Financial Time Series

Topic 6: Fractional Integration and Long Memory Processes

Hung Chen
Department of Mathematics
National Taiwan University
5/06/2002

OUTLINE

- 1. Variance Estimate
- 2. Decomposing time series
- 3. Hypothesis Testing
- 4. Spectral Density
- 5. Fractional Integration and Long Memory Processes
 - ARFIMA models
 - Testing for fractional differencing
 - Estimation
- 6. Measures of Persistence and Trend Reversion

Variance Estimate in ARMA Models

Consider an ARMA(p,q) process

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p}$$

= $a_t - \theta_1 a_{t-1} - \dots - \theta_q a_{t-q}$,

or

$$(1 - \phi_1 B - \dots - \phi_p B^p) X_t$$

= $(1 - \theta_1 B - \dots - \theta_q B^q) a_t$,

i.e.

$$\phi(B)X_t = \theta(B)a_t.$$

Here $\{a_t\} \sim IID(0, \sigma^2)$.

Use either MLE or Least squares method, both approaches lead to the following result.

• Set
$$\hat{\beta} = (\hat{\phi}_1, \dots, \hat{\phi}_p, \hat{\theta}_1, \dots, \hat{\theta}_q)^T$$
. Then $\sqrt{T}(\hat{\beta} - \beta) \to N(0, \mathbf{V}(\beta)),$

where

$$\mathbf{V}(\beta) = \sigma^2 \begin{bmatrix} E\mathbf{U}_t \mathbf{U}_t^T & E\mathbf{U}_t \mathbf{V}_t^T \\ E\mathbf{V}_t \mathbf{U}_t^T & E\mathbf{V}_t \mathbf{V}_t^T \end{bmatrix}^{-1}.$$

• autogressive processes:

$$\mathbf{U}_t = (U_t, \dots, U_{t+1-p})^t$$

$$\mathbf{V}_t = (U_t, \dots, U_{t+1-p})^t$$

$$\phi(B)U_t = a_t$$

$$\theta(B)V_t = a_t.$$

 \bullet AR(p):

$$Var(\phi) = \sigma^2 (E\mathbf{U}_t \mathbf{U}_t^T)^{-1},$$

$$EU_t U_t^T = (EX_i X_j)_{i,j=1}^p.$$

- AR(1): $\hat{\phi}$ is $AN(\phi, T^{-1}(1-\phi^2))$.
- AR(2): $(\hat{\phi}_1, \hat{\phi}_2)^T$ is

$$AN\left(\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, T^{-1} \begin{pmatrix} 1 - \phi_2^2 & -\phi_1(1 + \phi_2) \\ -\phi_1(1 + \phi_2) & 1 - \phi_2^2 \end{pmatrix} \right)$$

 \bullet MA(q):

$$Var(\theta) = \sigma^{2}(EV_{t}V_{t}^{T})^{-1},$$

 $EV_{t}V_{t}^{T} = (EV_{i}V_{j})_{i,j=1}^{q}.$

Apply the results from AR(p), we have

- MA(1): $\hat{\phi}$ is $AN(\theta, T^{-1}(1-\theta^2))$.
- MA(2): $(\hat{\theta}_1, \hat{\theta}_2)^T$ is

$$AN\left(\left(\begin{array}{c}\theta_1\\\theta_2\end{array}\right),T^{-1}\left(\begin{array}{cc}1-\theta_2^2&-\theta_1(1+\theta_2)\\-\theta_1(1+\theta_2)&1-\theta_2^2\end{array}\right)\right)$$

Question: How do we simulate a univariate ARIMA time series?

- Use arima.sim in Splus.
- The innovations are Gaussian by default.
- Command: arima.sim(model, n=100, innov=NULL, n.start=100, start.innov=NULL, rand.gen=rnorm, xreg=NULL, reg.coef=NULL, ...)
- Example 1: Simulate an ARMA(1, 1) with standard deviation of innovations 1.

$$x < -arima.sim(100, model = list(ar = .5, ma = -.6)).$$

Example 2: Simulate an ARIMA(0, 1, 1) with contaminated innovations.

```
rand.10wild < -function(n) \ ifelse( \\ runif(n) > .90, rnorm(n), rcauchy(n)) \\ x.wild < -arima.sim(100, model = list( \\ ndiff = 1, ma = .6), n.start = 100, rand.gen = rand.fi
```

• model: a list specifying an ARIMA model. Note that the coefficients must be provided through the elements ar and ma (otherwise the coefficients are set to zero).

