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Fundamental Concepts

e Time series data are observations with a
particular order (usually time t)

e It is different from cross-sectional data.
e Eixamples of time series

— Quartly unemployment rate
— Monthly car sales
— Interest rate spread

— Stock market index values (Dow Jones,
Hang Seng and etc)

— log return of an asset: 7y

o {11,759, T3,...,T,}, an observed univariate
times series such as {30.5,28.9,33.1,...}

e x;. a single number recorded at time ¢

e We assume that a time series is a realiza-
tion from a certain stochastic process.

e Purposes:

— Study the dynamics structure.

— Monitor price behavior (stock, currency,
commodity)



— Understand the probable development of
prices in the future

— Forecast the volatility of future prices.
— Understand how prices behave

— Use knowledge of price behavior to take
better decisions
Suppose we have planned a holiday abroad
and will need to buy foreign currency.
The purchase could be made months in
advance or left until you arrive at your
destination.

e How do we predict x,,1 at time t = n?
e Motives for trading:

— Reduction of business risks
— Purchases and sales of raw materials

— Investment of personal or corporate wealth
e Trading possibilities

— Spot markets: stock and share markets

— Future markets: agree a price for exchang-
ing goods at some later date



— Option markets: gives its owner the right
to engage in a particular spot or future
transaction at a formerly agreed price.



Stochastic Processes

Data:

e A stochastic process is a family of time

indexed random variables { X¢,, X4, Xis, - - - }
defined on a probability space (§2, F, P) where
t;eT.

e Treat x; as the realized value of some ran-
dom variable X;.

e Tomorrow’s price is uncertain and it can be
modelled by a probability distribution.

e What is a random variable?

e What is the distinction between a random
variable and a function?

e In this course, T'= {0, +1,+2,...}.

e The observed series (z1, o, ..., 27), {z¢}]
1s considered as a realization of a stochastic

process { X} .



Ergodicity

e Can we use a single realization to infer the
unknown parameters of a joint probability
distribution?

e The sample moments for finite stretches of
the realization approach their population coun-
terparts as the length of the realization be-
comes infinite.

Consider the following toy example.

e Suppose we have six coins with unkown prob-
abilities of success pq, - -, pg, respectively.
On those coins, they are marked by 1 through
6. Conduct the following experiment.

— Roll a fair die once and denote the out-
come by 1.

— Pick the coin which number matches [
and flip it continuously.

— From this experiment, can we estimate
p1, - - -, Pg consistently?



Stationarity of a Stochastic Process:

How do we describe (X1, Xo, ..., X7)?

e Use a T-dimensional probability distribu-
tion.

In practice, it is difficult to find the cdf from
an observed time series.

e Model its first and second moments.
T means: F(Xy), E(Xs),..., E(Xr),
T variances: V(X1), V(Xy),...,V(Xrp),
T(T — 1)/2 covariances:

COU(XZ',X]'), 1 <j.

e When (X1, Xs,..., X7) are normally dis-
tributed, the first two moments completely
characterize its properties.

Question: We have too many parameters (T +
T(T +1)/2) and too few observations (7).
Solution: Reduce the number of unknown pa-
rameters by imposing additional structure.



Strictly Stationarity:

The properties of {X;}>°_ are unaffected by a
change of time origin.

e Time invariant: independent of time origin

e [t is hard to verify in practice.
Implication:

e The joint probability distribution at any set
of times ty,t9,...,t,, must be the same as
the joint probability distribution at times
tv + k,to + k,...,t,, + k, where £ is an
arbitrary shift along the time axis.

e For m = 1, the marginal probability distri-
butions do not depend on time.

e When F|X;|? < oo,

(X)) = B(X;) = -+ = B(Xy) = B(X,) =
and
V(X)) =V(Xy)=---=V(Xp) =V (X} = ag(.

