Financial Time Series

Topic 3: ARMA and Time
Series Modeling

Hung Chen

Department of Mathematics

National Taiwan University
3/14/2002



OUTLINE

1. General AR Processes

2. General MA Processes

3. ARMA Processes

4. Preliminary Data Analysis

— Time Series Plots
— Data Transformation
— Checking Normality

5. Time Series Modeling

— Model Identification
— Model Estimation
— Diagnostic Checking



AR(2) process:
Xi— p=d1(Xemr — p) + 92 Xo2 — ) +

or
(1 — 1B — 2B (X; — 1) = ay.
e 2nd moments and ACF:

Ve = O1Vk—1 + P2Vk—2,
Pk = O1pk—1 + P2pk—2,

p1 = Q1+ Papi,
p2 = Q1p1 + Po,
pe = P1pe—1 + P2pe—2, £ >0,
p1 = b1
1—2¢2’
o1
p2 = s + ¢o.

Observe that

V(Xy) = ¢iV(Xim) + ¢35V (Xi—o)
+2¢12Cov( Xy 1, Xy ) + 07,

V(X = [1- gt - g3 - 28%) 2
16,

e Recall that (1 — ¢1B — ¢2B?)p; = 0.
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— Consider the second order polynomial z*—
o1z — g =0

— If the two solutions are real-valued, then
1 — ¢ B — ¢oB? can be factored as (1 —
w1 B)(1 — weB). The AR(2) model can
be regarded as an AR(1) model operates
on top of another AR(1) model.
The ACF of X; i1s then a mixture of two
exponential decays.

— If the solutions are complex numbers, the
plot of ACF of X; would show a picture
of damping sine and cosine waves.

In business and economic applications,
they give rise to the behavior of business
cycles.

e The model is stationary if the roots of 1 —
$1 B — o B? = 0 lie outside the unit circle.
By restricting the roots outside the unit cir-
cle, we have

P1+ P2 <1, p1—a<1, —1<¢y<l.

e Mathematically speaking, we require 1 —

¢1B — ¢232 7£ 0 for all |B‘ S 1.
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This condition implies that (1—¢; B—¢yB?)~!
has a power series expansion.

Example: Check Stationarity
® Xt = O.8Xt_1 — O.4Xt_2 + ay
e p(B)=1—0.8B + 0.4B*

e Roots of ¢(B) are B = 1 4+ 1.224744 and
B| = 1.58114,

e Since the roots of ¢(B) are all outside the
unit circle, the process is stationary.



AR(p) processes
e The model

Xi—p = d1(Xy1—p)+-- '+¢p(Xt—p_N)+at

or

(1 =¢1B—--- = ¢pB)( Xy — ) = ar.
e This model says that conditional on the past
return Xy_i,..., X;_p, we have

E(X)| X1, Xey) =+ é 5 X1 s,
Var( X Xe—1,..., Xi—p) = Var(_at) = o2,
This is a Markov property.
e The AR(p) process is always invertible.
e [t is stationary if the roots of
l—¢1B—---—¢,B"=0
lie outside the unit circle.

e ACF of the Model:

Vi = P1Vk-1+ Ok
for £k > 1. Therefore,

ok = $1ok 1+ + Bypip.
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We have a system of Yule-Walker equations:

(p1 = O1+ Pap1+ D3p2+ -+ Pppp_1
P2 = @1p1+ P2+ G301+ -+ Pppp—2

| Pp — ¢1,0p—1 + ¢2pp_2 + ¢3,0p_3 4+ ..o+ ¢p

e The plot of ACF of a statoionary AR(p)
model would show a mixture of damping
sine and cosine patterns and damping ex-
ponential decays.

