Financial Time Series

Topic 2: Linear Time Series Analysis

Hung Chen
Department of Mathematics
National Taiwan University
3/8/2002

OUTLINE

- 1. Fundamental Concepts
- 2. Ergodicity of a Stochastic Process
- 3. Stationarity of a Stochastic Process
- 4. The ACF of a Process
- 5. The PACF of a Process
- 6. Stationary Time Series Models
 - -AR(1) Processes
 - -MA(1) Processes
 - -ARMA(1,1) Processes

Fundamental Concepts

- Time series data are observations with a particular order (usually time t)
- It is different from cross-sectional data.
- Examples of time series
 - Quartly unemployment rate
 - Monthly car sales
 - Interest rate spread
 - Stock market index values (Dow Jones, Hang Seng and etc)
 - $-\log \text{ return of an asset: } r_t$
- $\{x_1, x_2, x_3, \dots, x_n\}$, an observed univariate times series such as $\{30.5, 28.9, 33.1, \dots\}$
- x_t : a single number recorded at time t
- We assume that a time series is a **realization** from a certain stochastic process.
- Purposes:
 - Study the dynamics structure.
 - Monitor price behavior (stock, currency, commodity)

- Understand the probable development of prices in the future
- Forecast the volatility of future prices.
- Understand how prices behave
- Use knowledge of price behavior to take better decisions
 Suppose we have planned a holiday abroad and will need to buy foreign currency.
 The purchase could be made months in advance or left until you arrive at your destination.
- How do we predict x_{n+1} at time t = n?
- Motives for trading:
 - Reduction of business risks
 - Purchases and sales of raw materials
 - Investment of personal or corporate wealth
- Trading possibilities
 - Spot markets: stock and share markets
 - Future markets: agree a price for exchanging goods at some later date

 Option markets: gives its owner the right to engage in a particular spot or future transaction at a formerly agreed price.

Stochastic Processes

Data:

- A **stochastic process** is a family of time indexed random variables $\{X_{t_1}, X_{t_2}, X_{t_3}, \ldots\}$ defined on a probability space (Ω, \mathcal{F}, P) where $t_i \in T$.
- Treat x_t as the realized value of some random variable X_t .
- Tomorrow's price is uncertain and it can be modelled by a probability distribution.
- What is a random variable?
- What is the distinction between a random variable and a function?
- In this course, $T = \{0, \pm 1, \pm 2, \ldots\}$.
- The observed series (x_1, x_2, \ldots, x_T) , $\{x_t\}_1^T$ is considered as a realization of a stochastic process $\{X_t\}_{-\infty}^{\infty}$.

Ergodicity

- Can we use a single realization to infer the unknown parameters of a joint probability distribution?
- The sample moments for finite stretches of the realization approach their population counterparts as the length of the realization becomes infinite.

Consider the following toy example.

- Suppose we have six coins with unkown probabilities of success p_1, \dots, p_6 , respectively. On those coins, they are marked by 1 through 6. Conduct the following experiment.
 - Roll a fair die once and denote the outcome by I.
 - Pick the coin which number matches I and flip it continuously.
 - From this experiment, can we estimate p_1, \dots, p_6 consistently?

Stationarity of a Stochastic Process:

How do we describe (X_1, X_2, \ldots, X_T) ?

- ullet Use a T-dimensional probability distribution.
 - In practice, it is difficult to find the cdf from an observed time series.
- Model its first and second moments.

T means: $E(X_1), E(X_2), \dots, E(X_T),$

T variances: $V(X_1), V(X_2), \ldots, V(X_T),$

T(T-1)/2 covariances:

$$Cov(X_i, X_j), i < j.$$

• When (X_1, X_2, \ldots, X_T) are normally distributed, the first two moments completely characterize its properties.

Question: We have too many parameters (T + T(T+1)/2) and too few observations (T). Solution: Reduce the number of unknown parameters by imposing additional structure.

