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Stock Volatility

e Volatility: the conditional variance of the
underlying asset returns

e Black-Scholes option pricing formula states
that the price of a European call option is

¢, = PO(z) — Kr~'®(z — o,\V/0),

where

—L
Tr = ln(Patt/\[/(ZT ) + ;Ut\/z

— K: striking price

— {: the time to expiration

— P;: current price of the underlying stock
— r; risk-free interest rate

— o0y the conditional standard deviation of

the log return of the specified stock

e The conditional variance of a stock return
plays an important role in the pricing for-
mula.

e How do we model the evolution of stock
volatility?”



e Conditional heteroscedastic models
— Shocks of asset returns are NO'T' serially
correlated, but dependent.
— See ACF of squared and absolute returns
of some stocks.

e Univariate volatility models:

— ARCH: Engle (1992, Econometrica)

— G(eneralized) ARCH: Bollerslev (1986, J. of
Econometrics)

— E(xponential GARCH: Nelson (1991, Econo-
metric Theory)
Modeling asymetry in volatility

— Stochastic volatility model: Melino and
Turnball (1990, J. of Econometrics)
e Stock volatility is not directly observable.
— The daily volatility is not directly observ-
able from the daily returns.

— If intra-daily prices are available, one can
discuss the daily volatility.



Empirical Properties of Returns

e Eimpirical research on returns distributions
has been ongoing since the early 1960s.

— Daily returns of the market indexes and
individual stocks tend to have high ex-
cess kurtoses.

— Monthly returns have higher standard de-
viations than daily returns.

— The skewness 1s not a serious problem for
both daily and monthly returns.

e Volatility process: Study the evolution of
conditional variances of the return over time.

— Figures 2 and 3: The variabilities of re-
turns vary over time and appear in clus-
ters.

— Extremes of a return series: large posi-
tive or negative returns

— Volatility clusters: high for certain time
periods and low for other periods

— Volatility evolves over time in a continu-
OuS manner.



— Volatility varies within some fixed range.
Volatility is stationary.

— Volatility seems to react differently to a
big positive return and a big negative re-
turn.

EGARCH: capture the asymmetry in volatil-
ity induced by big positive and negative
asset returns.

Study on Volatility

e x;: the log return of a stock at time index ¢

e 1; is serially uncorrelated or with minor lower
lag serial correlations, but it is dependent.

e Volatility models attempt to capture such
dependence in the return series.

e Let F,_1 be the information available at time
t — 1. Consider conditional mean and vari-
ance

Ut = E($t|-7:t—1> = 9(ﬂ—1>7
o; = Var(z|Fi1) = h(Fi-1),

where ¢g(-) and h(-) are well-defined func-
tions with A(-) > 0.



e [t is common to assume that y; = p.

e For a linear series, g(+) is a linear function
of F;_1 and h(-) = o2
In statistical literature, they focus on g(-).
Model z; as a stationary ARM A(p, q).
Tt = pit T G,

P q
e = Po+ 2 Pi—i — 2 0a1—;.

e o7 is Var(a|Fi-1).



Martingales and Random Walks

e A martingale is a stochastic process {z;}
with the following properties:

— E(|xy|) < oo for each ¢;

— F(x|Fs) = x5, whenever s < t.
Fs: the o-algebra comprising events de-
termined by observations over the inter-

val [0, t]
Fs C Fy when s <t
— Right continuous: F; = Ny Fs
o F; = o(xs s < t): the past history of {z;}}
itself

E(x; — 4| Fs) =0, s<t. (1)
e (1) can be written equivalently as
Tt = Tt 1 + Gy

where a; is the martingale increment or mar-
tingale difference.
Is it a random walk model?

— The martingale rules out any dependence
of the conditional expectation of z;—x;_1
on the information available at ¢.
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— The random walk rules out not only any
dependence of the conditional expecta-
tion of x; — xi_1 on the information
available at t also dependence involv-
ing the higher conditional moments
of vy — zs_1.

— Financial series are known to go through
protracted quiet periods and also pro-
tracted periods of turbulence.