Example: ACF

e Consider the quarterly growth rate of U.S. real
gross national product (GNP), seasonally ad-
justed, from 194711 to 1991.1.

e Employ an AR(3) model for the data.
e The fitted model is
ry = 0.004740.357;_1+0.187;_o—0.147r;_3+a,
and g, = 0.0098.
e The third-order difference equation is
1 —0.35B — 0.18B* + 0.14B® = 0,
which can be factorized as

(1+0.52B)(1 — 0.87B + 0.27B%) = 0.
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e [t suggests an exponentially decaying nature
of the GNP growth rates.
The second factor implies existence of stochas-
tic business cycle in the quarterly growth
rate of U.S. real GNP. The average length of
the stochastic cycles is approximately 10.83
quarters.

Order determination of AR models

e Use partial autocorrelation function.

e Recall PACF is determined by the regres-
sion coefficients determined by r; on 74_q,
on ry_1,T¢—2, and etc.

o AR(1): Y11 = p1 =,
Ve = 0 for k > 1.

o AR(2): 911 = p1,

p2 — P
1 —pt’

¢22 —
Vi = 0 for k > 2.

.AR<p> ¢11 7é Oa ¢22 7é 07 I ¢pp 7é 07
Ui = 0 for k > p.



e ACF': tail-off at lag p
e PACF: cut-off at lag p

The linear filter representation X;—p = ¢(B)ay
can be obtained by equating coeflicients in

(1 =tB = —,B")¢(B) =1
(1= B—---—¢,B?)(1—$1 B—poB—---) = 1.
Work out AR(2) in the class.



MA(2) process:
e The model
Xy —p=ar — 01a;1 — Ohao
or
X, —pu=(1-6,B—0,B%a,.

e The model is stationary if the roots of 1 —
0.8 — 05B? = 0 lie outside the unit circle.
Analogue to the stationary condition of an
AR(2) model, we require

91‘|‘92<1, 92—91<1, —1 <6, <1.

e 2nd moments and ACF:
V(Xy) = (1+ 67 +63)0%

(—91 + (9192>O'2 k=1
Vi = —0y0” k=2 .
0 k>3
Therefore,

!—914-9192! kf — 1

1+6{+63

= _792 —
Pk 1+6{+63 k=2




e ACF': cut-off at lag 2
e PACF: tail-off at lag 2
MA(q) process:

e The model
Xt —p=a—0ai_1 — - — 0,0,
or
Xi—p=01-6B—---—0,BY)a; = 0(B)ay.

e The model is stationary if the roots of
l1-00B—---—6,BT=0
lie outside the unit circle.

e The weights in the AR(0c0) representation
w(B)(X; — p) = ay are given by ©(B) =
0~1(B) and can be obtained by equating co-
efficients of B’ in n(B)#(B) = 1.

e Variance 1s time-invariant.
Var(X,) = (1+6;+---+0))0..

o ACFE":
—0 + 01011+ - - + Qq_kﬂq
Pk = 2 2 )
L+0f+---+06;

por = 0, k>q.
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e ACF': cut-off at lag ¢
— If the lag-g ACF is non-zero, but ACF

beyond lag-q are all zero, then we have

an M A(q) model.

— This property says that the M A(q) model
is linearly related to its first ¢ lagged val-
ues only.

— This model is said to have short mem-
ory.

e PACF: tail-off at lag q
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ARM A(p, q) process

e This is the most general class of mixed mod-
els, combining the AR(p) and M A(q) char-

acteristics.

e The model
(Xi =) = 01( Xy — ) — - — p( Xy —
=a; — 11—+ — eqaft—qa
or
(1—-¢1B—--+—¢,B")( Xy — )
= (1 — HlB — e — Qqu)at,
1.e.

¢(B) (Xt — p) = 0(B)as.
e The model is stationary if roots of ¢(B) all

lie outside the unit circle.

e The process is invertible if roots of 8(B) all
lie outside the unit circle.

o ACF tail-off at lag p.
It will eventually follow the same pattern as
that of an AR(p) process after ¢ — p initial
values.
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e PACF tail-off at lag q.