e For m = 2, all bivariate distributions do not
depend on ¢t. Hence, for all k,

Cov(X1, X11x) = Cov(Xg, Xogp) = -+
= Cov(Xp_g, X7) = Cov(Xi_k, Xy).
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e Both autocovariances and autocorrelations
depend only on the lag (or time difference)

k only.
Vi = Cov(Xi—, Xy) = E[(Xo—p—p)(Xi—p)],

and
o = COU(Xt_k, Xt) _ Yk
V(Xy) - V(IXep)V2 v

Example 1:
Sinusoid with Random Phase and Amplitude
(continuous-time stochastic process)

o X; = Asin(wt + 0) where A is uniformly
distributed on the interval [—a, a|, 8 is uni-
formly distributed on the interval [0, ] in-
dependent of A. The w and a are fixed con-

stants.

e The first moment does not depend on t.
E(X;)=FE(A)- Elsin(wt+0)] =0
because F(A) = 0.

e Covariance stationary:

COU(Xt, Xt—k)



= E(A?) - E[sin(wt + 0)sin(w(t — k) + 0)]

a® (1 1
=3 {2 cos(wk) — §E[cos(w(2t + k) + 20)]}
a® (1 L . 1
= {2 cos(wk) — 5 Jy cos(w(2t + k) + 29)27Td0}
2
= cos(wk),

which does not depend on time ¢.

10



Weak (Second-order) Stationarity:

e A weaker version of stationarity is often as-
sumed.

e The series {X;} is weakly stationarity if
both the mean of X; and the covariance be-
tween X; and X;_j are time-invariant.

F(X)) = B(Xy) = - = B(Xr) = B(X,) = .
V(X)) =V(Xy) = =V(Xr) = V(X;) = 0%,
Cov(Xy, X115) = Cov(Xg, Xoyp) = -+

= Cov(X7_p, X7) = Cov( Xy, Xy).

e In the finance literature, it is common to
assume that an asset return series 1s weak
stationary.

e This assumption can be checked empirically
provided that sufficient number of historical
returns are available.

The ACF of a Process

e Under the assumption of weak stationarity,
the autocorrelations can be viewed as a func-
tion of £ and will be referred to as the au-
tocorrelation function (ACF), (py).
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e ACF only defined on a stationary process.

e ACF gives a measure on the correlation of
one value of the process with previous val-
ues.

e [t indicates the length and strength of the
memory of the process.

e Since time series data are correlated, it
is important to study autocorrelation of the
process.

e In fact, most time series models are “mod-
els” of autocorrelations.

e The estimation of ACF from an observed
time series data set later.

e The ACF matrix

1 py pg p3 -+
o1 1 py py -
p2 p1 1 p1 -
ps p2 p1 1

must be positive semidefinite.
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Stationary Time Series Models

e We have to find a broad class of models
which can describe a wide variety of ob-
served time series.

e Linear time series models (linear process):
A time series X, is said to be linear if it can
be written as

Xt =+ %_.50 Vi

where 1y = 1 and {a;} is a sequence of inde-
pendent and identically distributed random
variables with mean zero and a well-defined
distribution.

{a;} is a white noise process.

{X:} is generated as a linear filter of strict
white noise.

e White Noise Process
— {a;} is a white noise process if
(1) Efar) =0,
(i) V(ay) = 0% < o0,
(iii) Cov(ag, a;—r) = 0 for all k #£ 0.
— {a;} is denoted as a; ~ WN(0, 0?) later
on.

13



— Although white noise process is not com-
monly encountered in applied time series,
it is an important building block (called
innovations) of most modern time series
models.

—pr =0 for k£ > 0.

— If the a;’s are also independent, then the

sequence {a;} is termed strict white
noise, denoted a; ~ SWN(0, 0?).

e Non-linear time series

e T'wo types of time series:
stationary and nonstationary

e Several classes of stationary time series mod-

els:
— Autoregressive Models: AR(1), AR(2),
AR(p)
— Moving Average Models: M A(1), M A(2),
MA(g)

— Mixed Models: ARMA(1,1), ARM A(p, q)

Many financial time series are certainly not sta-
tionary.
They have a tendency to exhibit time-changing

14



means and /or variances.
Box and Jenkins (1976): ARIMA.

