Financial Time Series

Topic 5: Determination of the order of integration of ARIMA models

Hung Chen
Department of Mathematics
National Taiwan University
4/12/2002

OUTLINE

- 1. Distinguishing between different values of d
- 2. Motivated Example
- 3. ACF of AR(p) with a Unit Root
- 4. Detection of Over-differencing
- 5. Testing for a Unit Root
 - The Dickey-Fuller Test
 - Non-parametric Test
- 6. Trend Stationarity vs Difference Stationarity
- 7. Trend Changes
 - Segmented trends
 - Structural breaks
 - Smooth transitions

ARIMA Models

Should we try a model other than ARMA? General Wisdom:

- Consider a set of observation $\{x_t, t = 1, 2, \dots, n\}$.
- Suppose the data satisfies the following two characteristics:
 - It exhibits no apparent deviations from stationarity.
 - It has a rapidly decreasing autocorrelation function.

Then seek a suitable ARMA process to represent the mean-corrected data.

- Otherwise, first look for a transformation of the data which generates a new series with the above properties.
- A common transformation is **differencing**. It leads to the class of ARIMA processes.
 - The nonstationarity is mainly caused by the fact that there is no fixed level for price series.

- Such a nonstationary series is called unitroot time series.
 - The best known example of unit-root time series is the random walk model.
- Question: How do we estimate the parameters of ARMA processes?
 - AR processes: The Yule-Walker Equation
 - MA processes: Use ρ_k and $Var(X_t)$. We cannot get all consistent estimates of ρ_k .

Consider $X_t = a_t + \theta a_{t-1}$.

Then

$$Var(X_t) = \sigma_a^2 + \theta^2 \sigma_a^2$$
$$Cov(X_t, X_{t-1}) = \theta^2 \sigma_a^2.$$

-ARMA(p,q) processes: Express it as an MA process and use the first p+q ρ_k .

Motivated Example:

- Contrast between I(0) and I(1).
- $x_t \sim I(0)$ and assume that it has a zero mean.
 - The innovation a_t has only a temporary effect on the value of X_t .
 - The variance of X_t is finite and does not depend on t.
 - The expected length of times between crossings of x = 0 is finite.
 - The autocorrelation, ρ_k , decrease steadily in magnitude for large enough k, so that their sum is finite.
- $x_t \sim I(1)$ with $x_0 = 0$.
 - The innovation a_t has a permanent effect on the value of x_t because

$$x_t = x_0 + \sum_{i=0}^{t} a_{t-i}$$
.

- The variance of X_t goes to infinity as t goes to infinity.

$$Var(X_t) = Var\left(\sum_{i=0}^{t} a_{t-i}\right).$$

- The expected time between crossings of x = 0 is infinite.
- The autocorrelation, $\rho_k \to 1$ for all k as t goes to infinity.
- A time series is non-stationary is often selfevident from a plot of the series.
- Examination of the SACFs might be helpful to determine the actual form of non-stationarity.

ACF of AR(p)

• A stationary AR(p) process requires that all roots with $|g_i| < 1$.

$$\phi(B)X_t = a_t$$

 $\phi(B) = (1 - g_1B)(1 - g_2B) \cdots (1 - g_pB).$

• ACF:

$$\rho_k = A_1 g_1^k + A_2 g_2^k + \dots + A_p g_p^k.$$

- Random walk: $x_t = x_{t-1} + a_t$
- Random walk with drift: $x_t = x_{t-1} + \theta_0 + a_t$
 - $-\theta_0$: the time-trend of the log price x_t . It is often referred to as the *drift* of the model.
 - If we graph x_t against time index t, we have a time-trend with slope θ_0 .
- Integrated processes: $\triangle x_t = \theta_0 + a_t$
- Suppose that one of g_1, \ldots, g_p approaches 1.
 - $-g_1 = 1 \delta$, δ : a small number
 - $-\rho_k \cong A_1 g_1^k$ since all other terms will go to zero more rapidly.