Strictly Stationarity:

The properties of $\{X_t\}_{-\infty}^{\infty}$ are unaffected by a change of time origin.

- Time invariant: independent of time origin
- It is hard to verify in practice.

Implication:

- The joint probability distribution at any set of times t_1, t_2, \ldots, t_m must be the same as the joint probability distribution at times $t_1 + k, t_2 + k, \ldots, t_m + k$, where k is an arbitrary shift along the time axis.
- For m = 1, the marginal probability distributions do not depend on time.
- When $E|X_t|^2 < \infty$, $E(X_1) = E(X_2) = \cdots = E(X_T) = E(X_t) = \mu$, and $V(X_1) = V(X_2) = \cdots = V(X_T) = V(X_t) = \sigma_X^2$.
- For m = 2, all bivariate distributions do not depend on t. Hence, for all k,

$$Cov(X_1, X_{1+k}) = Cov(X_2, X_{2+k}) = \cdots$$

= $Cov(X_{T-k}, X_T) = Cov(X_{t-k}, X_t).$

ullet Both autocovariances and autocorrelations depend only on the lag (or time difference) k only.

$$\gamma_k = Cov(X_{t-k}, X_t) = E[(X_{t-k} - \mu)(X_t - \mu)],$$

and

$$\rho_k = \frac{Cov(X_{t-k}, X_t)}{[V(X_t) \cdot V(X_{t-k})]^{1/2}} = \frac{\gamma_k}{\gamma_0}.$$

Example 1:

Sinusoid with Random Phase and Amplitude (continuous-time stochastic process)

- $X_t = A \sin(\omega t + \theta)$ where A is uniformly distributed on the interval [-a, a], θ is uniformly distributed on the interval $[0, \pi]$ independent of A. The ω and a are fixed constants.
- \bullet The first moment does not depend on t.

$$E(X_t) = E(A) \cdot E[\sin(\omega t + \theta)] = 0$$
because $E(A) = 0$.

• Covariance stationary:

$$Cov(X_t, X_{t-k})$$

$$\begin{split} &= E(A^2) \cdot E[\sin(\omega t + \theta) \sin(\omega (t - k) + \theta)] \\ &= \frac{a^2}{3} \left\{ \frac{1}{2} \cos(\omega k) - \frac{1}{2} E[\cos(\omega (2t + k) + 2\theta)] \right\} \\ &= \frac{a^2}{3} \left\{ \frac{1}{2} \cos(\omega k) - \frac{1}{2} \int_0^{\pi} \cos(\omega (2t + k) + 2\theta) \frac{1}{2\pi} d\theta \right\} \\ &= \frac{a^2}{6} \cos(\omega k), \end{split}$$

which does not depend on time t.

Weak (Second-order) Stationarity:

- A weaker version of stationarity is often assumed.
- The series $\{X_t\}$ is weakly stationarity if both the mean of X_t and the covariance between X_t and X_{t-k} are time-invariant.

$$E(X_1) = E(X_2) = \dots = E(X_T) = E(X_t) = \mu,$$

$$V(X_1) = V(X_2) = \dots = V(X_T) = V(X_t) = \sigma_X^2,$$

$$Cov(X_1, X_{1+k}) = Cov(X_2, X_{2+k}) = \dots$$

$$= Cov(X_{T-k}, X_T) = Cov(X_{t-k}, X_t).$$

- In the finance literature, it is common to assume that an asset return series is weak stationary.
- This assumption can be checked empirically provided that sufficient number of historical returns are available.

The ACF of a Process

• Under the assumption of weak stationarity, the autocorrelations can be viewed as a function of k and will be referred to as the **autocorrelation function** (ACF), (ρ_k) .

