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Variance Estimate in ARMA Models
Consider an ARM A(p, q) process

Xy — 1 Xp1 — 0 — Op Xy

=a; — bhag—1 — -+ — ant—qa
or

(1—¢B— - — ¢,B")X,

= (1 — 91B — e — Qqu)at,
1.e.

¢(B)X; = 0(B)ay.
Here {a;} ~ I1D(0,0%).
Use either MLE or Least squares method, both
approaches lead to the following result.

o Set 6= (1, -,y 01, -,8,)7. Then
VT(B - B8) = N(0,V(B)),

where
1

EUU! EUV]
_ 2 t-¢ t Vi
VIO =" gv,ur EV,VT

e autogressive processes:

U = (U, Unp1y)



Vt — (Ut7 SR Ut—l—l—p)t

¢(B)Ut =

0(B)V;, = ay
o AR(p):

Var(¢) = o¢*(EU UL,

EUU! = (EX;X;)} 1.
o AR(1): ¢ is AN(¢, T71(1 — ¢?)).
o AR(2): (¢1, )7 is

A {(5) 7 (o P HEEY)

o MA(q):

Var(0) = o*(EV,V;')
EViV," = (EViVi)i =1

Apply the results from AR(p), we have
o MA(1): ¢is AN(0,T~1(1 — 6?)).
o MA(?2): (61,0,)7 is

av((5) Lo Loy 12
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Question: How do we simulate a univariate

ARIMA time series?

e Use arima.sim in Splus.

e The innovations are Gaussian by default.

e Command:
arima.sim(model, n=100, innov=NULL, n.start=100,

start.innov=NULL, rand.gen=rnorm, xreg=NULL,
reg.coef=NULL, ...)

e Example 1: Simulate an ARM A(1,1) with
standard deviation of innovations 1.

r < —arima.sim(100, model =
list(ar = .5, ma = —.06)).
Example 2: Simulate an ARIMA(0,1,1)

with contaminated innovations.

rand.10wild < — function(n) ifelse(
runif(n) > .90, rnorm(n), rcauchy(n))
r.wild < —arima.sim(100, model = list(
ndif f =1, ma = .6),n.start = 100, rand.gen = rand.’

e model: a list specifying an ARIMA model.
Note that the coeflicients must be provided
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through the elements ar and ma (otherwise
the coeflicients are set to zero).
Example: model = list(ma = ¢(—.5,—.25))

e n: the length of the series to be simulated.

e innov: a univariate time series or vector of
innovations to produce the series.
If not provided, innov will be generated us-
ing rand.gen.

e n.start: the number of start-up values dis-
carded when simulating non-stationary mod-
els.

The start-up innovations will be generated
by rand.gen if start.innov is not provided.

e start.innov: a univariate time series or vec-
tor of innovations to be used as start up val-
ues.

Missing values are not allowed.

e rand.gen: a function which is called to gen-
erate the innovations.
Usually, rand.gen will be a random number
generator.

e xreg: a univariate or multivariate time se-
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ries, or a vector, or a matrix with univariate
time series per column.

These will be used as additive regression
variables.

e reg.coef: a vector of regression coefficients
corresponding to xreg.



Decomposition of Time Series

Suppose a time series is difference stationary.
e Unobserved component models
e Write it as
Ty = 2 + Uy (1)
trend plus noise: how and why

e What is it for?

Idea: The unobserved random walk is buried
in white noise.

e Motivated Example:
What is the expected real rates of interest
under the assumption of rational expecta-
tion (financial market efficiency):

— Example 3.5, Fig. 3.8
— 2 unobservable expected real rate

— 2zp: a driftless random walk (under the
above assumption)

— x4: observed real rate

— u;: unexpected inflation
It is a white-noise process if the market
is efficient.



— x4 Will follow the ARITM A(0, 1, 1) pro-

cess.
(1= B)x; = (1 —0B)e;. (2)
Refer to Example 3.5.

e Question 1: Given only {z;} and its model,
can z; and uy be identified?

e (Question 2: How do we estimate these two
unobserved components?
Signal Extraction

Muth’s (1960) approach:
e The trend component, 2, is a random walk.
2t = W+ 2p—1 + Vg

e The noise component, u; is white noise and
independent of ;.

u ~ WN(0,02), v, ~WN(0,02),
E(uww;_;) =0 for all 7.
e Az, is a stationary process