This type of behavior could be modelled
by a process in which successive condi-
tional variances of x; —x;_1 (but not suc-
cessive levels) are positive correlated.
Such a specification would be consistent
with a martingale, but not with the more
restrictive random walk.

e Submartingale: F(xz; — x4 Fs) >0, s < L.
e Supermartingale: F(z;—x|Fs) <0, s < t.
Non-Linearity

e For random walk,
a; is WN(0,07). (ie., stationary, uncorre-
lated, from a fixed distribution)
a; is SWN(0,0?) (i.e., independent too)
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e For martingale differences, a; can be non-
stationary.

e Why do we consider the dependence between
conditional variances?

e Financial time series often go through pro-
tracted quiet periods interspersed with bursts
of turbulence.

e Use non-linear stochastic processes to model
such volatility.

e Suppose x; is generated by the process Ax; =
7 with

e = a; + Bai_1a4—9,

where a; is SWN(0, 0%).



e Properties of n:

E(a;) = 0,
V(a;) = constant,
E(mmi—r) = Elaway— + Ba_10;-2a4y
+0at 10—k —10—k—2
+ 2101201 —1G1— k).

e For all k # 0, each of the term in the ACF
has zero expectation.
n; behaves like an independent process.

e The conditional expectation is
N1 = Bt e, me-1, - ) = Bagag 1.
e x; is not a martingale because

E(xip1 — ze|ne, -1, -+ +) = g1 7 0.
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Testing the Random Walk Hypothesis

e Autocorrelation tests:

— Suppose w; = Ax; is SWN(0, 0?).

— The sample autocorrelations (standard-
ized by /T calculated from the realiza-
tion {w; ¥ will be N(0,1).

— Reject the hypothesis if, for example, v/ T ] >
1.96.

— Portmanteau tests: Q*(K) and Q(K).

— Those tests rely on the assumption that
the random walk innovation is strict white
noise.

Refer to page 126 for further discussion.

e Calendar effects:
— Consider autocorrelations associated with

specific timing patterns.

— January effect: Stock returnsin this month
are exceptionally large.

— Weekend effect: Monday mean returns
are negative rather than positive as for
all other weekdays.
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— Holiday effect: a much larger mean re-
turn for the day before holidays

— Turn-of-the-month effect: the four-day
return around the turn of a month is
oreater than the average total monthly
return

— Intramonth effect: the return over the
first half of a month is significantly larger
than the return over the second half
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Stochastic Volatility

e Allow the variance (or the conditional vari-
ance) of the process to change either at cer-
tain discrete points in time or continuously.

e A stationary process must have a constant
variance, certain conditional variances can
change.

e For a non-linear stationary process x;, the
variance Var(x;) is a constant for all ¢, but
the conditional variance Var(x|z; 1, x;_o, ..
can change from period to period.

e Non-stationary variance or variance depen-
dent on past observations and additional vari-
ables

e The models are non-linear, have high kur-
tosis, and positive autocorrelation between
squared returns.

Stochastic volatility (SV) models
o {x;}}: the product process

Ty = U + O'tUt (2)
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where

E(U;) =0 and Var(U;) =1 for all ¢,
Var(zyo;) = o7, and

o 18 a positive random variable.

E(xt) = W,
E(x; — p)’ = E(0iUf) = E(0}),
and autocovariance

E(xy — p) (2 — ) = Elowo_ 1 UUs—y)
— E(O’tat_kUt)E<Ut_k) = 0.

Typically Uy = (x; — pt) /oy is assumed to be
normal and independent of o;.

(2) is motivated by the discrete time approx-
imation to the stochastic differential equa-
tion

dP

5 = d(log(P)) = pdt + odW

where x; = Alog(P;) and W (t) is standard
Brownian motion.

This is the usual diffusion process used to
price financial assets in theoretical models
of finance.
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e In the world of time series analysis, write
the above sdf by setting dt = 1.
We then have

log(Pr11) — log(Py) = p + o(Wigr — Wh).

e Although z; is a white noise, the squared
and absolute deviation, S; = (z; — p)* and
My = |z; — p|, can be autocorrelated.

COU(St,St—k‘) — E<0-t0-t k)E<Ut2Ut2—k) - <E<Jt2))2
= B(ojoi) — (E(07))".

e Fact: Almost all sample paths W of Brow-
nian motion are of unbounded variation.
They are not differentiable.
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How do we model o7

e The distribution of oy is skewed to the right.
Consider a log-normal distribution.

e Define

hy = 1og(at2) = Y0 + y1hi—1 + 0 (3)

where 7, ~ NID(0, 0;) and is independent
of Uy.

h; represents the random and uneven flow
of new information into financial market.

o r; = i+ Upexp(hy/2), where U; is always
stationary:.
x; will be stationary it and only if h; is.
OI‘, "}/1‘ < 1.

e Moments of x; or S;:
For even r,

E(xy —p)" = E(U])E (exp(rhi/2))

r! T ro;
p— e — -
o221 P (2Hh T 9T
where pp = E(hy) = v0/(1 — 1) and o7 =
V(h) = oy /(1 =),

All odd moments are zero.
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e kurtosis:
E(x; —p)t
(B (s — p)?)?
The process has fatter tails than a normal
distribution.