- ACF only defined on a stationary process.
- ACF gives a measure on the correlation of one value of the process with previous values.
- It indicates the length and strength of the **memory** of the process.
- Since time series data are **correlated**, it is important to study autocorrelation of the process.
- In fact, most time series models are "models" of autocorrelations.
- The estimation of ACF from an observed time series data set later.
- The ACF matrix

$$\begin{pmatrix} 1 & \rho_1 & \rho_2 & \rho_3 & \cdots \\ \rho_1 & 1 & \rho_1 & \rho_2 & \cdots \\ \rho_2 & \rho_1 & 1 & \rho_1 & \cdots \\ \rho_3 & \rho_2 & \rho_1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

must be **positive semidefinite**.

Stationary Time Series Models

- We have to find a broad class of models which can describe a wide variety of observed time series.
- Linear time series models (linear process):
 A time series X_t is said to be linear if it can be written as

$$X_t = \mu + \sum_{i=0}^{\infty} \psi_i a_{t-i}$$

where $\psi_0 = 1$ and $\{a_t\}$ is a sequence of independent and identically distributed random variables with mean zero and a well-defined distribution.

 $\{a_t\}$ is a white noise process.

 $\{X_t\}$ is generated as a linear filter of strict white noise.

- White Noise Process
 - $-\{a_t\}$ is a white noise process if
 - (i) $E(a_t) = 0$,
 - (ii) $V(a_t) = \sigma^2 < \infty$,
 - (iii) $Cov(a_t, a_{t-k}) = 0$ for all $k \neq 0$.
 - $-\{a_t\}$ is denoted as $a_t \sim WN(0, \sigma^2)$ later on.

- Although white noise process is not commonly encountered in applied time series, it is an important building block (called innovations) of most modern time series models.
- $-\rho_k = 0 \text{ for } k > 0.$
- If the a_t 's are also independent, then the sequence $\{a_j\}$ is termed **strict white noise**, denoted $a_t \sim SWN(0, \sigma^2)$.
- Non-linear time series
- Two types of time series: stationary and nonstationary
- Several classes of stationary time series models:
 - Autoregressive Models: AR(1), AR(2), AR(p)
 - Moving Average Models: MA(1), MA(2), MA(q)
 - Mixed Models: ARMA(1,1), ARMA(p,q)

Many financial time series are certainly not stationary.

They have a tendency to exhibit time-changing

means and/or variances.
Box and Jenkins (1976): ARIMA.
Here I refers to "integrated."

Wold's Decomposition: Theorem 5.7.1 of Brockwell and Davis (1991)

- Any zero-mean stationary process $\{X_t\}$ which is not deterministic can be expressed as a sum $X_t = U_t + V_t$.
- $\{U_t\}$: an $MA(\infty)$ process $U_t = \psi_0 a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \cdots,$ where $\psi_0 = 1$, $\sum_{i=0}^{\infty} \psi_i^2 < \infty$.
- $\{V_t\}$: a deterministic process which is uncorrelated with $\{a_t\}$ (i.e., $E(a_tV_s) = 0$ for all (s, t).).
- A process is called deterministic if the values of X_{n+j} , $j \geq 1$, were perfectly predictable in terms of elements of closed span $\{X_t, -\infty < t \leq n\}$. i.e.,

$$\sigma^2 = E|X_{n+1} - \mathbf{P}_{\mathcal{M}_n} X_{n+1}|^2 = 0.$$

 $\mathbf{P}_{\mathcal{M}_n} X_{n+1}$ is the best linear predictor of X_{n+1} based on X_t up to n.

- $\bullet \ a_t = X_t \mathbf{P}_{\mathcal{M}_{t-1}} X_t$
- $\bullet \ \psi_j = < X_t, a_{t-j} > /\sigma^2$

Statement in the book:

Every weakly stationary, purely nondeterministic process $(X_t - \mu)$ can be written as a linear combination (or linear filter) of a sequence of uncorrelated random variables. Here

- purely nondeterministic means that any linearly deterministic component has been subtracted from X_t .
- Such a component is one that can be perfectly predicted from past values of itself and examples commonly found are a (constant) mean, as is implied by writing the process as $(X_t \mu)$, periodic sequences, and polynomial exponential sequences in t.
- The linear filter representation is given by

$$X_{t} - \mu = a_{t} + \psi_{1} a_{t-1} + \psi_{2} a_{t-2} + \cdots$$
$$= \sum_{j=0}^{\infty} \psi_{j} a_{t-j}. \tag{1}$$

Here $a_t \sim WN(0, \sigma^2)$ and the coefficients in the linear filter are known as ψ -weight.

