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ARIMA Models

Should we try a model other than ARMA?
General Wisdom:

e Consider a set of observation {z;, t = 1,2, ...

e Suppose the data satisfies the following two
characteristics:

— It exhibits no apparent deviations from
stationarity.

— It has a rapidly decreasing autocorrela-
tion function.

Then seek a suitable ARMA process to rep-
resent the mean-corrected data.

e Otherwise, first look for a transformation of
the data which generates a new series with
the above properties.

e A common transformation is differencing.
It leads to the class of ARIMA processes.

— The nonstationarity is mainly caused by
the fact that there is no fixed level for
price series.
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— Such a nonstationary series is called unit-
root time series.
The best known example of unit-root time
series is the random walk model.

e (Question: How do we estimate the parame-
ters of ARMA processes?

— AR processes: The Yule-Walker Equa-
tion

— MA processes: Use py and Var(X;).
We cannot get all consistent estimates of

Pk-
Consider X; = a; + Oa;_1.
Then

Var(X;) = o2+ 6%0?
COU(Xt,Xt_l) = 920'2.

— ARM A(p, q) processes: Express it as an
MA process and use the first p + q p.



Motivated Example:
e Contrast between I(0) and I(1).

e r; ~ I(0) and assume that it has a zero
mear.

— The innovation a; has only a temporary
effect on the value of Xj;.

— The variance of X; is finite and does not
depend on ¢.

— The expected length of times between
crossings of x = 0 is finite.

— The autocorrelation, p;, decrease steadily
in magnitude for large enough k, so that
their sum is finite.

o x; ~ I(1) with o = 0.

— The innovation a; has a permanent effect

on the value of x; because

13
Ty = Lo+ Z at—;.

1=0
— The variance of X; goes to infinity as ¢
goes to infinity:.

Var(X;) = Var (io ati) .

1=
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— The expected time between crossings of
x = 0 is infinite.

— The autocorrelation, pr — 1 for all k£ as
t goes to infinity:.

e A time series is non-stationary is often self-
evident from a plot of the series.

e Fxamination of the SACFs might be help-
ful to determine the actual form of non-

stationarity.



ACF of AR(p)

e A stationary AR(p) process requires that all
roots with |g;| < 1.

o(B)X; = a4
¢(B) = (1—q1B)(1 —gB)--- (1 —g,B).
o ACF"
pr. = A1gy + Asgh + - + Apg]’.f-
e Random walk: z; = x;—1 + a4
e Random walk with drift: x; = ;1 + 69+ ay

— By: the time-trend of the log price x;.
It is often referred to as the drift of the
model.

— If we graph x; against time index ¢, we
have a time-trend with slope 6.

e Integrated processes: Ax; = 0y + a4

e Suppose that one of gi,..., g, approaches
1.
— g1 =1—9, d: a small number

— pr = Ayg} since all other terms will go
to zero more rapidly.
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— Note that
Agh = A1 - 0)F = A1 — k).

Failure of the SACF to die down quickly
is an indication of non-stationarity:.

e Possible strategy:

— Suppose the original series x; is found
to be non-stationary, the first difference
Ax; 18 then analysed.

— If Ax; is still non-stationary, the next
difference A%z, is then analysed.

— Repeat this procedure until a stationary
difference is found.



Detection of Over-differencing:

e Consider the stationary M A(1) process x; =
(1 — QB)CLt.

e [irst difference:
Axy = (1 —B)(1 —60B)ay
= (1 — QlB — 92B2)at,
where 6y + 60, = (14+6)—0 = 1.

e Non-invertible: AR(00) representation does
not exist.
Estimation will be difficult.

e Variance:

V(Xy) = (1+6%0*
V(AX,) = 2(1 460+ 6%0°

e The variance of the overdifferenced process
will be larger than that of the original pro-
cess.

e The sample variance will decrease until a
stationary sequence has been found, but will
tend to increase on overdifferencing.