It will eventually behaves (for k& > p — ¢q)
like that of an M A(q) process.

Example:

Find the AR representation of the following
ARM A(1,1) model

~ (1404B)
- (1-0.6B)
= (1+04B)(140.6B + 0.6°B*+ - - )X,

o0 .
= Xi+ '21 T Xt—j,
]:

X

where m; = (0.6) 1.

e [t should be noted that stationary and in-
vertible ARMA models can be written as
either AR(00) or M A(c0).

e The MA representation shows the impact of
the past shock a;_;.

e The AR representation shows the depen-
dence of the current X; on the past X;_;.
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Unit-root Nonstationarity

e In some studies, price series are of interest
which tend to be nonstationary:.

It is caused by the fact that there is no fixed
level for price series.

e In the time series literature, such a nonsta-
tionary series is called unit-root time series.
The best known example is the random walk
model.

e Random walk

Dt = Pt—1 T Qy,

where pg is a real number denoting the start-
ing value of the process and {a;} is a white
noise series.

— The M A representation of the random
walk model is

pt=a; + a1+ Q2+ ---.
It tells us that we cannot make a long-

term forecast.

— The impact of any past shock p;_; on p;
does not decay over time.
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This means that the series has strong
memory as it remembers all of the past
shocks. (Such shocks have a permanent
effect on the system.)

— The stock price is not predictable.
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Time Series Plots
e The first step in time series analysis is data
plotting.
e (Classical Decomposition Model:
Xt =my + s + Yy,
where

— my: a slowly changing function known as
a trend component

— s a function with known period d re-
ferred to as a seasonal component

—Y;: a random noise component which
1s stationary

e [t gives us important information about the
time series data concerning:

— outliers/typos
— stationarity (in mean and/or variance)

— seasonality /cycles/patterns
e Aim

— BEstimate and extract the deterministic
components m; and s;.
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— Hope that the residual or noise compo-
nent Y; will turn out to be a stationary
random process.

— Find a satisfactory probabilistic model
for the process {Y;}.

— Use the properties of probability model
in conjunction with m; and s; for pur-
poses of prediction and control of { X }.

e Box and Jenkins (1970) developed an alter-
native approach to remove m; and s;.
It is to apply difference operators repeat-
edly to the data {z;} until the differenced
observations resemble a realization of some
stationary process.

Outliers

e Time series observations are sometimes in-
fluenced by interuptive events, such as wars,
crises, natural disaster, or even errors of typ-
ing or recording.

The consequences of these events could cre-
ate spurious observations that are inconsis-
tent with the rest of the series.

They are called outliers.
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e Time series outliers need special treatment.
e Fxample:
Stationarity

e Nonstationarity in mean (i.e., the mean fol-
lows a time trend) can be easily detected
from the graph.

e For an example, the Australian Retail Prices
Index exhibits a clear upward time trend.
[ts mean is not a constant and depends on
time.

Conclude from the graph that the series is
nonstationary in mean.

e Nonstationarity in variance (i.e., variation
of the time series depends on time) can be
also easily detected from the graph.

e For an example, consider the U.S. Tobacco
Production from 1871 to 1984.
The series is nonstationary in variance as
well as nonstationary in mean.
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Seasonality

e Many business and economic time series con-
tain a seasonal phenomenon that repeats it-
self after a regular period of time.

e There are some special time series models
that can be used to capture the seasonal cy-

cles.
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Data Transformations

e If the raw data are not stationary, proper
transformation(s) might be used to alleviate
the problems.

e Commonly used transformations in time se-
ries analysis include:

— Differencing: ARIMA models Remove mean
trend.
Remove polynomial mean trend effectively
since the data are observed in equally
spaced intervals.
Determine the order of differencing (d)
by the trial-and-error method.
Try d = 1,... and plot the series to see
whether the transformed series is reduced
to stationarity.

Refer to Chapter 2.6.2.