- Note that

$$A_1 g_1^k = A_1 (1 - \delta)^k \cong A_1 (1 - \delta k).$$

Failure of the SACF to die down quickly is an indication of non-stationarity.

• Possible strategy:

- Suppose the original series x_t is found to be non-stationary, the first difference Δx_t is then analysed.
- If $\triangle x_t$ is still non-stationary, the next difference $\triangle^2 x_t$ is then analysed.
- Repeat this procedure until a stationary difference is found.

Detection of Over-differencing:

- Consider the stationary MA(1) process $x_t = (1 \theta B)a_t$.
- First difference:

$$\Delta x_t = (1 - B)(1 - \theta B)a_t$$

= $(1 - \theta_1 B - \theta_2 B^2)a_t$,

where
$$\theta_1 + \theta_2 = (1 + \theta) - \theta = 1$$
.

• Non-invertible: $AR(\infty)$ representation does not exist.

Estimation will be difficult.

• Variance:

$$V(X_t) = (1 + \theta^2)\sigma^2$$

$$V(\Delta X_t) = 2(1 + \theta + \theta^2)\sigma^2.$$

- The variance of the overdifferenced process will be larger than that of the original process.
- The sample variance will decrease until a stationary sequence has been found, but will tend to increase on overdifferencing.

Testing for a Unit Root

• Consider the zero mean AR(1) process with normal innovations

$$x_t = \phi x_{t-1} + a_t, \quad t = 1, 2, \dots, T$$
 (1)
where $a_t \sim NID(0, \sigma^2)$ and $x_0 = 0$.

• Suppose the process started at time t = 0 and $\phi > 1$. By (1),

$$x_{t} = x_{0}\phi^{t} + \sum_{i=1}^{t} \phi^{i} a_{t-i}.$$

$$V(X_{t}) = \sigma^{2} \frac{\phi^{2(t+1)} - 1}{\phi^{2} - 1}$$

$$E(X_{t}) = x_{0}\phi^{t} \frac{\phi^{2(t+1)} - 1}{\phi^{2} - 1}$$

• The OLS estimate of ϕ is given by

$$\hat{\phi}_T = \frac{\sum_{t=1}^T x_{t-1} x_t}{\sum_{t=1}^T x_{t-1}^2}$$

and

$$\hat{\phi}_T - \phi = \frac{\sum_{t=1}^T x_{t-1} a_t}{\sum_{t=1}^T x_{t-1}^2}.$$

• When $|\phi| < 1$,

$$\sqrt{T}(\hat{\phi}_T - \phi) \stackrel{a}{\sim} N(0, \sigma^2 / EX_{t-1}^2)$$
.

• Note that

$$E(X_{t-1}^2) = E\left(\sum_{i=0}^{\infty} \phi^i a_{t-i}\right)^2$$
$$= \sigma^2/(1-\phi^2).$$

Hence, $\sqrt{T}(\hat{\phi}_T - \phi) \stackrel{a}{\sim} N(0, 1 - \phi^2)$.

• When $\phi = 1$, the above result breaks down.

What is the right distribution of $\hat{\phi}_T - \phi$ under suitable normalization when $\phi = 1$?

Write

$$T(\hat{\phi}_T - \phi) = \frac{T^{-1} \sum_{t=1}^T x_{t-1} a_t}{T^{-2} \sum_{t=1}^T x_{t-1}^2}.$$
 (2)

What is $T^{-1} \Sigma_{t=1}^T x_{t-1} a_t$?