Example: model = list(ma = c(-.5, -.25))

- n: the length of the series to be simulated.
- innov: a univariate time series or vector of innovations to produce the series.

 If not provided, innov will be generated using rand.gen.
- n.start: the number of start-up values discarded when simulating non-stationary models.
 - The start-up innovations will be generated by rand.gen if start.innov is not provided.
- start.innov: a univariate time series or vector of innovations to be used as start up values.
 - Missing values are not allowed.
- rand.gen: a function which is called to generate the innovations.
 Usually, rand.gen will be a random number generator.
- xreg: a univariate or multivariate time se-

ries, or a vector, or a matrix with univariate time series per column.

These will be used as additive regression variables.

• reg.coef: a vector of regression coefficients corresponding to xreg.

Decomposition of Time Series

Suppose a time series is difference stationary.

- Unobserved component models
- Write it as

$$x_t = z_t + u_t. (1)$$

trend plus noise: how and why

- What is it for?

 Idea: The unobserved random walk is buried in white noise.
- Motivated Example:
 What is the expected real rates of interest under the assumption of rational expectation (financial market efficiency):
 - Example 3.5, Fig. 3.8
 - $-z_t$: unobservable expected real rate
 - $-z_t$: a driftless random walk (under the above assumption)
 - $-x_t$: observed real rate
 - $-u_t$: unexpected inflation It is a white-noise process if the market is efficient.

 $-x_t$: Will follow the ARIMA(0, 1, 1) process.

$$(1 - B)x_t = (1 - \theta B)e_t. (2)$$

Refer to Example 3.5.

- Question 1: Given only $\{x_t\}$ and its model, can z_t and u_t be identified?
- Question 2: How do we estimate these two unobserved components? Signal Extraction

Muth's (1960) approach:

• The trend component, z_t , is a random walk.

$$z_t = \mu + z_{t-1} + v_t.$$

• The noise component, u_t is white noise and independent of v_t .

$$u_t \sim WN(0, \sigma_u^2), \quad v_t \sim WN(0, \sigma_v^2),$$

$$E(u_t v_{t-i}) = 0 \text{ for all } i.$$

• $\triangle x_t$ is a stationary process

$$\Delta x_t = \mu + v_t + u_t - u_{t-1}.$$
 (3)

• ACF of $\triangle x_t$: It cuts off at lag one with coefficient

$$\rho_1 = -\frac{\sigma_u^2}{\sigma_u^2 + 2\sigma_v^2}. (4)$$

Here $\sigma_u^2 + 2\sigma_v^2$ is the variance of $\triangle x_t$.

- $-0.5 \le \rho_1 \le 0$
- $\kappa = \sigma_v^2/\sigma_u^2$: signal-to-noise variance ratio $\kappa = 0 = \sigma_v^2$: z_t is a deterministic linear trend.

 $\kappa = \infty$: x_t is a pure random walk.

• $\triangle x_t$: an MA(1) process

$$\Delta x_t = \mu + e_t - \theta e_{t-1},\tag{5}$$

where

$$\begin{split} & - e_t \sim WN(0, \sigma_e^2). \\ & - \kappa = (1 - \theta)^2/\theta \\ & - \theta = \left\{ (\kappa + 2) - (\kappa^2 + 4\kappa)^{1/2} \right\}/2 \\ & - \sigma_u^2 = \theta \sigma_e^2 \end{split}$$

• Identifiability:

 $\hat{\sigma}_u^2$: lag one autocovariance of $\triangle x_t$

 $\hat{\sigma}_v^2$: based on the variance of $\triangle x_t$ and $\hat{\sigma}_u^2$

• MMSE estimate of z_t : Given $\{x_t\}_{-\infty}^{\infty}$, Pierce (1979) proposes

$$\hat{z}_t = v_Z(B)x_t = \sum_{j=-\infty}^{\infty} v_{zj}x_{t-j}.$$

Refer to p103 for the definition of the filter $v_Z(B)$ in general.