— Power transformation: Stabilize the vari-
ance.
The power transformations are defined
only on positive series. However, a con-
stant can always be added to the series
(make the series all positive) without af-
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fecting the correlation structure of the
data.
Refer to Chapter 2.6.1.
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Checking Normality

e If the time series is normally distributed, all
distribution results usually work better.

e [requently, the power transformation not only
stabilizes the variance, but also improves the
approximation to normality:.

e Use probability plot (QQ plot) to check the
normality.

22



Model Identification

e The goal is to match patterns of the sample
ACF and sample PACF from the data with
the known patterns of ACF and PACF for
the ARMA models.

e The result from the Model Identification stage
is a selected ARM A(p, q) model for the data
(i.e., we identify the values of p and ¢ for the

data).

e Under the stationarity and ergodicity as-
sumptions, 1 and o? can be estimated by
the sample mean and variance as following:

r = 1 L,
t

M= LM

-
s =Ty (z — 7)°

t

e lag k sample autocorrelation (SACF)
T
ry = (Ts)) ™' Y (v — ) (@i — 7).
t=k+1

— If the data are generated from a white
noise, then

Vipe) =T712
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When T is large, vTr, < N(0,1).

An absolute value of r}, in excess of 271
may be regarded as significantly different
from zero.

Plot the sample autocorrelation function
ri as a function of k£, approximately 0.95
of the sample autocorrelations should lie
between the bounds +1.967~1/2.

This can be used as a check that the ob-
servations truly are from a white noise
Process.

Consider the general case that p; = 0 for
k> q.
The approximate variance of r;, for k >
q, 18

Virg) = T_l(l — 2,0% + -4 2,02).

A conservative scheme for handling the
case that ¢ is unknown.

(i) Use SACF plot to check whether it is
a realization from a white noise process.
(ii) Increase successively the value of ¢
and replace the p;s by r;s.

(iii) The variances of 71,7, ...,7r; can
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be estimated as 771, 7711 + 2rf), .. .,
TH142rf+ - +2rf_)).

e Calculation of Sample partial autocorrela-
tion (SPACF): (i) Fit AR models of increas-
ing order.

(i) The estimate of the last coefficient in
each model is 1.

e [f the data follow an AR(p) process, then
for k > p, \/kak £> N(O, 1).

e SACF and SPACF plot of the data are basis
for model identification.

We identify the model by match the SACF
and SPACEF plots with the theoretical pat-

terns of ACF and PACF of known ARMA
models.
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ACF
Whi

Clean
AR(p

e Theoretical patterns of ACF and PACEF: Tail-off
MA(qg

Cut-off lag q

ARMA(
Tail-off at lag g —

Procedure for Model Identification

1. Plot the time series data and choose proper
transformations.

2. Compute and examine the SACFE and
SPACF of the original series (raw or variance-
stabilized) to further confirm a necessary
degree of differencing.

If the SACF decays very slow and there
is a spike of SPACE at lag 1 only, it in-
dicates that differencing is needed.

Try d = 1 first and re-examine the SACF
and SPACF of the differenced series.

If the SACF are still not decaying, try
higher values of d.
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It should be noted that d is seldom greater
than 2 in practice.

3. Compute the SACF and SPACF of the

properly transformed and differenced se-
ries to tentatively identify the orders of
p and q.
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Model Estimation

After specifying an ARM A(p, q) model for the
data, the next step is to estimate the parameters
in the model.

There are (p+q+1) parameters (i.e., ¢1, - - -, @y,
01, ,0,0%).

The Method of Moments

e This method consists of substituting sample
moments such as mean, sample variance and
SACF for their corresponding model coun-
terparts and solving the resultant equations.

e Consider an AR(p) process,
Xt = ¢1Xt_1 S ¢pXt_p + ay.
Recall the Yule-Walker equations:

pP1 = Q1+ P2p1 + P3p2 + - + Pppp1
p2 = Q1p1+ P2+ P3p1+ -+ Gppp2

| Pp = P1Pp—1+ P20p—2+ P3pp—3+ -+ @
Replacing the unknown py, by sample py, and
solving the equations and we get ¢1,- - -, @,.