- When $\phi = 1$, $x_t = \sum_{s=1}^t a_s$ and hence $x_t \sim N(0, \sigma^2 t)$.
- Note that

$$x_{t-1}a_t = (x_t^2 - x_{t-1}^2 - a_t^2)/2$$

and

$$\sum_{t=1}^{T} x_{t-1} a_t = \frac{x_T^2 - x_0^2}{2} - \frac{1}{2} \sum_{t=1}^{T} a_t^2.$$

• Recall that $x_0 = 0$ and hence

$$\frac{1}{\sigma^2 T} \sum_{t=1}^{T} x_{t-1} a_t = \frac{1}{2} \left(\frac{x_T}{\sigma \sqrt{T}} \right)^2 - \frac{1}{2\sigma^2} \frac{1}{T} \sum_{t=1}^{T} a_t^2.$$

- $x_T/(\sigma\sqrt{T})$ is N(0,1).
- $T^{-1} \Sigma_{t=1}^T a_t^2$ converges in probability to σ^2 .
- Thus

$$T^{-1} \sum_{t=1}^{T} x_{t-1} a_t \stackrel{a}{\sim} (1/2) \sigma^2(X-1)$$

where $X \sim \chi_1^2$.

What is $T^{-2} \Sigma_{t=1}^T x_{t-1}^2$?

• Why do we consider T^{-2} normalization?

$$E[\sum_{t=1}^{T} X_{t-1}^2] = \sigma^2 \sum_{t=1}^{T} (t-1) = \sigma^2 (T-1)T/2$$

and

$$E[T^{-2} \sum_{t=1}^{T} X_{t-1}^{2}] \to \sigma^{2}/2.$$

• Denote [rT] as the integer part of rT, $0 \in [0,1]$, and define the random step function $R_T(r)$ as follows.

$$R_T(r) = x_{[rT]}(r)/\sigma\sqrt{T}.$$

- Properties of $R_T(r)$:
 - -[0,1] is divided into T+1 parts at $r=0,T^{-1},\ldots,1$.
 - $-R_T(r)$ is constant at values of r but with jumps at successive integers.
 - As $T \to \infty$, $R_T(r)$ weakly converges to standard Brownian motion (or the Wiener process), W(r), denoted

$$R_T(r) \Rightarrow W(r) \sim N(0, r).$$

• Standard Brownian Motion:
It starts at level zero and satisfies the conditions

$$-W(0) = 0,$$

 $-W(r_2)-W(r_1), W(r_3)-W(r_2), \cdots, W(r_n)-W(r_{n-1})$ are independent for every $n \in \{3, 4, \ldots\}$ and every $0 \le r_1 < \cdots < r_n,$
 $-W(r) - W(s) \sim N(0, r - s)$ for $r \ge s$.

• Facts:

$$W^{2}(1) - 1 = 2 \int_{0}^{1} W(r) dW(r)$$

$$W(1) \sim N(0, 1)$$

$$\sigma \cdot W(r) \sim N(0, \sigma^{2}r)$$

$$W^{2}(r)/r \sim \chi_{1}^{2}$$

$$f(R_{T}(r)) \Rightarrow f(W(r))$$

if $f(\cdot)$ is a continuous functional on [0,1].

• Observe that

$$T^{-2} \sum_{t=1}^{T} x_{t-1}^{2} = \sigma^{2} T^{-1} \sum_{t=1}^{T} \left(\frac{x_{t-1}}{\sigma \sqrt{T}} \right)^{2}$$

$$= \sigma^{2} \sum_{t=1}^{T} T^{-1} \left(R_{T}((t-1)/T) \right)^{2}$$

$$= \sigma^{2} \sum_{t=1}^{T} \int_{(i-1)/T}^{i/T} R_{T}^{2}(r) dr$$

$$\rightarrow \sigma^2 \int_0^1 W^2(r) dr$$
.

• Note that

$$T^{-1} \sum_{t=1}^{T} X_{t-1} a_t \to \frac{\sigma^2}{2} (W^2(1) - 1).$$

• We conclude that

$$T(\hat{\phi}_T - 1) \Rightarrow \frac{[W^2(1) - 1]/2}{\int_0^1 W^2(r)dr}.$$
 (3)

Why does $W^{2}(1) - 1 = 2 \int_{0}^{1} W(r) dW(r)$ hold?