Properties:

$$E(X_{t}) = \mu,$$

$$\gamma_{0} = V(X_{t}) = E(\sum_{j=0}^{\infty} \psi_{j} a_{t-j})^{2} = \sigma^{2} \sum_{j=0}^{\infty} \psi_{j}^{2},$$

$$\gamma_{k} = E(X_{t} - \mu)(X_{t-k} - \mu)$$

$$= E(a_{t} + \psi_{1} a_{t-1} + \dots + \psi_{k} a_{t-k} + \psi_{k+1} a_{t-k-1} + \dots) \cdot (a_{t-k} + \psi_{1} a_{t-k-1} + \dots)$$

$$= \sigma^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+k},$$

$$\rho_{k} = r_{k}/r_{0} = \sum_{j=0}^{\infty} \psi_{j} \psi_{j+k} / \sum_{j=0}^{\infty} \psi_{j}^{2},$$

where $\psi_0 = 1$.

The last one gives the ACF of the moving average representation of a process.

- Linear time series models are econometric and statistical models that describes the pattern of ψ -weights.
- If $\Sigma_{j=0}^{\infty} |\psi_j| < \infty$, then $\Sigma_{j=0}^{\infty} \psi_j a_{t-j}$ converges absolutely with probability one.
- $\Sigma_{j=0}^{\infty} |\psi_j| < \infty$ guarantees that the process $\{X_t\}$ to be stationary.
- The **backshift** operator B: It shifts time one step back. Hence $Ba_t = a_{t-1}$ or $B^m a_t = a_{t-m}$.

(1) can be written as

$$X_t - \mu = \psi(B)a_t,$$

where $\psi(B) = \sum_{j=0}^{\infty} \psi_j B^j$ with $\psi_0 = 1$.

- $\{X_t\}$ is said to be a moving average $(MA(\infty))$ of $\{a_t\}$.
- Mathematically speaking, $\Sigma_{j=0}^{\infty} |\psi_j| < \infty$ is equivalent to require all the roots of the polynomial $\psi(B)$ lie outside the unit circle.
- It means that if δ is a real-valued root of $\psi(B)$, we require $|\delta| > 1$; and if δ is a complex root, say, $\delta = c + di$, we require $|\delta| = \sqrt{c^2 + d^2} > 1$.

ARMA Processes:

AR(1) process (autoregressive process of order 1):

- Choose $\psi_j = \phi^j$ in Wold's decomposition.
- Stationarity: $\Sigma_j |\phi^j| < \infty \text{ if } |\phi| < 1.$
- The linear filter representation converges if $|\phi| < 1$.
- AR(1) process:

$$X_{t} - \mu = 1 \cdot a_{t} + \psi_{1} a_{t-1} + \psi_{2} a_{t-2} \cdots$$

$$= a_{t} + \phi a_{t-1} + \phi^{2} a_{t-2} \cdots$$

$$= a_{t} + \phi (a_{t-1} + \phi a_{t-2} + \cdots)$$

$$X_{t-1} - \mu = a_{t-1} + \phi a_{t-2} + \cdots$$

It means that X_t is an infinite-order weighted average of the present and past innovations. Or

$$X_t - \mu = \phi(X_{t-1} - \mu) + a_t. \tag{2}$$

It means that X_t depends linearly on X_{t-1} and the innovation a_t alone.