• Estimate of u_t :

$$\hat{u}_t = (1 - v_Z(B))x_t$$

• Under Muth model,

$$\begin{aligned} v_Z(B) &= \frac{\sigma_v^2}{\sigma_e^2} (1 - \theta B)^{-1} (1 - \theta B^{-1})^{-1} \\ &= \frac{\sigma_v^2}{\sigma_e^2} \frac{1}{1 - \theta^2} \sum_{j = -\infty}^{\infty} \theta^{|j|} B^j. \end{aligned}$$

• Note that $\sigma_v^2 = (1 - \theta)^2 \sigma_e^2$, we have

$$\hat{z}_t = \frac{(1-\theta)^2}{1-\theta^2} \sum_{j=-\infty}^{\infty} \theta^{|j|} x_{t-j}.$$

• How do we estimate z_t if we only have data on x_t up to t - m?

Pierce (1979) proposed the following:

For $m \geq 0$,

$$\hat{z}_t^{(m)} = (1 - \theta)B^m \sum_{j=0}^{\infty} (\theta B)^j x_t.$$

For m < 0,

$$\hat{z}_{t}^{(m)} = \frac{1 - \theta}{\theta^{m}} B^{m} \sum_{j=0}^{\infty} (\theta B)^{j} x_{t} + \frac{1}{1 - \theta B} \sum_{j=0}^{-m-1} \theta^{j} B^{-j} x_{t}.$$

More general form:

• $\Delta z_t = \mu + \nu(B)v_t$ and $u_t = \lambda(B)a_t$ where v_t and a_t are independent white-noise sequences with finite variances σ_v^2 and σ_a^2 and

where $\nu(B)$ and $\lambda(B)$ are stationary polynomials having no common roots.

• x_t will have the following form

$$\Delta x_t = \mu + \theta(B)e_t \tag{6}$$

where $\theta(B)$ and σ_e^2 can be obtained from

$$\sigma_e^2 \frac{\theta(B)\theta(B^{-1})}{(1-B)(1-B^{-1})} \tag{7}$$

$$= \sigma_v^2 \frac{\nu(B)\nu(B^{-1})}{(1-B)(1-B^{-1})} + \sigma_a^2 \lambda(B)\lambda(B^{-1}).$$

The parameters will not be identified in general.

- Poterba and Summers (1988) model:
 - Assume $u_t = \lambda u_{t-1} + a_t$. Then

$$\triangle x_t = \mu + v_t + (1 - \lambda B)^{-1} (1 - B) a_t$$

or

$$\Delta x_t^* = (1 - \lambda)\mu + (1 - \lambda B)v_t + (1 - B)a_t$$

where
$$x_t^* = (1 - \lambda B)x_t$$
.
 $-\Delta x_t$: $ARMA(1, 1)$ process
 $(1 - \lambda B) \Delta x_t = \theta_0 + (1 - \theta_1 B)e_t$
where $e_t \sim WN(0, \sigma_e^2)$ and $\theta_0 = \mu(1 - \lambda)$.
 $-\theta_1 = [2(1 + \lambda \kappa)]^{-1} \{2 + \kappa(1 + \lambda)^2 - (1 - \lambda)[(1 + \lambda)^2 \kappa^2 + 4\kappa]^{1/2}\}$
 $-\sigma_e^2 = (\lambda \sigma_v^2 + \sigma_a^2)/\theta_1$

Example 3.5 Estimating expected real rates of interest

- Model in (2) is fitted to the real UK Treasury bill rate over the period 1952Q1 to 1995Q3.
- $\Delta x_t = (1 0.694B)e_t, \, \hat{\sigma}_e^2 = 7.62$
- Hence,

$$\hat{\sigma}_v^2 = (1 - 0.694)^2 \hat{\sigma}_e^2 = 0.71$$

 $\hat{\sigma}_u^2 = 0.694 \hat{\sigma}_e^2 = 5.29.$

- The variations in the expected real rate are small compared to variations in unexpected inflation. (0.71/5.29 = 0.134)
- Exponentially weighted moving average

$$\hat{z}_t = v_Z^{(0)}(B)x_t = (1 - 0.694) \sum_{i=0}^{\infty} (0.694B)^i x_t.$$

- When θ is close to zero, \hat{z}_t will be almost equal to the most recently observed value of x.
- Large values of θ correspond to small values of the signal-to-noise ratio.
- Unexpected inflation: $\hat{u}_t = x_t \hat{z}_t$

• Figure 3.8:

- The expected real rate is considerably smoother than the observed real rate. (small κ)
- Early 50s: Expected real rate is generally negative.
- -1956 to 1970: consistently positive
- mid70 to mid 80: negative
- Minimum: 1975Q1 (peak inflation due to the OPEC price rise)
- mid80 to present: positive
- Fluctuations in unexpected inflation are fairly homogeneous except for the period from 1974 to 1982.