- The sample path of W(r) is almost uniformly continuous.
- Almost every Brownian path is nowhere differentiable.
- Define $\int_0^1 f(r)dW(r)$ as

$$\lim_{\epsilon \to 0} \int_0^1 f(r) \frac{W(r+\epsilon) - W(r)}{\epsilon} dr.$$

Here f is continuously differentiable. Note that

$$\begin{split} &\int_0^1 f(r) \frac{W(r+\epsilon) - W(r)}{\epsilon} dr \\ &= \int_0^1 f(r) \frac{d}{dr} \left(\frac{1}{\epsilon} \int_r^{r+\epsilon} W(s) ds \right) dr. \end{split}$$

Apply the integration by parts, we have

$$\begin{split} &\int_0^1 f(r) \frac{W(r+\epsilon) - W(r)}{\epsilon} dr \\ &\to \left[f(r) \frac{1}{\epsilon} \int_r^{r+\epsilon} W(s) ds \right]_0^1 \\ &- \int_0^1 \left(\frac{1}{\epsilon} \int_r^{r+\epsilon} W(s) ds \right) df(r) \\ &= f(1)W(1) - f(0)W(0) - \int_0^1 W(r) df(r). \end{split}$$

• W(r) is not differentiable. Suppose we just plug W to the above formular, we have

$$\int_0^1 W(r)dW(r) = \frac{1}{2}W^2(1).$$

How do we handle it?

Alternative test: the t-statistic Test $\phi = 1$.

• The *t*-statistic

$$t_{\phi} = \tau = \frac{\hat{\phi}_T - 1}{\hat{\sigma}_{\hat{\phi}_T}} \tag{4}$$

where

$$\hat{\sigma}_{\hat{\phi}_T} = \left(s_T^2 / \sum_{t=1}^T x_{t-1}^2 \right)^{1/2}$$

and

$$s_T^2 = \sum_{t=1}^T (x_t - \hat{\phi}_T x_{t-1})/(T-1).$$

 \bullet By (2) and (4), we have

$$\tau = \frac{T^{-1} \sum_{t=1}^{T} x_{t-1} a_t}{s_T (T^{-2} \sum_{t=1}^{T} x_{t-1}^2)^{1/2}}.$$

- s_T^2 is a consistent estimator of σ^2 .
- By the above argument, we have

$$\tau \Rightarrow \frac{\sigma^{2}(W^{2}(1) - 1)/2}{\sigma(\sigma^{2} \int_{0}^{1} W^{2}(r) dr)^{1/2}}$$
$$= \frac{\int_{0}^{1} W(r) dW(r)}{(\int_{0}^{1} W^{2}(r) dr)^{1/2}}.$$
 (5)

• Dickey-Fuller test

Use Monte Carlo simulation to find the limiting distribution of (3)

- Recall that $x_t = \sum_{s=1}^t a_s$
- Simulate a_t by drawing t pseudo-random N(0,1) variates.
- Calculate

$$\frac{T \sum_{t=1}^{T} (\sum_{s=0}^{t-1} a_s) a_t}{\sum_{t=1}^{T} (\sum_{s=0}^{t-1} a_s)^2}.$$

- Repeat this calculation n times and compile the results into an empirical probability distribution.
- Refer to page 71 on discussions related to this topic.

Extensions to the Dickey-Fuller test

Extension 1:

Consider

$$x_t = \theta_0 + \phi x_{t-1} + a_t, \quad t = 1, 2, \dots, T,$$
 (6)

in which the mean may not be zero.