• Invertibility: $|\phi| < 1$

- If a process can be re-written as an AR representation, we call that process **invertiable**.
- Why do we call it an AR model? This is the same form as the well-known simple linear regression in which X_t is the dependent variable and X_{t-1} is the explanatory variable.
- Regress $X_t \mu$ on $X_{t-1} \mu$. $\min_{a \in R} E[(X_t - \mu) - a(X_{t-1} - \mu)]^2$

versus

$$\min_{\theta \in L^2} E[X_t - \theta(X_{t-1})]^2$$

- \bullet ϕ : autoregressive parameter
- For the AR(1) model, it can be written as

$$(1 - \phi B)(X_t - \mu) = a_t.$$

Here B is the **backshift** operator.

• Hence,

$$X_t - \mu = (1 - \phi B)^{-1} a_t = (1 + \phi B + \phi^2 B^2 + \cdots) a_t$$

= $a_t + \phi a_{t-1} + \phi^2 a_{t-2} + \cdots$. (3)

This is called an MA (moving average) representation of a process.

ACF of an AR(1) process:

It follows from (2) that for all k > 0,

$$E(X_{t} - \mu)(X_{t-k} - \mu) = \phi E(X_{t-1} - \mu)(X_{t-k} - \mu) + Ea_{t}(X_{t-k} - \mu)$$

$$V(X_{t}) = \phi^{2} Var(X_{t-1}) + Var(a_{t})$$

$$V(X_{t}) = \frac{\sigma^{2}}{1 - \phi^{2}}$$

$$\gamma_{k} = \phi \gamma_{k-1} = \phi^{k} \gamma_{0}.$$
(4)

ACF $(\rho_k = \phi^k)$: tail-off at lag 1 Observe that

- $\phi > 0$: ACF decays exponentially to zero,
- ϕ < 0: ACF decays in an oscillatory pattern,
- ϕ is close to the non-stationary boundaries of 1 and -1: ACF decays slowly.

Question:

- \bullet For all AR processes, their ACFs damp out.
- It is difficult to distinguish between processes of different orders.

Partial Autocorrelation Function (PACF)

- The correlation between two random variables is often due to both variables being correlated with a third.
- A large portion of the correlation between X_t and X_{t-k} may due to the correlation this pair have with the intervening observations X_2, \dots, X_k .
- The partial autocorrelation $\alpha(k)$ at lag k may be regarded as the correlation between X_1 and X_{k+1} , adjusted for the intervening observations $X_{t-1}, \dots, X_{t-k-1}$.
- $\alpha(k)$ is the correlation of the two residuals obtained after regressing X_{k+1} and X_1 on the intermediate observations X_2, \dots, X_k .
- $\bullet \ \alpha(1) = Corr(X_2, X_1) = \rho_1$

• residuals after regressing X_{k+1} on the intermediate observations X_2, \dots, X_k :

$$X_{k+1} - \alpha_0 - \sum_{i=2}^k \alpha_i X_i$$

where, for $j = 2, \ldots, k$,

$$\alpha_0 E(X_j) + \sum_{i=2}^k \alpha_i E(X_i X_j) = E(X_{k+1} X_j),$$

$$\alpha_0 + \sum_{i=2}^k \alpha_i E(X_i) = E(X_{k+1}),$$

and $\alpha_0 + \sum_{i=2}^k \alpha_i X_i$ is the so-called best linear prediction of X_{k+1} based on X_2, \dots, X_k .

$$\bullet \ \alpha(k) = Corr(X_t, X_{t+k} | X_{t+1}, \cdots, X_{t+k-1})$$

Example: zero mean AR(1)

$$X_t = 0.9X_{t-1} + a_t.$$

We have

$$\alpha(1) = Corr(X_2, X_1)$$

= $Corr(0.9X_1 + a_2, X_1) = 0.9.$

The best linear prediction of X_{k+1} based on $1, X_2, \ldots, X_k$ is $0.9X_k$ and the best linear prediction of X_1 based on $1, X_2, \ldots, X_k$ is also

 $0.9X_k$ since (X_1, \ldots, X_k) has the same covariance matrix as $(X_{k+1}, X_k, \ldots, X_2)$. Hence, for $k \geq 2$,

$$\alpha(k) = Corr(X_{k+1} - 0.9X_k, X_1 - 0.9X_2)$$

= $Corr(a_{k+1}, X_1 - 0.9X_2) = 0.$

- PACF of AR(1): cut-off at lag 1 It is a useful tool to determine the order p of an AR model.
- The kth partial autocorrelation is the coefficient ψ_{kk} in the AR(k) process

$$x_t = \psi_{k1} x_{t-1} + \dots + \psi_{kk} x_{t-k} + a_t.$$
 (5)

• For general stationary process, refer to page 19 for ψ_{kk} or $\alpha(k)$.