Aﬂft — ,u+vt+ut — Ut—1. (3)



o ACF of Ax;: It cuts off at lag one with

coeflicient

0.2

— v 4
P o2+ 202 (4)

v

Here 02 + 202 is the variance of Ax;y.
e —0.5 S P1 S 0

o Kk = 02/0?: signal-to-noise variance ratio
k = 0 = 0% 2z is a deterministic linear
trend.
k = 00: x; 18 a pure random walk.

o Axy: an M A(1) process

Axy = 1+ e; — Oep_q, (5)
where
—e; ~ WN(0,0?).
—k=(1-0)/6
—0={(k+2) — (k2 + 4r)1/?} /2
— 02 = fo?

e [dentifiability:
62 lag one autocovariance of Az,
02: based on the variance of Ax; and 62

S o
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e MMSE estimate of z;:
Given {x;}*>_, Pierce (1979) proposes

Z=vz(B)ri = X v,T.
Jj=—00
Refer to pl103 for the definition of the filter

vz(B) in general.

e Estimate of uy:
’LALt = (1 — Uz(B»JJt

e Under Muth model,
2
vz(B) = 22(1—60B) (1 - 9B~ 1)

<

1 00 g
0111 BI

1 — 62 jzz—:oo

(1 — 6)%0?%, we have

Q9 9
AN DD

e Note that o2 =

1—0)? :
T (1 — 92 =N i,

e How do we estimate z; if we only have data

on x; up to t —m?
Pierce (1979) proposed the following:

For m > 0,
5™ = (1-0)B™ %0(93)‘7@.
]:
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For m < 0,

m 1—06 00 :
3™ = = 2B™ 5 (0B)ix,
gm =0
1 —-m—-1 . .
+ > QJB_]ZUt.

1—-0B j=o0
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More general form:

o Nz = p+ v(B)y and up = A(B)ay
where v; and a; are independent white-noise
sequences with finite variances o2 and o2
and
where v(B) and A\(B) are stationary poly-
nomials having no common roots.

e r; will have the following form
Azy=p+0(B)e (6)
where 0(B) and o2 can be obtained from
0(B)o(B~1
O_z ( ) ( ) (7>
(1—-B)(1—-B-1)
_ 5 v(Bu(BT
(1 -B)(1-BY
The parameters will not be identified in gen-
eral.

e Poterba and Summers (1988) model:

+ o XNB)XB™).

— Assume u; = Auy_1 + a;. Then
Ax;=p+v+ (1 = AB) Y1 — B)ay
or
Az = (1=MNpu+(1=AB)v+(1— B)ay
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where 27 = (1 — AB)z;.
— Az ARMA(1, 1) process

(1 — )\B) A xy =0+ (1 — (91B)6t

where e; ~ WN(0,0?) and 0y = p(1 —
A).
— 0, =21+ M) 72+ k(1 4+ N)?

—(1 = ML+ XK + 4]/}

— 02 = (Mo +0%) /6,
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Example 3.5 Estimating expected real rates of
Interest

e Model in (2) is fitted to the real UK Trea-
sury bill rate over the period 1952Q1 to 1995Q)3.

® A.CUt — (1 — 0694B)€t, OA'g = 7.62
e Hence,

= (1 —0.694)%62 = 0.71
= 0.69467 = 5.29.

o

o

S NS N

e The variations in the expected real rate are
small compared to variations in unexpected

inflation. (0.71/5.29 = 0.134)

e Fxponentially weighted moving average

3 = v (B)zy = (1-0.694) 3. (0.694B) ;.

7=0

e When 6 is close to zero, z; will be almost
equal to the most recently observed value of
x.

e Large values of # correspond to small values
of the signal-to-noise ratio.

e Unexpected inflation: u; = x; — 2
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e Figure 3.8:

— The expected real rate is considerably
smoother than the observed real rate. (small
k)

— Early 50s: Expected real rate is generally
negative.

— 1956 to 1970: consistently positive

— mid70 to mid 80: negative

— Minimum: 1975@Q1 (peak inflation due
to the OPEC price rise)

— mid80 to present: positive

— Fluctuations in unexpected inflation are

fairly homogeneous except for the period
from 1974 to 1982.