Hypothesis Testing: nested hypotheses

Consider statistical tests of $r < \ell$ independent equality restrictions on the $\ell \times 1$ parameter vector θ_0 , which is being represented by the implicit side relations

$$g_j(\theta) = 0, \quad j = 1, 2, \dots, r.$$
 (8)

This setting is being called a nested hypothesis.

- The vector that satisfy (8) form an (ℓr) dimensional subspace Θ_0 of the parameter space Θ .
 - θ_0 lies in a subspace.
- $H_0: \theta_0 \in \Theta_0$ versus $H_a: \theta_0 \in \Theta \Theta_0$.
- We can differentiate functions of θ at $\theta_0 \in \Theta_0$ in all directions, including those leading to a passage into the alternative parameter space $\Theta \Theta_0$.

Likelihood Ratio test

• unconstrained maximizer: $\hat{\theta}$

$$\max_{\theta \in \Theta} L(\theta)$$

ullet constrained maximizer: $\widetilde{\theta}$

$$\max_{\theta \in \Theta_0} L(\theta)$$

re-parametrization or applying Lagrange Multiplier method

$$\log L(\theta) - \sum_{i=1}^{r} \mu_j g_j(\theta)$$

• Form the likelihood ratio

$$\lambda = L(\tilde{\theta})/L(\hat{\theta}).$$

Under H_0 , $LR = -2 \log \lambda$ is asymptotically distributed as chi-square with r degrees of freedom.

• Taylor series expansion:

$$\begin{split} \log L(\tilde{\theta}) &- \log L(\hat{\theta}) \approx q(\hat{\theta})^T (\tilde{\theta} - \hat{\theta}) \\ &+ \frac{1}{2} (\tilde{\theta} - \hat{\theta})^T Q(\hat{\theta}) (\tilde{\theta} - \hat{\theta}). \end{split}$$

• LR will serve as a test statistic for H_0 .

 \bullet LR can be written as

$$\sqrt{n}(\tilde{\theta} - \hat{\theta})^T \bar{H}(\tilde{\theta} - \hat{\theta}) \sqrt{n}$$

where \bar{H} is the Hessian matrix.

Wald's test

- Idea: $g_j(\hat{\theta})$ should be close to $g_j(\theta_0)$ which is zero.
- Wald's test statistic:

$$W = (g_1(\hat{\theta}), \dots, g_r(\hat{\theta}))^T (G_r(\hat{\theta}) \hat{V} G_r(\hat{\theta})^T)^{-1} (g_1(\hat{\theta}), \dots, g_r(\hat{\theta}))$$

where $G_r(\theta)$: the $r \times \ell$ matrix from the derivative of $(g_1(\hat{\theta}), \dots, g_r(\hat{\theta}))$ and \hat{V} : the covariance matrix estimate of $\hat{\theta}$.

• Under H_0 , W is asymptotically distributed as chi-square with r degrees of freedom.

Lagrange multiplier test

- It is also called Rao efficient score test.
- score vector:

$$q(\theta) = \partial \log L(\theta) / \partial \theta$$

- Idea: $q(\tilde{\theta})$ should be close to $q(\theta_0)$ which is zero.
- Lagrange multiplier test statistic:

$$LM = q(\tilde{\theta})^T \hat{V}(\tilde{\theta}) q(\tilde{\theta}).$$

• Under H_0 , LM is asymptotically distributed as chi-square with r degrees of freedom.

Spectral Density

- Time-Domain property: The autocorrelations and the variance summarize the second order moments of a stationary process.
- Frequency-Domain properties:
- Consider x_1, \ldots, x_T made at times $1, \ldots, T$ respectively.
- Express x_t as

$$T^{-1/2} \sum_{-\pi < w_j \le \pi} a_j \exp(itw_j)$$

where

 $w_j = 2\pi j/T$: Fourier frequencies a_j : random Fourier coefficients.