MA(1) process (first-order moving average process):

There are several ways to introduce MA models.

We first consider the approach by treating the models as a simple extension of white noise series.

Choose $\psi_1 = -\theta$ and $\psi_j = 0$, $j \ge 2$. Then we have

$$X_{t} - \mu = a_{t} - \theta a_{t-1} X_{t} - \mu = (1 - \theta B) a_{t}.$$
 (6)

- Except for the constant term, X_t is a weighted average of shocks a_t and a_{t-1} .
- Stationarity: MA are always weakly stationary, because they are finite linear combinations of a white noise sequence. (a finite number of nonzero ψ_i)
- X_t is a linear combination of the present and immediately preceding innovations.
- Observations one period apart are correlated, observations more than one period apart are uncorrelated.

The **memory** of the process is just one period.

• Another approach to treat MA as infinite-order AR models with some parameter constraints.

AR representation:

Consider
$$(1 - \theta B)^{-1} X_t = a_t$$
.

Expanding $(1 - \theta B)^{-1}$ yields

$$(1 + \theta B + \theta^2 B^2 + \cdots)(X_t - \mu) = a_t.$$

Hence

$$X_t - \mu = \pi_1(X_{t-1} - \mu) + \pi_2(X_{t-2} - \mu) + \dots + a_t,$$

where $\pi_j = -\theta^j$ and the π -weights converge $(\Sigma |\pi_j| < \infty)$ if $|\theta| < 1$.

- Invertibility: if $|\theta| < 1$
- When $|\theta| < 1$, it means that the effect of past observations decreases with age.
- Not every process is invertible. Consider $X_t = (1 2B)a_t$.

$$(1 - 2B)^{-1}X_t = a_t$$
$$(1 - 2B + 4B^2 - 8B^3 + \cdots)X_t = a_t.$$

The sum $|1| + |-2| + |4| + |-8| + \cdots$ is explosive, therefore, this process is noninvertible.

ACF of an MA(1) process: It follows from (6) that for all k > 0,

$$E(X_{t} - \mu)(X_{t-k} - \mu) = E(a_{t} - \theta a_{t-1})$$

$$\cdot (a_{t-k} - \theta a_{t-k-1}),$$

$$\gamma_{k} = 0 \quad k > 1,$$

$$\gamma_{1} = -\sigma^{2}\theta,$$

$$\gamma_{0} = \sigma^{2}(1 + \theta^{2})$$

$$\rho_{1} = \frac{-\theta}{1 + \theta^{2}} = \frac{-1/\theta}{1 + (1/\theta)^{2}},$$

$$\rho_{k} = 0 \quad \text{for } k > 1.$$

Remarks:

- $-0.5 < \rho_1 < 0.5$ by $\rho_1 = -\theta/(1+\theta^2)$
- Both the following MA(1) models have the same ACF:

Model A
$$X_t - \mu = (1 - 0.4B)a_t$$

Model B $X_t - \mu = (1 - 2.5B)a_t$

which is $\rho_1 = -0.34483$.

- Model A is invertible while the Model B is not.
- For simplicity, we only consider invertible models.
- ACF: cut-off at lag 1
 The ACF is useful in identifying the order of an MA model.
- PACF: tail-off at lag 1
- This model is said to have *short memory*.