Here I refers to “integrated.”
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Wold’s Decomposition: Theorem 5.7.1 of
Brockwell and Davis (1991)

e Any zero-mean stationary process { X; } which
is not deterministic can be expressed as a

sum X; = U; + V,.
o {U;}: an M A(c0) process
Ur = Yoas + Yras—1 + hoay 2+ - -,
where ¢y =1, 272, wf < 0.

e {V;}: a deterministic process which is un-
correlated with {a;}
(i.e., F(a;Vs) =0 for all (s,t).).

e A process is called deterministic if the val-
ues of X,4;, 7 > 1, were perfectly pre-
dictable in terms of elements of closed span
{Xi, —o0 <t < n}. ie,

0* = E| X1 — P, X |* = 0.

P\, X,,11 1s the best linear predictor of X, 11
based on X; up to n.

® ; — Xt — PMt—lXt
® 'lp] =< Xt,at_j > /0'2
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Statement in the book:

Every weakly stationary, purely nondeterminis-
tic process (X; — p) can be written as a linear
combination (or linear filter) of a sequence of
uncorrelated random variables. Here

e purely nondeterministic means that any lin-
early deterministic component has been sub-
tracted from X..

e Such a component is one that can be per-
fectly predicted from past values of itself and
examples commonly found are a (constant)
mean, as is implied by writing the process
as (Xy — u), periodic sequences, and poly-
nomial exponential sequences in ¢.

e The linear filter representation is given by
Xt —p = ar+r1ap1 +Poaro+ -
©.@)
= X V0. (1)
7=0

Here a; ~ WN(0,0?) and the coefficients
in the linear filter are known as -weight.

Properties:
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Y = V Xi) = (Z Uyl ]) :02j§0¢?’

(
= E(X; — )(Xt k—M)
= Ela;+ a1 + -+ Yrap_i

FPp+10—f—1 + - ) (@ + 11 + -

= 0" % Pt
7=0
pr = ri/ro= X b/ 45,
7=0 7=0
where 1)y = 1.

The last one gives the ACF of the moving aver-
age representation of a process.

e Linear time series models are econometric
and statistical models that describes the pat-
tern of Y-weights.

o [f =22, 1| < oo, then =32 ;a;; converges
absolutely with probability one.

e =22 1| < oo guarantees that the process
{X;} to be stationary.

e The backshift operator B:
[t shifts time one step back.
Hence Ba; = a;—1 or B™a; = a;_,.
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(1) can be written as
Xy — p=9(B)a,
where (B) = £32, i BI with 1y = 1.
o { X} issaid to be a moving average (M A(00))

of {a;}.

e Mathematically speaking, $22, ;| < oo
is equivalent to require all the roots of the
polynomial t(B) lie outside the unit circle.

e [t means that if 0 is a real-valued root of
Y(B), we require [§] > 1; and if § is a
complex root, say, 0 = ¢ + di, we require

6 =vVE T 2> 1.
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ARMA Processes:
AR(1) process

(autoregressive process of order 1):

e Choose 1; = ¢/ in Wold’s decomposition.

e Stationarity:
i || < oo if |@| < 1.

e The linear filter representation converges if
| < 1.

o AR(1) process:

Xi—p =1 -a+ a1+ 202
= a;+ Qa1+ Par_z- -
= a; + ¢(a—1 + pa;_o + - )
Xe1— = @1+ Qaro+ .
It means that X; is an infinite-order weighted
average of the present and past innovations.

Or
Xi—p=9(Xem1—p)+ar.  (2)

It means that X; depends linearly on X;_4
and the innovation a; alone.

e [nvertibility: |¢| < 1
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e If a process can be re-written as an AR rep-
resentation, we call that process invertiable.

e Why do we call it an AR model?
This is the same form as the well-known sim-
ple linear regression in which X; is the de-
pendent variable and X;_; is the explana-
tory variable.

e Regress Xy — pon X; 1 — L.

min B[(X; — p) — a(Xey — p)]*

vVersus

: . 2
min E[X; — (X))

e ¢: autoregressive parameter

e For the AR(1) model, it can be written as

(1—6B)(X, - p) =
Here B is the backshift operator.

e Hence,
X;—p=(1—-¢B) ay= (14 ¢B+¢*B*+ - )ay
= a;+ day_ 1+ Praz o+ . (3)
This is called an MA (moving average) rep-
resentation of a process.