• Note that the unit root null is parametrized as $\theta_0 = 0$ and $\phi = 1$ in (6). The tests have to be modified as follows.

$$T(\hat{\phi}_T - 1) \Rightarrow \frac{[W^2(1) - 1]/2 - W(1) \cdot \int_0^1 W(r) dr}{\int_0^1 W^2(r) dr - \left(\int_0^1 W(r) dW(r)\right)^2},$$

$$\tau_{\mu} \Rightarrow \frac{[W^{2}(1) - 1]/2 - W(1) \cdot \int_{0}^{1} W(r) dr}{\left\{\int_{0}^{1} W^{2}(r) dr \left(\int_{0}^{1} W(r) dW(r)\right)^{2}\right\}^{1/2}}.$$

- Wald test:
 - restricted residual sum of squares:

$$\sum_{t=1}^{T} (\Delta x_t)^2$$

- unrestricted residual sum of squares:

$$\sum_{t=1}^{T} \hat{a}_t^2 = \sum_{t=1}^{T} (x_t - \hat{\theta}_0 - \hat{\phi}_T x_{t-1})^2$$

- Test statistic:

$$\Phi = \frac{\left(\sum_{t=1}^{T} (\Delta x_t)^2 - \sum_{t=1}^{T} \hat{a}_t^2\right)/2}{\sum_{t=1}^{T} \hat{a}_t^2/(T-2)}.$$

- The limiting distribution is tabulated in Dickey and Fuller (1981).
- The above distribution results are still valid as long as T is large and the innovations have finite variances.

Extension 2:

Consider the AR(p) process

$$(1 - \cdots - \phi_p B^p) x_t = \theta_0 + a_t$$

or

$$x_t = \theta_0 + \sum_{i=1}^p \phi_i x_{t-i} + a_t.$$
 (7)

Define

$$\phi = \sum_{i=1}^{p} \phi_i$$
 $\delta_i = -\sum_{j=i+1}^{p-1} \phi_j, \quad i = 1, 2, \dots, p-1.$

Rewrite (7) as

$$x_t = \theta_0 + \phi x_{t-1} + \sum_{i=1}^{p-1} \delta_i \triangle x_{t-i} + a_t.$$
 (8)

The A(ugmented)DF test:

- The null of one unit root is $\phi = \sum_{i=1}^{p} \phi_i = 1$.
- The test

$$\tau_{\mu} = \frac{\hat{\phi}_T - 1}{se(\hat{\phi}_T)}$$

where $se(\hat{\phi}_T)$ is the OLS standard error attached to the estimate $\hat{\phi}_T$.

- The above test has the same limiting distribution as
- $T(\hat{\phi}_T-1)$ and the Wald Φ test have identical distributions to those obtained in the AR(1) case.
- Refer to page 74 for discussions related to ARMA(p,q) and p and q are unknown.

Non-parametric Tests: remove white noise assumption

Consider the model

$$x_t = \theta_0 + \phi x_{t-1} + a_t, \quad t = 1, \dots, T.$$
 (9)

Assumptions on $\{a_t\}_1^{\infty}$:

- $E(a_t) = 0$ for all t;
- $\sup_t E(|a_t|^{\beta}) < \infty$ for some $\beta > 2$;
- $\sigma_S^2 = \lim_{T \to \infty} E(T^{-1}S_T^2)$ exists and is positive, where $S_T = \sum_{t=1}^T a_t$;
- a_t is strong mixing, with mixing numbers α_m that satisfy $\sum_{m=1}^{\infty} \alpha_m^{1-2/\beta} < \infty$.

Remarks:

- The above assumptions will be referred later as Assumption I.
- Allow heterogeneity.
- The third one is to ensure non-degenerate limiting distributions.
- The mixing numbers α_m measure the strength and extent of temporal dependence within the sequence a_t .

- The fourth one ensures that a_t is weakly dependent.
 - Dependence declines as the length of memory (m) increases.
- If a_t is stationary, then

$$\sigma_S^2 = E(a_1^2) + 2 \sum_{j=2}^{\infty} E(a_1 a_j).$$

• If a_t is the MA(1) process $(a_t = \epsilon_t - \theta \epsilon_{t-1})$, then

$$\sigma_S^2 = \sigma_\epsilon^2 (1 + \theta^2) - 2\sigma_\epsilon^2 \theta = \sigma_\epsilon^2 (1 - \theta)^2.$$

- If a_t is white noise, $\sigma_S^2 = \sigma_\epsilon^2$.
- Define

$$\sigma^2 = \lim_{T \to \infty} T^{-1} \sum_{t=1}^T E(a_t^2).$$

How do we handle $\sigma^2 \neq \sigma_S^2$?