Testing for a Unit Root

e Consider the zero mean AR(1) process with
normal innovations

xt:gbxt_l—l—at, t:1,2,...,T (1)
where a; ~ NID(0,0?) and xy = 0.
e Suppose the process started at time ¢ = 0

and ¢ > 1. By (1),

t )
Tt = o’ + _Zl P as—;.
1=

2(t+1) __ 1
_ 99
V(Xt) —= 0 ¢2 1
¢2 (t+1) —1
E(X;) = g
(Xi) = mo¢ &2 — 1
e The OLS estimate of ¢ is given by
o Et—l Ti_1T¢
o1 i1 T
and
T 21 Lt—10y¢
0= i1 TP
e When |¢| < 1,

VI(gr —¢) & N (0,0°/EXE ).
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e Note that
E(th—ﬁ =k (2_%0 Cbiati)z
— o1 &)
Hence, VT (¢pr — ¢) & N (0,1 — ¢?).
e When ¢ = 1, the above result breaks down.
What is the right distribution of qAbT — ¢ under

suitable normalization when ¢ = 17
Write

A T_l ZT Ti_10y¢
T(pr — ¢) = L :
T—2s r7

(2)
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What is 71 Zthl Ti_1047!

e When ¢ = 1, 2; = 5! _, a, and hence z; ~
N(0,0%t).

e Note that
ri1a; = (27 — 27y — af) /2
and
g’: B 5 —xd 1 g’: 5
t:lxt_lat B 2 2 tzlat
e Recall that o = 0 and hence
1 % 1 ( TT )2 11 Z 5
Ti_10Q a;.
02T = T 2\o/T 202T =1 ¢
o z7/(0v/T) is N(0,1).

e Tl a? converges in probability to o2,

e Thus
T
T—lt; ri_1a; L (1/2)0*(X — 1)

where X ~ 7.
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2T 2
What is T *=;_; xy {7

e Why do we consider 72 normalization?
T T
E[xX X ]=o" > (t—1) = o*(T—1)T/2
t= t=
and .
E[T? > X2 ] — 0?2
=

e Denote [rT| as the integer part of rT', 0 €
0, 1], and define the random step function
Ryp(r) as follows.

Ry(r) = xpry(r)/oVT.

e Properties of Ry(r):
— [0, 1] is divided into T'+ 1 parts at r =
0,77%...,1.
— Rp(r) is constant at values of 7 but with
jumps at successive integers.

— As T — o0, Ryp(r) weakly converges to
standard Brownian motion (or the Wiener
process), W (r), denoted

Rp(r) = W(r) ~ N(0,r).
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e Standard Brownian Motion:
It starts at level zero and satisfies the con-
ditions
- W(0) =0,
— Wi(re)=W(r.), W(rs)—W(ra), -, W(r,)—
W (r,_1) are independent for every n €
{3,4,...}and every 0 <71y < -+ <1y,

—W(r)—W(s) ~ N(0,r —s) forr > s.
e [acts:
W 1) —1 = 2} W(r)dW(r)
W(l) ~ N(0,1)

o-W(r) ~ N(0,0°r)

Wir)/r ~ xi

f(Rr(r)) = f(W(r))
if f(-) is a continuous functional on [0, 1].

e Observe that

2
5 T _ T Ti—1
Ty x?, = o*T™* ( )
t=1 t=1 (7\/

_ 025 T~ (Rr((t — 1)/T))’
= o? > [ Ra(r)dr
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— o? /01 W?2(r)dr.

e Note that
52
T Z Xt 10+ — (W2< ) )

e We conclude that

TGr=1) = it 6
Why does W?2(1) — 1 = 243 W(r)dW (r) hold?

e The sample path of W(r) is almost uni-
formly continuous.

e Almost every Brownian path is nowhere dif-
ferentiable.

e Define 1} f(r)dW(r) as
iry /01 f(r)W(r +¢)— Wi(r)

€
Here f is continuously differentiable.

Note that
0 W(r+e —Wi(r)
0 €

d 17"—|—6
— [ f( d(e W(s ds)d.

r

dr.

dr
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Apply the integration by parts, we have
1 Wi(r+e) —W(r)
fo f(r)
1

f(r)i [W(s)ds|

(e wspds) s
= FL)W(1) — FO)W(0) — [ W(r)df(r).

e W (r) is not differentiable. Suppose we just
plug W to the above formular, we have

dr

_>

WA (r) = W (1).