= 3exp(o;) > 3

e autocorrelation: Refer to page 129.
e Taking logarithms of (2) yields
log(S;) = hy +log(U})
= pp+ L log(U?)

1 — ’le
log(S;) ~ ARMA(1,1)

with non-normal innovations.

e The main difficulty with using SV models is
that they are rather difficult to estimate.
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ARCH Processes

e In (3), 0; was dependent upon the informa-
tion set {n;, 041,049, ...}.

e Now, consider the case that g; are a function
of past values of z;,

0 = h(T4_1,Ti_a, . . .).

e ARCH(1) process: Engle (1982)

e First-order autoregressive conditional het-
eroskedastic process:
Write € as o,U; where {U;} is a sequence of
iid r.v. with mean 0 and variance 1.

0't2 = h(azt_l) = Qg + 0416t2_1, (4)

where ag, a; > 0.
— The (mean-corrected) asset return x; is

serially uncorrelated but dependent.

— The dependence of x; can be described
by a simple quadratic function.

— Large deviations of x;_; from the mean
1t then cause a large variance for the next
day.
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Large returns tend to be followed by an-
other large return

e Distribution of U;: standard normal, stan-
dardized Student-¢, or generalized error dis-
tribution.

e When U; ~ NID(0,1) and independent of

Ot,
Ty = U+ UtO't
is white noise and conditionally normal, i.e.
xt|xt—17 Lp—2y " ™ NID(/M UtQ)

so that

Var(zzi—1) = g + ar(z_1 — p)?.
— E(xy) = E|E(x| Fia)] =
— Unconditional variance:

Var(z,) = E[E(Ufo7| Fi-1)]
= o+ Bz — p)*

— Because x; 1s a stationary process, we

have Var(x;) = ap/(1 —aq) if oy < 1.

— It possesses constant variance yet chang-
ing conditional variance.
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— When 0 < of < 1/3, the fourth moment

1s finite.

2
l —og

E(U)? = 3[Var(Uy)) x [ 302

— The fourth moment of Uy is greater than
that of a normal random variable when

1 7£ 0.
This implies that the U; process is heavy-

tailed and it is capable of producing clus-
ters of outliers.

e Using (4), the series of Sy = (x; — p)? satisfy
E(S;Si-1) = ap + a1.5;_1.
a stationary AR(1) process
e ARCH(q) process:

Ot — h(llft_l, ce ,.’,Ct_q)

. 1/2
2
= (040 + 3 ai(xi—; — 1) ) ;

1=1
where ap and a; > 0,1 <1 < gq.
Sy an AR(q) process
e The process is weakly stationary if all the
roots of the characteristic equation associ-
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ated with the ARCH parameters, a(B), lie
outside the unit circle, i.e., if ©}_; oy < 1.

e Unconditional variance:

q
ao/(1 = L )

e Conditional variance:
p g p
O't — ) —+ Z &iet_z‘
1=1
or
e =g+ afB)eé_ + ;.

e Weakness of ARCH models:

— This model treats positive and negative
returns in the same manner, because it
depends on the square of the previous
returns.

In practice, it is well-known that for fi-
nancial time series the prices respond dif-
ferently to positive and negative returns.

— The ARCH model is rather restrictive.
For the ARCH(1) model of o must be
between 0 and 1/3. For higher-order ARCH

models, the constraint is even stronger.
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— ARCH models often over-predict the volatil-
ity, because they respond slowly to iso-
lated large stocks to the return series.
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Building ARCH Models

e Step 1: Remove the linear dependence of the
return series and test for ARCH effects.

— Mean Effect: Build an ARIMA model for

the observed time series to remove any
serial correlations in the data.

— For most asset return series, this step
amounts to remove the sample mean from
the data if the sample mean is signifi-
cantly different from zero.