02 =5(1—g1p1 — - — Dy
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e Unlike the AR(p) case, the moment equa-
tions for M A(q) and the mixed ARMA
models are nonlinear.

It 1s very difficult to solve.

e The moment estimators are also sensitive to
rounding errors.
They are used as initial estimates for other
more advanced estimation methods.

29



Estimation in M A Models

e Use maximum likelihood estimation.

e The first approach assumes that the initial
shocks, 1.e. X; for t <0, are zero.

— The shocks are computed recursively from
the model, starting with a1 = X7 — ¢y.

— Parameter estimates obtained by this ap-
proach are called the conditional maxi-
mum likelihood estimates.

e The second approach treats the initial shocks,
i.e. X; for t <0, are additional parameters
of the model and estimate them jointly with
other parameters.

This approach is referred to as the exact like-
lihood method.
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Conditional Maximum Likelihood Estimation

e For a general ARM A(p, q) model,

ar = (Xe —p) — pr( X1 — ) — -
_¢p<Xt—p — ,LL) +61a4_1+ -+ Qqat_q.

e Suppose that {a;} are IID N(0,0?).
e (ay, -+, ar)’ can be computed if (a;_, - -, ag),
(X1, -+, X7)", and (X1, - - -, Xo) are given.

e The joint pdf of (a1, -,ar)! is

2

1 T
(2m02) T2 exp {— > a?} .
207 t=1

e The word conditional means that the es-
timator 1s conditional on the assumed initial
values.

e Requires an optimization algorithm.
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Unconditional Maximum Likelihood
Estimation

e We should consider all the past squared a?’s.

e Since the past a?’s are unknown, we shall
replace them by their expected values.

e Use the backcasting method to get those ex-
pected values.

e Both conditional and unconditional likeli-
hood functions are only approximations.
The exact likelihood function of a general

ARMA model is complicated.
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Diagnostic Checking

Objectives:

e Assess model adequacy by checking whether
the model assumptions are satisfied.

e If the model is inadequate, this stage will

provide some information for us to re-identify
the model.

Checking Model Assumptions

e The basic assumption of an ARIMA model
is that a; ~ IID N(0,0?).

e If the fitted model is adequate to represent
the data, the fitted residuals {a;} should
have the same assumed behavior as the the-
oretical innovations {a;}.

e Checking normality of the residuals
(a) plotting histogram of a;
(b) normal probability plot of a;

e Checking constant variance assumption
(a) plotting the standardized residuals a; /oy
with error bounds
(b) Evaluate the effect of different A values
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of the power transformation via Box-Cox
method

e Checking independence assumption among
residuals

— SACF and SPACF of the residuals should

be clean (i.e., all insignificant)

— Portmanteau Test: Refer to Example 2.2.
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Log returns for IBM 1/3/62-11/3/00 (blue=1961-1981)
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Sample ACF IBM (a) 1962-1981, (b) 1982-2000
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Sample ACF of abs values for IBM (a) 1961-1981, (b) 1982-2000
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Sample ACF of squares for IBM (a) 1961-1981, (b) 1982-2000
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Sample ACF of original data and squares for IBM 1962-2000
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500-daily log-returns of NZ/US exchange rate

X(t)

0.02

0.0

Www MMM ,nww uﬂwwv% nMan./vatj

i

—
=

-0.02

-0.04

0 100 200 300 400 500

11




ACF of X(t)=log-returns of NZ/US exchange rate
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ACF of X2(t)

0.6 0.8 1.0
| |

ACF(|X|"2)

0.4

0.2

< ‘ H|| ||.| L |
o

lag h

40 50

13