- spectral density: $f_x(w) = E|a_j|^2$
- Periodogram: $I(w_j)$

$$I(w_j) = T^{-1} \left| \sum_{t=1}^{T} x_t \exp(-itw_j) \right|^2.$$

Note that

$$\|\mathbf{x}\|^2 = \sum_{j} I(w_j).$$

- High values of f(w): possible cyclical behavior at frequency w with the period of one cycle equalling $2\pi/w$ time units.
- The series x_t will display long memory if its spectral density, $f_x(w)$, increases without limit as the frequency w tends to zero.
- If x_t is ARFIMA, then $f_x(w)$ behaves like w^{-2d} as $w \to 0$.
 - d: It parametrizes the low-frequency behavior.

Fractional Integration and Long Memory

- In the analysis of financial time series, we usually consider the order of differencing, d, is either 0 or 1.
 - $-x_t \sim I(1)$: The ACF declines linearly.
 - $-x_t \sim I(0)$: The ACF declines exponentially.
 - Observations separated by a long time span may be assumed to be independent.
- Long persistence: Many empirically observed time series appeared to satisfy the assumption of stationarity (perhaps after some differencing transformation) but it exhibits a dependence between distant observations.
- Hurst effect (Mandlebrot and Wallis, 1969): hydrology
- Many economic time series exhibit the tendency for large values to be followed by large values of the same sign.

The series seem to go through a succession of cycles even including long cycles whose length is comparable to the total sample size. • Call for new models.

fractionally integrated

- Model long-term persistence.
- ARFIMA (AR Fractionally IMA)
- Consider real d > -1,

$$\Delta^{d} = (1 - B)^{d} = \sum_{k=0}^{\infty} {d \choose k} (-B)^{k}$$
 (9)
= $1 - dB + \frac{d(d-1)}{2!} B^{2}$
 $-\frac{d(d-1)(d-2)}{3!} B^{3} + \cdots$

- How does the ARFIMA model incorporate long memory behaviour?
- Fractional white noise (ARFIMA(0, d, 0)) process)

$$(1-B)^d x_t = a_t.$$

- random walk versus Brownian motion fractional white noise versus fractional Brownian motion
- For non-integer values of d, ACF of x_t declines **hyperbolically** to zero.

The autocorrelations are given by $\rho_k = \Gamma k^{2d-1}$ where Γ is the ratio of two gamma functions.

- weakly (2nd order) stationary: d < 0.5
- non-stationary: $d \ge 0.5$ $Var(x_t) = \infty$.
- Invertible: d > -0.5. The process can be written in AR form if the π weights converge, i.e. $\sum_{j=0}^{\infty} |\pi_j| < \infty$.

Test for Fractional Difference

Classical approach to detect the presence of longterm memory: Hurst (1951), Mandelbrot (1972)

• R/S statistic: range over standard deviation

$$R_{0} = \hat{\sigma}_{0}^{-1} \left[\max_{1 \leq i \leq T} \sum_{t=1}^{i} (x_{t} - \bar{x}) - \min_{1 \leq i \leq T} \sum_{t=1}^{i} (x_{t} - \bar{x}) \right]$$
(10)

where $\hat{\sigma}_0^2 = T^{-1} \Sigma_{t=1}^T (x_t - \bar{x})^2$.

- the range: the maximum of the partial sums of the first i deviations of x_i from the sample mean the minimum of the partial sums of the first i deviations of x_i from the sample mean
- Shortcoming: R/S is also sensitive to short-range dependence (short-term autocorrelation)
- Modified R/S statistic proposed in Lo (1991):

$$R_{q} = \hat{\sigma}_{q}^{-1} \left[\max_{1 \le i \le T} \sum_{t=1}^{i} (x_{t} - \bar{x}) - \min_{1 \le i \le T} \sum_{t=1}^{i} (x_{t} - \bar{x}) \right]$$
(11)

where

$$\hat{\sigma}_q^2 = \hat{\sigma}_0^2 \left(1 + \frac{2}{T} \sum_{j=1}^q w_{qj} r_j \right)$$

and $w_{qj} = 1 - j(q+1)^{-1}$ for q < T.