21



ACF of an AR(1) process:
It follows from (2) that for all k£ > 0,

E(Xy — p)( Xk — p) = 0E(Xy1 — p)(Xyop — 1)
+ Eat(Xt_k — /L)

V(X:) = ¢2V2a”'°(Xt—1) + Var(a)

V(Xy) =

o
1 — ¢?

T = -1 = . (4)
ACF (p, = ¢%): tail-off at lag 1
Observe that

e » > 0: ACF decays exponentially to zero,

e » < 0: ACF decays in an oscillatory pat-
tern,

e ¢ is close to the non-stationary boundaries
of 1 and —1: ACF decays slowly.
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Question:

e For all AR processes, their ACFs damp out.

e [t is difficult to distinguish between processes
of different orders.

Partial Autocorrelation Function (PACF)

e The correlation between two random vari-
ables is often due to both variables being
correlated with a third.

e A large portion of the correlation between
X; and X;_; may due to the correlation this
pair have with the intervening observations

X27'”7Xk‘-

e The partial autocorrelation a(k) at lag k
may be regarded as the correlation between
X1 and X1, adjusted for the intervening
observations X;_q1, -+, Xi_r_1.

e o(k) is the correlation of the two residuals
obtained after regressing X1 and X; on
the intermediate observations Xs, - - -, X}.

o o(1) = Corr(Xs, X1) = p1
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e residuals after regressing X1 on the inter-
mediate observations Xo, - - -, X}:

k
Xg+1 — Qo — ;2 o X
where, for 7 = 2,...,k,
k
aoE(X;) + _§2 i (X X;) = E(Xp1Xj),

k
ap+ X o B(X;) = E(Xjp),

1=2

and cv0+zf:2 o; X; 18 the so-called best linear
prediction of X, based on X5, -, X}.

® CV(]C) — COTT<Xt7 Xt—l—k|Xt—|—17 e 7Xt—|-]€—1)
Example: zero mean AR(1)
Xt = O.9Xt_1 + ay.
We have

a(l) = Corr(Xsy, X;)
= Corr(0.9X1 + a2, X1) = 0.9.

The best linear prediction of X, based on
1, X, ..., X} 18 0.9X; and the best linear pre-
diction of Xy based on 1, Xs,..., X} 1s also
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0.9X}. since (X7, ..., X;) has the same covari-
ance matrix as (Xgi1, Xg, ..., Xo).
Hence, for k > 2,

alk) = Corr(Xy1 — 0.9X, X1 — 0.9X)5)
= Corr(ags1, X1 —0.9X5) = 0.

e PACF of AR(1): cut-off at lag 1
It is a useful tool to determine the order p

of an AR model.

e The kth partial autocorrelation is the coet-
ficient 1t in the AR(k) process

T = Y11 + -+ YppXe—p + ar. (D)

e For general stationary process, refer to page
19 for ¢y or a(k).
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M A(1) process
(first-order moving average process):

There are several ways to introduce MA mod-
els.
We first consider the approach by treating the
models as a simple extension of white noise se-
ries.
Choose ¢; = —0 and ¢; = 0, 7 > 2. Then we

have

Xy —p = a; — Oay_q
Xi—p = (1 -6B)ay. (6)

e Eixcept for the constant term, X; is a weighted
average of shocks a; and a;_;.

e Stationarity: MA are always weakly sta-
tionary, because they are finite linear com-
binations of a white noise sequence. (a finite
number of nonzero ;)

e X; is a linear combination of the present and
immediately preceding innovations.

e Observations one period apart are correlated,
observations more than one period apart are
uncorrelated.
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The memory of the process is just one pe-
riod.

e Another approach to treat M A as infinite-
order AR models with some parameter con-
straints.

AR representation:
Consider (1 — 0B)™'X; = a,.
Expanding (1 — 6B)~! yields

(14+0B+60°B*+ - )(X; — pu) = ay.
Hence
Xi—p = 7T1(Xt—1—,u)—|—7T2(Xt—2—M)+' Ty,

where m; = —6” and the 7-weights converge
(z|m| < 00)if 0] < 1.

e Invertibility: if |#] < 1

e When |f| < 1, it means that the effect of
past observations decreases with age.

e Not every process is invertible. Consider
Xt — (1 — QB)at.