Autoregressive-moving average models: ARMA(1,1) process

In some applications, the AR or MA models become cumbersome as the models may need many parameters to adequately describe the serial dependence of the data.

$$(X_t - \mu) - \phi(X_{t-1} - \mu) = a_t - \theta a_{t-1}$$

$$(1 - \phi B)(X_t - \mu) = (1 - \theta B)a_t. (7)$$

- The left-hand side is the AR component of the model and the right-hand side gives the MA component.
- For this model to be meaningful, we require that $\phi \neq \theta$; otherwise, there is a cancellation in the equation and the process reduces to a white noise series.
- The idea of ARMA model is highly relevant in modeling the volatility of asset returns.
- This representation is compact and useful in parameter estimation. It is also useful to compute recursively multistep forecasts of X_t .

Now we give the other two representations.

• The ψ -weights in the $MA(\infty)$ representation are

$$\psi(B) = \frac{1 - \theta B}{1 - \phi B},\tag{8}$$

$$X_{t} - \mu = \psi(B)a_{t} = \left(\sum_{i=1}^{\infty} \phi^{i} B^{i}\right) (1 - \theta B) a_{t}$$
$$= a_{t} + (\phi - \theta) \sum_{i=0}^{\infty} \phi^{i-1} a_{t-i}. \tag{9}$$

- This representation shows the impact of the past shock a_{t-i} (i > 0) on the current return X_t .
- It is also useful in computing the variance of forecast errors.
- It can be used to prove the mean reversion of a stationary time series.
- The π -weights in the $AR(\infty)$ representation are

$$\pi(B) = \frac{1 - \phi B}{1 - \theta B},$$

$$\pi(B)(X_t - \mu) = \left(\sum_{i=0}^{\infty} \theta^i B^i\right) (1 - \psi(B))$$

$$\cdot (X_t - \mu) = a_t$$

$$X_t - \mu = (\phi - \theta) \sum_{i=0}^{\infty} \theta^{i-1} (X_{t-i} - \mu)$$

$$+a_t.$$

- This representation shows the dependence of the current return X_t on the past returns X_{t-i} (i > 0).
- It shows that the contribution of the lagged value X_{t-i} to X_t is diminishing as i increases, the π_i coefficient should decay to zero as i increases.
- The model is stationary if $|\phi| < 1$.
- The model is invertible if $|\theta| < 1$.
- Variance

$$V(X_{t}) = \phi^{2}V(X_{t-1}) + (1+\theta^{2})\sigma^{2} + 2\phi Cov(a_{t}, X_{t-1} - \mu) - 2\theta Cov(a_{t}, a_{t-1}) - 2\phi\theta Cov(a_{t-1}, X_{t-1} - \mu) = \frac{(1+\theta^{2} - 2\phi\theta)\sigma^{2}}{1-\phi^{2}}.$$

• ACF

$$E(X_{t} - \mu)(X_{t-k} - \mu)$$

$$= \phi E(X_{t-1} - \mu)(X_{t-k} - \mu)$$

$$+ E[a_{t}(X_{t-k} - \mu)] - \theta E[a_{t-1}(X_{t-k} - \mu)].$$

$$\gamma_{k} = \phi \gamma_{k-1}, \quad \text{for } k \ge 2,
\gamma_{1} = \phi \gamma_{0} - \theta E \{ [\phi(X_{t-2} - \mu) + a_{t-1} - \theta a_{t-2}] a_{t-1} \}
= \frac{(\phi - \theta)(1 - \phi \theta)}{1 - \phi^{2}} \sigma^{2}.$$

Thus

$$\rho_k = \begin{cases} 1 & k = 0\\ \frac{(\phi - \theta)(1 - \phi \theta)}{1 + \theta^2 - 2\phi \theta} & k = 1\\ \phi \rho_{k-1} & k \ge 2 \end{cases}.$$

- The ACF of an ARMA(1, 1) process is similar to that of an AR(1) process.

 The autocorrelation decay exponentially at a rate ϕ .
- PACF: tail off at lag 1
 It can be calculated easily by the formula in page 19.