assumption, for t > q,

$$f(x_t|I_{t-1},\omega) = f(x_t|\sigma_t)$$

$$= (\sqrt{2\pi}\sigma_t)^{-1} \exp\left[-\frac{1}{2}(x_t-\mu)^2/\sigma_t^2\right].$$

Or, the likelihood function of is

$$\prod_{t=q+1}^{T} \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left[-\frac{(x_t-\mu)^2}{2\sigma_t^2}\right] \times f(x_1,\dots,x_q|\omega).$$

• The conditional maximum likelihood estimate ω for observations q+1 to T, maximizes

$$L_q(\omega) = \prod_{t=q+1}^n f(x_t|I_{t-1},\omega).$$

The log likelihood function becomes

$$-\sum_{t=q+1}^{T} \left[\frac{1}{2} \ln(\sigma_t^2) + \frac{1}{2} \frac{a_t^2}{\sigma_t^2} \right],$$

where $\sigma_t^2 = \alpha_0^2 + \alpha_1 a_{t-1}^2 + \dots + \alpha_q a_{t-m}^2$ can be evaluated recursively.

The GARCH Model

- The ARCH model often requires many parameters to adequately described the evolution of volatility of an asset return.

 For the monthly return series of S&P 500 index, an ARCH(9) model is needed for the volatility series.
- For a log return series x_t , the conditional mean μ_t can be adequately described by an ARMA model. Let $\epsilon_t = x_t \mu_t$ be the mean-corrected log return.
- Generalized ARCH (GARCH(p,q)) process: Bollerslev (1986, 1988);

$$\epsilon_t = \sigma_t U_t,$$

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2,$$

where $\{U_t\}$ is a sequence of iid random variables with mean 0 and variance 1, $\alpha_i \geq 0$, $\beta_j \geq 0$, and $\sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i) < 1$. If p = 0, it reduces to a pure ARCH(q) model.

• Let $\eta_t = \epsilon_t^2 - \sigma_t^2$. We get the following equiv-

alent form:

$$\epsilon_t^2 = \alpha_0 + \sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i) \epsilon_{t-i}^2 + \eta_t - \sum_{j=1}^q \beta_j \eta_{t-j}.$$
 (5)

It is an ARMA form for the squared series ϵ_t^2 .

A GARCH model can be regarded as an application of the ARMA idea to the squared series ϵ_t^2 .

• Using the unconditional mean of an ARMA model, we have

$$E(\epsilon_t^2) = \frac{\alpha_0}{\sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i)}$$

provided that the denominator of the above fraction is positive.

- The process is weakly stationary if and only if the roots of $\alpha(B) + \beta(B)$ lie outside the unit circle, i.e., $\alpha(1) + \beta(1) < 1$.
- A popular model for financial time series: GARCH(1,1) process

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2.$$

To be well-defined, $0 \le \alpha_1, \beta_1 \le 1$ and $\alpha_1 + \beta_1 < 1$.

- Volatility clustering: A large ϵ_{t-1}^2 or σ_{t-1}^2 gives rise to a large σ_t^2 .
- Heavy tail: If $1 2\alpha_1^2 (\alpha_1 + \beta_1)^2 > 0$, then

$$\frac{E(\epsilon_t^4)}{[E(\epsilon_t^2)]^2} = \frac{3[1 - (\alpha_1 + \beta)^2]}{1 - (\alpha_1 + \beta_1)^2 - 2\alpha_1^2} > 3.$$

• ϵ_t and σ_t^2 are strictly stationary if and only if

$$E(\log(\beta_1 + \alpha_1 U_t^2)) < 0.$$

Generalized ARCH

- I(ntergrated) GARCH(p, q):
 - If the AR polynomial of the GARCH representation has a unit root, we then have an IGARCH mode.
 - IGARCH models are unit-root GARCH models.
 - The key feature of IGARCH models is that the impact of past squared shocks η_{t-i} (i > 0) on ϵ_t^2 is persistent.
 - $-\alpha(1) + \beta(1) = 1$ Here I refers to integrated. See page 134.
 - Consider IGARCH(1, 1) model.

$$\sigma_t^2 = \alpha_0 + \beta_1 \sigma_{t-1}^2 + (1 - \beta_1) \epsilon_{t-1}^2,$$

where $0 < \beta_1 < 1.$

- E(xponential)GARCH model:
 - Allow for asymmetric effects between positive and negative asset returns.
 - Nelson (1991)

$$\log \sigma_t^2 = \alpha_0 + \alpha_1 f(\epsilon_{t-1}/\sigma_{t-1}) + \beta_1 \log \sigma_{t-1}^2$$

where

$$f(\epsilon_{t-1}/\sigma_{t-1}) = \theta_1 \epsilon_{t-1}/\sigma_{t-1} + (|\epsilon_{t-1}/\sigma_{t-1}| - E|\epsilon_{t-1}/\sigma_{t-1}|).$$

- The asymmetry allows volatility to respond more rapidly to falls in a market than to corresponding rises. See page 137.
- Long memory volatility processes: The FI-GARCH model.
 - FI refers to fractionally integrated.
 - See (4.10) in page 139.