15



Hypothesis Testing: nested hypotheses

Consider statistical tests of » < ¢ independent
equality restrictions on the £ x 1 parameter vec-
tor 6y, which is being represented by the implicit
side relations

g](Q):O, ]:1,2,,7° (8)
This setting is being called a nested hypothesis.

e The vector that satisfy (8) form an (£ — r)-
dimensional subspace ©y of the parameter
space O.
6y lies in a subspace.

e Hy: 0y € Oy versus H, : 6y € © — O,.

e We can differentiate functions of 8 at 6y €
O in all directions, including those leading
to a passage into the alternative parameter
space © — O,.
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Likelihood Ratio test

N

e unconstrained maximizer: 6

g L16)

~

e constrained maximizer: 6

mas L(0)

re-parametrization or applying Lagrange Mul-
tiplier method

log L(0) — él 1ig;(0)

e Form the likelihood ratio
\=L(0)/L0).

Under Hy, LR = —2log X is asymptotically
distributed as chi-square with r degrees of

freedom.
e Taylor series expansion:
log L(6) — log L(A) =~ q(6)7(9 — 6)
1 . . A
46— 0)7QB)E - 6)
o LR will serve as a test statistic for Hy.
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e LR can be written as
Vil —0)"H (@ —0)v/n
where H is the Hessian matrix.
Wald’s test
e Idea: g;(0) should be close to g;(6y) which

1S 7Zero.

e Wald’s test statistic:

W = (gl(égaAagC(é))T A A
(GHOVG0)") (9(0), - .., 9:(0))
where G.(0): the r x £ matrix from the

derivative of (g1(6), ..., g-(9)) and
V: the covariance matrix estimate of 6.

e Under Hy, WW is asymptotically distributed
as chi-square with r degrees of freedom.
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Lagrange multiplier test

e It is also called Rao efficient score test.

® score vector:

q(6) = dlog L(6)/06

~

e [dea: g(6) should be close to q(6y) which is

Z€ro.

e Lagrange multiplier test statistic:
LM = ¢(0)"V(6)q(0).

e Under Hy, LM is asymptotically distributed
as chi-square with r degrees of freedom.
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Spectral Density

e Time-Domain property: The autocorrela-
tions and the variance summarize the sec-
ond order moments of a stationary process.

e [requency-Domain properties:

e Consider x1,...,xrr made at times 1, ..., 7T
respectively.

e [ixpress x; as

TV v ajexp(itw;)

—7r<wj§7r

where
w; = 2mj/T: Fourier frequencies
a;: random Fourier coefficients.

e spectral density: f.(w) = Fla,|*

e Periodogram: I(w;)

T 2
I(w;)=T"" El Ty exp(—itw;)

Note that
x| = 5 T(wy)



e High values of f(w): possible cyclical be-
havior at frequency w with the period of
one cycle equalling 27 /w time units.

e The series x; will display long memory if
its spectral density, f,(w), increases without
limit as the frequency w tends to zero.

o If ; is ARFIMA, then f,(w) behaves like
w2 as w — 0.

d: It parametrizes the low-frequency behav-

10T.

21



Fractional Integration and Long Memory

e In the analysis of financial time series, we
usually consider the order of differencing, d,
is either O or 1.

— 2y ~ I(1): The ACF declines linearly.

— x4 ~ I(0): The ACF declines exponen-
tially.
Observations separated by a long time
span may be assumed to be independent.

e Long persistence: Many empirically observed
time series appeared to satisty the assump-
tion of stationarity (perhaps after some dif-
ferencing transformation) but it exhibits a
dependence between distant observations.

e Hurst effect (Mandlebrot and Wallis, 1969):
hydrology

e Many economic time series exhibit the ten-

dency for large values to be followed by large
values of the same sign.
The series seem to go through a succession
of cycles even including long cycles whose
length is comparable to the total sample
size.
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e Call for new models.
fractionally integrated

e Model long-term persistence.

e ARFIMA (AR Fractionally IMA)

e Consider real d > —1,

at = -BY =% (1] -BF O

d —
= 1—dB+ 4 o )
d(d — _
(A== 2)
3!
e How does the ARFIMA model incorporate
long memory behaviour?

e Fractional white noise (ARFIM A(0,d,0)

process)

(1 — B)d.’,li't — A¢.

e random walk versus Brownian motion
fractional white noise versus fractional Brow-
nian motion

e For non-integer values of d, ACF of x; de-
clines hyperbolically to zero.
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The autocorrelations are given by p;, = ['k2?~1
where I is the ratio of two gamma functions.

e weakly (2nd order) stationary: d < 0.5

e non-stationary: d > 0.5
Var(x;) = oo.