— Define ¢, = xy — .
— Examine the squared series €7 to check
for conditional heteroscedasticity:.

e Step 2: Order determination
If conditional heteroscedasticity is detected,
we use the PACF of € to determine the
ARCH order.

e Step 3: Estimation

— Conditional MLE
— Software: S-plus, RATS

e Step 4: The fitted ARCH model is carefully

examined and refined if necessary:.
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skewness, kurtosis, standardized residuals,
and etc

Likelihood Function and ARCH Estimation
e Note that

. 1/2

2

op = (ozo + _;1 a;(Ty; — 1) ) .
o is a function of z;_; — p (1 <14 < gq) and
q + 1 parameters o; (0 <17 < q).

e Denote by w the set of parameters u, ay,
aq, ..., Q.

e The likelihood function for T" observed re-

turns 1s

L(.CIJl, Ly« v ,.QIT‘CU)

= f(z1|w) f(za| 1, w) - - - f(@r|I7-1, W)
Here f(x¢|l;_1,w) denotes the conditional
density of x; given the previous observations
I 1 = {x1,29,..., 241} and the parame-
ter vector w.

e Under the normality assumption, for ¢ > g,
flze i1, w) = f(x4|oy)
1
= (V2moy) ' exp —5@71& —p)*/o].
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Or, the likelihood function of is

(z¢ — M)2
207

T 1
II ex
t=q+1 207 P

e The conditional maximum likelihood esti-
mate w for observations ¢ + 1 to 1", max-
1mizes

X fn, s aglw).

Lyw)= T f(@lh,w).

t=q+1

The log likelihood function becomes

T (1 la;
_ T ln(g?) - -t
t:%:ﬂ 2 nfor) + 207"

2 _ 2 2 2
where o} = a5 +aqa;_; +---+aga;_,, can

be evaluated recursively.
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The GARCH Model

e The ARCH model often requires many pa-
rameters to adequately described the evolu-
tion of volatility of an asset return.

For the monthly return series of S&P 500

index, an ARCH(9) model is needed for the
volatility series.

e For a log return series x;, the conditional

mean f; can be adequately described by an
ARMA model. Let ¢ = x; — py be the

mean-corrected log return.

e Generalized ARCH (GARCH(p,q)) process:
Bollerslev (1986, 1988);

e = oiUy,
2 _ a 9 Poon 2
0y = Qo+ El Qi€ +]§1 Bioi_js

where {U;} is a sequence of iid random vari-
ables with mean 0 and variance 1, a; > 0,
B; > 0, and =25 (a; + 5) < 1,

If p = 0, it reduces to a pure ARCH(q)
model.

o Let gy = €—07. We get the following equiv-
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alent form:

max(p,q)
& = ag+ Z (o + Bi)er,

2_

+n; — j§1 Bin—;. (5)

It is an ARMA form for the squared series
2

€; .

A GARCH model can be regarded as an ap-

plication of the ARMA idea to the squared

series €.

e Using the unconditional mean of an ARMA
model, we have

%)
Zmax(pq ( . ﬂz)

provided that the denominator of the above
fraction is positive.

E(e) =

e The process is weakly stationary if and only
if the roots of a(B) + B(B) lie outside the
unit circle, i.e., a(l) + B(1) < 1

e A popular model for financial time series:

GARCH(1, 1) process

2 2 2
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To be well-defined, 0 < aq, 81 < 1 and a1 +
51 < 1.
2

— Volatility clustering: A large €7 , or 07,

. . 2
gives rise to a large o;.

— Heavy tail: If 1 — 204 — (a1 + 51)? > 0,
then
E(e) 301 —(a1+p)]

B@F 1 (ot B)f—20 "

e ¢; and o7 are strictly stationary if and only
if
E(log(ﬁl -+ OélUt2>) < 0.
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Generalized ARCH

e [(ntergrated) GARCH(p, q):
— If the AR polynomial of the GARCH rep-

resentation has a unit root, we then have

an [GARCH mode.
— [GARCH models are unit-root GARCH

models.

— The key feature of IGARCH models is

that the impact of past squared shocks

ni—i (i > 0) on €7 is persistent.

—a(l)+p6(1) =1
Here I refers to integrated. See page 134.

— Consider IGARCH(1, 1) model.

o; =ay+ ;1 + (1 — Bi)e 1,

where 0 < 31 < 1.
e E(xponential GARCH model:

— Allow for asymmetric effects between pos-
itive and negative asset returns.

— Nelson (1991)
log af = aptayf(e-1/0i-1)+01 log 0132—1
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where

fler—1/o1—1) = 01641/ 041+
(let—1/0¢-1] — Eles—1/0¢-1]).

— The asymmetry allows volatility to re-
spond more rapidly to falls in a market

than to corresponding rises. See page
137.

e Long memory volatility processes: The FI-

GARCH model.

— FI refers to fractionally integrated.
— See (4.10) in page 139.
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