How do we handle it?
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Alternative test: the ¢-statistic
Test ¢ = 1.
e The t-statistic

—1
ty =T = gbj: (4)
Tor
where
) 7 1/2
O4r = (ST/ tgl xt—l)
and

52T = % (z¢ — Cngl?t—l)/(T —1).

e By (2) and (4), we have
T_l Zle Ti_10¢
sp(T2wfsy xp ,)V*

T =

e sZ is a consistent estimator of o2,

e By the above argument, we have
o?(W3(1) — 1)/2
< 2§ W2(r)dr)"”

W (r)dW(r)

( W2(r)dr)'*
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e Dickey-Fuller test

Use Monte Carlo simulation to find the
limiting distribution of (3)

e Recall that z; = ='_, a,

e Simulate a; by drawing ¢ pseudo-random
N(0, 1) variates.

e Calculate

T'si (T as) a

Zle (ZZ;%) as) ’

e Repeat this calculation n times and com-
pile the results into an empirical probability
distribution.

e Refer to page 71 on discussions related to
this topic.
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Extensions to the Dickey-Fuller test

Extension 1:
Consider

xt:90+gba}t_1+at, t:1,2,...,T, (6)
in which the mean may not be zero.

e Note that the unit root null is parametrized

as 6p =0 and ¢ =1 in (6).

The tests have to be modified as follows.

. W2(1) —1]/2 =W (1) - 15 W(r)dr
T(¢T_1):>[ 1()2 |/ 1 (1) - 4o ()2 |
s W2(r)dr — ()d W(r)dW (r))

W2(1) —1]/2 = W(Q) - 13 W(r)dr
(EW2(r)dr (3 W (r)dw (r)?}

e Wald test:

Ty =

— restricted residual sum of squares:
T
2
> (Ail?t)
t=1
— unrestricted residual sum of squares:

T A

2 N 2
— — 0, — _
R + tzl(xt 0 CbTSCt 1)
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— Test statistic:
(=i 1(A$t) — T4 Gf) /2.
—az /(T —2)

e The limiting distrlbutlon is tabulated in Dickey
and Fuller (1981).

e The above distribution results are still valid
as long as 1" is large and the innovations
have finite variances.

b =

Extension 2:

Consider the AR(p) process

(1——"°—¢po)$t:90—|—at
or »
Tt = 90 + '21 ¢ixt—i + ay. (7)
Define
p
¢ = Elgbz'
p—1
6@' = — X ¢j, i:1,2,...,p—1.
J=1+1

Rewrite (7) as

~1
Ty = 90 + ¢$t_1 + pgl (52 JAN Ti—; + Q. (8)
The A(ugmented)DF test:
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e The null of one unit root is ¢ = =2_; ¢, = 1.

e The test

N

¢or — 1

Se(CgT)
where se(¢r) is the OLS standard error at-
tached to the estimate ¢rp.

e The above test has the same limiting distri-
bution as

o T(¢r—1) and the Wald ® test have identical
distributions to those obtained in the AR(1)
case.

e Refer to page 74 for discussions related to
ARM A(p, q) and p and ¢ are unknown.
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Non-parametric Tests:
remove white noise assumption

Consider the model
=00+ ¢xy 1 +ay,, t=1,....7. (9)
Assumptions on {a;}7°:
e F(a;) =0 for all t;
e sup; E(|as|”) < oo for some 3 > 2;

o 0% = limyp_,o F(T15%) exists and is posi-
tive, where Sp = =L, a;;

® a; is strong mixing, with mixing numbers
oy, that satisfy =2_, al=2/8 < 0.

Remarks:

e The above assumptions will be referred later
as Assumption I.

e Allow heterogeneity.

e The third one is to ensure non-degenerate
limiting distributions.

e The mixing numbers a,,, measure the strength
and extent of temporal dependence within
the sequence ay.
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e The fourth one ensures that a; is weakly de-
pendent.
Dependence declines as the length of mem-
ory (m) increases.

e If a; is stationary, then

0% = E(a?) + 2;; E(aya;).

o If a; is the M A(1) process (a; = ¢, —0e;_1),
then

0% = 0(1+6%) — 20°0 = o2(1 — 0)*.