e Invertible: d > —0.5.
The process can be written in AR form if
the 7 weights converge, i.e. =32 |m;| < oo.
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Test for Fractional Difference

Classical approach to detect the presence of long-
term memory: Hurst (1951), Mandelbrot (1972)

e R/S statistic: range over standard devia-

tion

max > (x; — T)

Ry = 6, | m;

— min ¥ (x; — T) (10)

1<i<T =1

where 65 = T~ 'sl_(zy — 7)°.

e the range:
the maximum of the partial sums of the first
1 deviations of x; from the sample mean
the minimum of the partial sums of the first
1 deviations of x; from the sample mean

e Shortcoming: R/S is also sensitive to short-
range dependence (short-term autocorrela-
tion)

e Modified R/S statistic proposed in Lo (1991):

Z _
max 3 (2 — )

|
R, = o0

q

(11)

. ?/ _
—oin, > (zr — 1)
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where

and wy; =1—j(g+ 1) tforqg<T.
Here r; is the sample autocorrelations.

e The asymptotic distribution of 7~/ ‘R, can
be found in Lo (1991).

e This test is consistent against a class of long-

range dependent alternatives that include

all ARFIM A(p, d, q) models with —0.5 <
d <0.5.

e Lo’s recommendation: q = [T°-%]
No satisfactory answer on the choice of q.

LM test of d = 0:
e Use the residuals from fitting an ARIM A(p, 0, q)

model to z;.
e Fitted model:
¢(B)z, = 0(B)a

e LM test of d = 0 as the t-ratio on ¢ in the
following regression.

X p q
a; = '21 BiWi_; + '21 Vi Zi—j + 0 Ki(m) + wy
1= ]:
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where é(B)Wt == T, é(B)Zt — &t, and
Kt(m) = Eg-”:lj_l&t_j.

e Property: consistent, asymptotically normal,
r obust to non-normality

e Problem: It is severely affected by autocor-
relation in wy.
Refer to page 120 for further discussion.
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Estimation of d: GPH method

e Geweke and Porter-Hudak (1983): Spectral
density of x;

fo(w) = 1 = exp(—iw)| ™ fw(w)
= (4Sin2(w/2))_dfw(w)

where fy(w) is the spectral density of w; =
(1 — B)dfljt.

o log(f.(w)) = log(fi(w))—dlog(4sin?(w/2))

e Estimate d as (minus) the slope estimator of
the regression of the periodogram Ir(w;) on

a constant and log(4sin®(w/2)) at frequen-
ciesw; =2nj /T, j=1,..., K = [T"?.
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Example 3.7 Exchange Rate and Stock
Returns

e Dollar/Sterling Exchange: (1), one unit
root

e F'TA All Share index: (1), one unit root

e Daily returns for the S&P 500 index:
Little evidence that the series is long mem-
ory.
Either squared returns series or absolute re-
turns does appear to be long memory. (Will
be discussed later.)

e Goal: Check whether the returns (differ-
ences) are really stationary or whether they
exhibit long memory:.

Dollar/Sterling Exchange
e Use the modified R/S with ¢ = 9 to the

exchange rate difference.
T12Ry =1.692, (0.809,1.862) : 95% CI

We cannot reject the hypothesis that ex-
change rate returns are short memory.
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e LM test: Using the residuals from an ARIM A(1,1,0)
model
t-ratios for 0 were 1.03, 1.23, 1.30 and 1.21
for m set equal to 25, 50, 75 and 100 respec-
tively.

e GPH estimate: d = —0.07£0.08 with K =
TY?) =22

F'TA All Share index

e the modified R/S with ¢ = 4: T7/?R, =
2.090, significant

e LM test is not significant.
e GPH estimate: d = 0.3940.19 with K = 19
e [t should be (1.4 instead of I(1).
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Measure of Persistence
e Capture short-run dynamics: ARIMA

e Suppose that x; contains a unit root.
Then

Az = p+ jz—:o Vit (12)

e What is the impact of a; in period ¢ + k?
For Axiyy, 1t is iy

For xy g is 1 + 1 + - - - + ¢y
Ultimate impact on the level of z: A(1) =

e A(1): a measure of how persistent shocks to
T are.

— A(1) = 0: trend stationary series
— A(1) = 1: random walk

mean aversion versus mean reversion
Trend Reversion

e Fxample 3.6 UK stock price

o Try ARIMA(3,1,0) to the logarithms of
the FTA All Share index in example 2.6.

e A(1) =1/0.874 = 1.144: mean aversion
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