(1-2B)7'X; = a
(1-2B+4B*—-8B°+--)X; = a;.
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The sum |1| + | — 2| + |4| +| — 8| + ---
is explosive, therefore, this process is nonin-
vertible.

ACF of an M A(1) process:
It follows from (6) that for all £ > 0,

E(X: — p)(Xi—, — p) = Elar — baz1)

‘(at—k — 9at—k—1)a

ve =0 k>1,
T = _0-2(97
Yo = 0'2(1—|—92)
9 ~1/6
P1 =

1+62 1+ (1/6)
pr = 0 for k> 1.
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Remarks:
o —(.0< p1 < 0.5 by p1 = —(9/(1 + (92)

e Both the following M A(1) models have the
same ACF"

Model A X; — u=(1—-0.4B)aqy
Model B X; — = (1 —2.5B)ay

which is p; = —0.34483.
e Model A is invertible while the Model B is

not.

e For simplicity, we only consider invertible
models.

e ACF': cut-off at lag 1
The ACEF' is useful in identifying the order
of an M A model.

e PACEF" tail-off at lag 1

e This model is said to have short memory.
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Autoregressive-moving average models:

ARMA(1,1) process

In some applications, the AR or M A models
become cumbersome as the models may need
many parameters to adequately describe the se-
rial dependence of the data.

(X —p) = d(Xyp1 — p) = ar — fay
(1—=¢B)(Xi —p) = (1 —0B)a,.(7)
e The left-hand side is the AR component of

the model and the right-hand side gives the
M A component.

e For this model to be meaningful, we require
that ¢ # 0; otherwise, there is a cancellation
in the equation and the process reduces to
a white noise series.

e Theidea of ARM A model is highly relevant
in modeling the volatility of asset returns.

e This representation is compact and useful in
parameter estimation.
It is also usetul to compute recursively multi-
step forecasts of X;.

Now we give the other two representations.
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e The t-weights in the M A(oco) representa-
tion are

1—-6B

V(B) = it (8)

X, — = $(Blay = (ii'fl qsiB@') (1—0B)a,
= a+ (60> ¢ M (9

— This representation shows the impact of
the past shock a;_; (¢ > 0) on the current
return X;.

— It is also useful in computing the variance
of forecast errors.

— It can be used to prove the mean rever-
sion of a stationary time series.

e The m-weights in the AR(0c0) representation
are

"B) = g
T(B)(X—p) = (£ 0B (1- v(B)
(X — /LO)O: t
Xi—p = (¢p—10) Eo 0" (X — 1)

+ay.
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— This representation shows the dependence
of the current return X; on the past re-
turns X;_; (¢ > 0) .

— It shows that the contribution of the lagged
value X;_; to X; is diminishing as ¢ in-
creases, the m; coefficient should decay to
7€ro as 1 1ncreases.

e The model is stationary if |p| < 1.
e The model is invertible if |6] < 1.

e Variance

V(Xy) = ¢*V(Xim1) + (1 +6%)0”
+2¢Cov(as, X¢i—1 — 1)
—20Cov(az, a;—1)
—2¢0Cov(as_1, X;—1 — 1)
(14 6% — 2¢0)0”

1 — ¢? '

o ACF

E(Xy — p) (X — )
— CbE(Xt—l — H)(Xt—k — ,u)
+Eay(Xe—p — p)] — OB a1 (Xi—p — p)].

32



Ve = ¢’Yk—17 for k£ Z 27
Y1 = ¢y — OE{|p( X2 — 1) + a1 — Oar_o]ar—1 }
(@ —0)(1—00) ,

— g o°.
Thus
(1 k=0
o= oo 1
| Ppr-1 k> 2

e The ACF of an ARM A(1, 1) process is sim-
ilar to that of an AR(1) process.
The autocorrelation decay exponentially at
a rate ¢.

e PACF: tail off at lag 1
It can be calculated easily by the formula in

page 19.
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