2

e If a; is white noise, 0% = o2,

e Define

2 1 1 L 2
o —TlgrgoT ElE(at).

How do we handle % # 047
Consider the following asymptotically valid test.
. 0y — O

Z(¢) = T(pr —1) —

T
. T_2 t§2<xt—l . f—1)2

Here
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o OA-%E 1S
T Z at —+ 2T Z Z atat_]
t=1 J=1t=7+41

e The lag truncation parameter £ can be set
to be [T9%].

e Let a; be the residual from estimating (9).

Then .
or=T1'y arl.
t=1
Another asymptotically valid test:

0%, — 072

Z(Tu) = Tu(62/€7%£) — 9

A T —
T O-%E t§2<$t_1 — 513_1)2

~1/2

Under the unit root null, the above two statis-
tics have the same limiting distributions as T'(¢r—
1) and 7, respectively.
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More Than One Unit Root

e Sometimes, we need differencing twice to in-
duce stationarity.

e The Dickey-Fuller type tests are based on
the assumption of at most one unit root.

Proposed procedure:

e Test Hy: two unit roots against H,: one
unit root, consider

Ny = By + Bo A xig + ar.

e Compare the t-ratio on (3 from the above
regression with the 7, critical values.

e If the null is rejected, we then test Hy: one
unit root against H,: no unit root. Consider

Nz = By + Bivi1 + fo D 31 + ar.

e Compare the t-ratio on 3y from the above
regression with the 7, critical values.
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Stochastic unit root processes

(STUR)
e Random Coefficient AR(1) process
T = Q1Ti1 + ay, (10)
¢r = 140

where a; and 0; are independent zero mean

white-noise processes with variances o2 and

o2

e Motivation for STUR:

— x;: the price of a financial asset.

— Consider the expected return at time ¢

E(r) — x4
E(Tt) = ( ) )
Lt—1
For simplicity, dividend payments are ig-

nored.

— E(ZUt) — (1 + E(T’t))ﬂft_l.

— Set a; = x4 — E(xy) and 0; = 1.

— The price levels have a stochastic unit
root.

e Alternative formulation considered in Granger
and Swanson (1997):

Ot = GXP(CVt)

25



where oy i1s a zero mean stationary stochas-
tic process.
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Granger and Swanson’s Model

Recall ¢y = exp(ay).

® P = (th/iﬂt—l)(l — at/ﬂft)
Observe that
a; = Alog(zy) + log(1 — ar/x)
~ Alog(x;) — a/xy.

e log(z;) has an exact unit root and z; has a
stochastic unit root.

e The daily levels of the London Stock Ex-
change F'TSE 350 index over the period 1
January 1986 to 28 November 1994 is fitted
by the following STU R(4) model

Az = B+ ¢1Azi—1 + ¢sAwy_y
+0¢|wi—1 — Bt — 1) — P19 + Pay_s5)]
+ay
0p = 041+ ;.
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Trend stationarity versus difference
stationarity

Efficient Market Hypothesis:

e When prices follow a random walk (unit root)
the only relevant information in the series
of present and past prices, for trader, is the
most recent price.

e In the above case, the people involved in the
market have already made perfect use of the
information in past prices.

e A market will be called perfectly efficient
if the prices fully reflect available informa-
tion, so that prices adjust fully and instan-
taneously when new information becomes
available.

Unit root testing strategy:

e Null hypothesis: The series is generated as
a driftless random walk with, possibly, a se-
rially correlated error.

e The null hypothesis is called difference
stationary in Nelson and Plosser (1982).

A.’L’t — €4, (11)
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where €, = 0(B)ay.

e This null hypothesis is appropriate for finan-
cial time series such as interest rates and ex-
change rates.

e The alternative is that a; is stationary in
levels.

Another setting:
e Many financial time series contain a drift.

e The null hypothesis:
Axy = 0+ ¢. (12)
e The alternative hypothesis:
Tt = Oo + Pit + €. (13)

x; 1s generated by a linear trend buried in
stationary noise.
It is trend stationary (TS).