Consider the following asymptotically valid test.

$$Z(\phi) = T(\hat{\phi}_T - 1) - \frac{\hat{\sigma}_{S\ell}^2 - \hat{\sigma}^2}{2} \cdot \left[T^{-2} \sum_{t=2}^{T} (x_{t-1} - \bar{x}_{-1})^2 \right]^{-1}.$$

Here

$$\bullet \ \bar{x}_{-1} = (T-1)^{-1} \sum_{t=1}^{T-1} x_t$$

• $\hat{\sigma}_{S\ell}^2$ is

$$T^{-1} \sum_{t=1}^{T} \hat{a}_t^2 + 2T^{-1} \sum_{j=1}^{\ell} \sum_{t=j+1}^{T} \hat{a}_t \hat{a}_{t-j}.$$

- The lag truncation parameter ℓ can be set to be $[T^{0.25}]$.
- Let \hat{a}_t be the residual from estimating (9). Then

$$\hat{\sigma}^2 = T^{-1} \sum_{t=1}^{T} \hat{a}_t^2.$$

Another asymptotically valid test:

$$Z(\tau_{\mu}) = \tau_{\mu}(\hat{\sigma}^{2}/\hat{\sigma}_{S\ell}^{2}) - \frac{\hat{\sigma}_{S\ell}^{2} - \hat{\sigma}^{2}}{2} \cdot T \left[\hat{\sigma}_{S\ell}^{2} \sum_{t=2}^{T} (x_{t-1} - \bar{x}_{-1})^{2} \right]^{-1/2}.$$

Under the unit root null, the above two statistics have the same limiting distributions as $T(\hat{\phi}_T - 1)$ and τ_{μ} , respectively.

More Than One Unit Root

- Sometimes, we need differencing twice to induce stationarity.
- The Dickey-Fuller type tests are based on the assumption of at most one unit root.

Proposed procedure:

• Test H_0 : two unit roots against H_a : one unit root, consider

$$\triangle^2 x_t = \beta_0 + \beta_2 \triangle x_{t-1} + a_t.$$

- Compare the t-ratio on β_2 from the above regression with the τ_{μ} critical values.
- If the null is rejected, we then test H_0 : one unit root against H_a : no unit root. Consider

$$\Delta^2 x_t = \beta_0 + \beta_1 x_{t-1} + \beta_2 \Delta x_{t-1} + a_t.$$

• Compare the t-ratio on β_1 from the above regression with the τ_{μ} critical values.

Stochastic unit root processes (STUR)

• Random Coefficient AR(1) process

$$x_t = \phi_t x_{t-1} + a_t, \qquad (10)$$

$$\phi_t = 1 + \delta_t$$

where a_t and δ_t are independent zero mean white-noise processes with variances σ_a^2 and σ_δ^2 .

- Motivation for STUR:
 - $-x_t$: the price of a financial asset.
 - Consider the expected return at time t

$$E(r_t) = \frac{E(x_t) - x_{t-1}}{x_{t-1}}.$$

For simplicity, dividend payments are ignored.

- $-E(x_t) = (1 + E(r_t))x_{t-1}.$
- Set $a_t = x_t E(x_t)$ and $\delta_t = r_t$.
- The price levels have a stochastic unit root.
- Alternative formulation considered in Granger and Swanson (1997):

$$\phi_t = \exp(\alpha_t)$$

where α_t is a zero mean stationary stochastic process.

Granger and Swanson's Model

Recall $\phi_t = \exp(\alpha_t)$.