Here r_i is the sample autocorrelations.

- The asymptotic distribution of $T^{-1/2}R_q$ can be found in Lo (1991).
- This test is consistent against a class of long-range dependent alternatives that include all ARFIMA(p, d, q) models with $-0.5 \le d \le 0.5$.
- Lo's recommendation: $q = [T^{0.25}]$ No satisfactory answer on the choice of q.

LM test of
$$d=0$$
:

- Use the residuals from fitting an ARIMA(p, 0, q) model to x_t .
- Fitted model:

$$\hat{\phi}(B)x_t = \hat{\theta}(B)\hat{a}_t$$

• LM test of d = 0 as the t-ratio on δ in the following regression.

$$\hat{a}_t = \sum_{i=1}^p \beta_i W_{t-i} + \sum_{j=1}^q \gamma_j Z_{t-j} + \delta K_t(m) + u_t$$

where $\hat{\theta}(B)W_t = x_t$, $\hat{\theta}(B)Z_t = \hat{a}_t$, and $K_t(m) = \sum_{j=1}^m j^{-1} \hat{a}_{t-j}$.

- Property: consistent, asymptotically normal, robust to non-normality
- Problem: It is severely affected by autocorrelation in w_t .

Refer to page 120 for further discussion.

Estimation of d: GPH method

• Geweke and Porter-Hudak (1983): Spectral density of x_t

$$f_x(w) = |1 - \exp(-iw)|^{-2d} f_W(w)$$

= $(4\sin^2(w/2))^{-d} f_W(w)$

where $f_W(w)$ is the spectral density of $w_t = (1 - B)^d x_t$.

- $\log(f_x(w)) = \log(f_W(w)) d\log(4\sin^2(w/2))$
- Estimate d as (minus) the slope estimator of the regression of the periodogram $I_T(w_j)$ on a constant and $\log(4\sin^2(w/2))$ at frequencies $w_j = 2\pi j/T$, $j = 1, \ldots, K = [T^{1/2}]$.

Example 3.7 Exchange Rate and Stock Returns

- Dollar/Sterling Exchange: I(1), one unit root
- FTA All Share index: I(1), one unit root
- Daily returns for the S&P 500 index: Little evidence that the series is long memory.

Either squared returns series or absolute returns does appear to be long memory. (Will be discussed later.)

• Goal: Check whether the returns (differences) are really stationary or whether they exhibit long memory.

Dollar/Sterling Exchange

• Use the modified R/S with q = 9 to the exchange rate difference.

$$T^{-1/2}R_9 = 1.692, \quad (0.809, 1.862) : 95\% CI$$

We cannot reject the hypothesis that exchange rate returns are short memory.

- LM test: Using the residuals from an ARIMA(1, 1, 0) model t-ratios for δ were 1.03, 1.23, 1.30 and 1.21 for m set equal to 25, 50, 75 and 100 respectively.
- GPH estimate: $d = -0.07 \pm 0.08$ with $K = [T^{1/2}] = 22$

FTA All Share index

- the modified R/S with q = 4: $T^{-1/2}R_4 = 2.090$, significant
- LM test is not significant.
- GPH estimate: $d = 0.39 \pm 0.19$ with K = 19
- It should be I(1.4 instead of I(1).

Measure of Persistence

- Capture short-run dynamics: ARIMA
- Suppose that x_t contains a unit root. Then

$$\Delta x_t = \mu + \sum_{j=0}^{\infty} \psi_j a_{t-j}. \tag{12}$$

- What is the impact of a_t in period t + k? For $\triangle x_{t+k}$, it is ψ_k . For x_{t+k} is $1 + \psi_1 + \cdots + \psi_k$. Ultimate impact on the level of x: $A(1) = \sum_{j=0}^{\infty} \psi_j$.
- A(1): a measure of how persistent shocks to x are.
 - -A(1) = 0: trend stationary series
 - -A(1) = 1: random walk

mean aversion versus mean reversion

Trend Reversion

- Example 3.6 UK stock price
- Try ARIMA(3, 1, 0) to the logarithms of the FTA All Share index in example 2.6.
- A(1) = 1/0.874 = 1.144: mean aversion