Consider an AR type of model (¢: additional
regressor)

ry = Po+ bt + oxp1 (14)
k
+ _;1 0;AT_; + ay
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and the statistic

N

or—1
S€ <¢T>
Its limiting distribution is
W2(1) —1]/2 = W(1) iy W(r)dr + A
{ A W2(r)dr — ()1 W (r)dr)? + B}l/z
where
A = 12 rWr)dr = (1/2) [} W (r)dr]
X [/01 W (r)dr — W(l)/g]

T, =

and

B = 12 [/01 W (r)dr /01 rW(r)dr — (/01 TW(T)dT>2]

—3 (/01 W(T)d?“>2 .

Refer to page 81 for the non-parametric test
statistic.

Problem with (14)

Question: If 31 #£ 0, x; will contain a quadratic
trend.
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e Consider p =1, (14) can be written as

e Under the null ¢ =1,
xy = Bt + Git(t +1)/2 + S:.

e (Quadratic trend is unlikely because a non-
zero (31 under the null would imply an ever-
increasing (or decreasing) rate of change Ax;.
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Trend Changes

We just consider whether the observed series
{x;}L is a realization from a process character-
ized by the presence of a unit root and possi-
bly a non-zero drift.

Perron’s (1989) Suggestion:
One-Time Change in the structure at time T'g

Idea: an exogenous change in the level of the
series

How do we accommodate this change?

We first consider segmented trends.

Model A:

e Example: Consider S&P stock index which
goes through the Great Crash of 1929.
Tp = 1929.
Refer to Figure 3.7 for further detail.

o, =+ x4 1+ 0DTB; + ey
e DI'B, =11t =Tp+ 1 and 0 otherwise.
e ¢; satisfies Assumption .

e Model A characterizes the crash by a dummy
variable which takes the value one at the
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time of the break.
After the crash, it resumes to the normal.

e Possible alternative: Consider
Ty = U1 + Bt + (,LLQ — /.Ll)DUt + €,
where DU, = 1 1f t > T’s and 0 otherwise.

e The above alternative means that a one-
time change in the intercept of the trend
function.

The magnitude change is o — 1.

Model B:
e Figure 3.7 suggests the possibility of both a

change in level and, thereafter, an increased
trend rate of growth of the series.
® Ty — U1 + Ty—1 T+ (,UQ — /Ll)DUt + €.

e Model B (changing growth model) assumes
that the drift parameter changes from 4 to
Lo at time 1.

e Possible alternative: Consider

Ty = p1 + Bit + (B2 — B) DI} + e,
where DT} =t —Tp if t > Tp and 0 oth-

erwise.
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e The above alternative means that a change
in the slope of the trend function (of magni-
tude By — 1), without any sudden change
in the level.

Model C:

e Figure 3.7 suggests that a sudden change in
the level followed by a different growth.

® It — /L1—|—.’L't_1—|—CDTBt—|—</L2—,LL1>DUt—|—€t.

e Model C assumes that a sudden change fol-
lowed by the drift parameter change from
(1 to pe at time Tp.

e Possible alternative: Consider
Ty = p+Lrit+(po—p1 ) DUA(Bo—B1) DT H+-e.

e The above alternative allows both effects to
take place simultaneously.
a sudden change in the level followed by a
different growth path
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Multiple Structure Break

Logistic smooth transition regression (LSTR):
Allow the trend to change gradually and smoothly
between two regimes.

e Three Models:
Model A:

Ty = 1 + paSi(y, m) + ey
Model B:
Ty = p1 + Bt + paSi(y, m) + e
Model C:
xy = p1+LO1t+uaSe(y, m)+ Bt Si(y, m)+e;.
e The logistic smooth transition function

Se(y,m) = (1 4 exp(—y(t —mT)))~".

e m: the timing of the transition midpoint,
Spr(y,m) = 0.5.

e 7: the speed of transition
For v > 0,

S wo(y,m) =0, Sy(y,m)=1.
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e As v — 00, S¢(y,m) changes from 0 to 1
instantaneously at time m7T'.

— Model A: x; is stationary around a mean
which changes from py to py + po.

— Model B: The intercept changes from q
to w1 + we but allows for a fixed slope.

— Model C: The intercept changes from p
to w1 + po and the slope also changes

from (B to By + Os.
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