• $\phi_t = (x_t/x_{t-1})(1 - a_t/x_t)$ Observe that

$$\alpha_t = \Delta \log(x_t) + \log(1 - a_t/x_t)$$

 $\approx \Delta \log(x_t) - a_t/x_t.$

- $\log(x_t)$ has an exact unit root and x_t has a stochastic unit root.
- The daily levels of the London Stock Exchange FTSE 350 index over the period 1 January 1986 to 28 November 1994 is fitted by the following STUR(4) model

$$\Delta x_{t} = \beta + \phi_{1} \Delta x_{t-1} + \phi_{4} \Delta x_{t-4} + \delta_{t} [x_{t-1} - \beta(t-1) - \phi_{1} x_{t-2} + \phi_{4} x_{t-5}] + a_{t}$$

$$\delta_{t} = \delta_{t-1} + \eta_{t}.$$

Trend stationarity versus difference stationarity

Efficient Market Hypothesis:

- When prices follow a random walk (unit root) the only relevant information in the series of present and past prices, for trader, is the most recent price.
- In the above case, the people involved in the market have already made perfect use of the information in past prices.
- A market will be called perfectly efficient if the prices fully reflect available information, so that prices adjust fully and instantaneously when new information becomes available.

Unit root testing strategy:

- Null hypothesis: The series is generated as a driftless random walk with, possibly, a serially correlated error.
- The null hypothesis is called **difference** stationary in Nelson and Plosser (1982).

$$\Delta x_t = \epsilon_t, \tag{11}$$

where $\epsilon_t = \theta(B)a_t$.

- This null hypothesis is appropriate for financial time series such as interest rates and exchange rates.
- The alternative is that x_t is stationary in levels.

Another setting:

- Many financial time series contain a drift.
- The null hypothesis:

$$\Delta x_t = \theta + \epsilon_t. \tag{12}$$

• The alternative hypothesis:

$$x_t = \beta_0 + \beta_1 t + \epsilon_t. \tag{13}$$

 x_t is generated by a linear trend buried in stationary noise.

It is **trend stationary** (TS).

Consider an AR type of model (t: additional regressor)

$$x_{t} = \beta_{0} + \beta_{1}t + \phi x_{t-1}$$

$$+ \sum_{i=1}^{k} \delta_{i} \Delta x_{t-i} + a_{t}$$
(14)

and the statistic

$$au_{ au} = rac{\hat{\phi}_T - 1}{se\left(\hat{\phi}_T
ight)}.$$

Its limiting distribution is

$$\frac{[W^2(1)-1]/2-W(1)\int_0^1W(r)dr+A}{\left\{\int_0^1W^2(r)dr-(\int_0^1W(r)dr)^2+B\right\}^{1/2}}$$

where

$$A = 12 \left[\int_0^1 rW(r)dr - (1/2) \int_0^1 W(r)dr \right] \times \left[\int_0^1 W(r)dr - W(1)/2 \right]$$

and

$$\begin{split} B \; = \; 12 \left[\int_0^1 W(r) dr \int_0^1 r W(r) dr - \left(\int_0^1 r W(r) dr \right)^2 \right] \\ - 3 \left(\int_0^1 W(r) dr \right)^2. \end{split}$$

Refer to page 81 for the non-parametric test statistic.

Question: If $\beta_1 \neq 0$, x_t will contain a quadratic trend.

• Consider p = 1, (14) can be written as

$$x_{t} = \beta_{0} \sum_{j=1}^{t} \phi^{t-j} + \beta_{1} \sum_{j=1}^{t} j \phi^{t-j} + \sum_{j=1}^{t} a_{j} \phi^{t-j}.$$

• Under the null $\phi = 1$,

$$x_t = \beta_0 t + \beta_1 t(t+1)/2 + S_t.$$

• Quadratic trend is unlikely because a nonzero β_1 under the null would imply an everincreasing (or decreasing) rate of change Δx_t .

Trend Changes

We just consider whether the observed series $\{x_t\}_0^T$ is a realization from a process characterized by the presence of a **unit root** and possibly a non-zero **drift**.

Perron's (1989) Suggestion:

One-Time Change in the structure at time T_B

Idea: an exogenous change in the level of the series

How do we accommodate this change? We first consider segmented trends.

Model A:

• Example: Consider S&P stock index which goes through the Great Crash of 1929. $T_B = 1929$.

Refer to Figure 3.7 for further detail.

- $\bullet \ x_t = \mu + x_{t-1} + bDTB_t + e_t.$
- $DTB_t = 1$ if $t = T_B + 1$ and 0 otherwise.
- e_t satisfies Assumption I.
- Model A characterizes the **crash** by a dummy variable which takes the value one at the

time of the break.

After the crash, it resumes to the normal.

• Possible alternative: Consider

$$x_t = \mu_1 + \beta t + (\mu_2 - \mu_1)DU_t + e_t,$$

where $DU_t = 1$ if $t > T_B$ and 0 otherwise.

• The above alternative means that a onetime change in the intercept of the trend function.

The magnitude change is $\mu_2 - \mu_1$.

Model B:

- Figure 3.7 suggests the possibility of both a change in level and, thereafter, an increased trend rate of growth of the series.
- $x_t = \mu_1 + x_{t-1} + (\mu_2 \mu_1)DU_t + e_t$.
- Model B (changing growth model) assumes that the drift parameter changes from μ_1 to μ_2 at time T_B .
- Possible alternative: Consider

$$x_t = \mu_1 + \beta_1 t + (\beta_2 - \beta_1) DT_t^* + e_t,$$

where $DT_t^* = t - T_B$ if $t > T_B$ and 0 otherwise.

• The above alternative means that a change in the slope of the trend function (of magnitude $\beta_2 - \beta_1$), without any sudden change in the level.

Model C:

- Figure 3.7 suggests that a sudden change in the level followed by a different growth.
- $x_t = \mu_1 + x_{t-1} + \zeta DT B_t + (\mu_2 \mu_1) DU_t + e_t$.
- Model C assumes that a sudden change followed by the drift parameter change from μ_1 to μ_2 at time T_B .
- Possible alternative: Consider $x_t = \mu_1 + \beta_1 t + (\mu_2 \mu_1) DU_t + (\beta_2 \beta_1) DT_t^* + e_t.$
- The above alternative allows both effects to take place simultaneously.

 a sudden change in the level followed by a different growth path

Multiple Structure Break

Logistic smooth transition regression (LSTR): Allow the trend to change gradually and smoothly between two regimes.

• Three Models: Model A:

$$x_t = \mu_1 + \mu_2 S_t(\gamma, m) + e_t.$$

Model B:

$$x_t = \mu_1 + \beta_1 t + \mu_2 S_t(\gamma, m) + e_t.$$

Model C:

$$x_t = \mu_1 + \beta_1 t + \mu_2 S_t(\gamma, m) + \beta_2 t S_t(\gamma, m) + e_t.$$

• The logistic smooth transition function

$$S_t(\gamma, m) = (1 + \exp(-\gamma(t - mT)))^{-1}.$$

- m: the timing of the transition midpoint, $S_{mT}(\gamma, m) = 0.5$.
- γ : the speed of transition For $\gamma > 0$,

$$S_{-\infty}(\gamma, m) = 0, \quad S_{\infty}(\gamma, m) = 1.$$

- As $\gamma \to \infty$, $S_t(\gamma, m)$ changes from 0 to 1 instantaneously at time mT.
 - Model A: x_t is stationary around a mean which changes from μ_1 to $\mu_1 + \mu_2$.
 - Model B: The intercept changes from μ_1 to $\mu_1 + \mu_2$ but allows for a fixed slope.
 - Model C: The intercept changes from μ_1 to $\mu_1 + \mu_2$ and the slope also changes from β_1 to $\beta_1 + \beta_2$.