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Introduction

e Provide some basic knowledge of financial
time series and to introduce some statistical
tools useful for analyzing these series.

e Basic concepts of asset returns.
e Linear time series analysis

— stationarity
— autocorrelation function
— conditional heteroscedasticity

— long memory series
e Nonlinear time series

e Nonlinearity of financial time series



Asset Returns
e [ The price of an asset at time index ¢.

e One-period simple return:
From date t — 1 to date ¢,

P _PR-P,
1 - P Py
e Multiperiod simple return:
From date t — k to date ¢,
P k—1
= = 1+ Ri_;).
Pyt )
If the asset was held for £ years, the annu-
alized return is defined as

Annualized[ Ry (k)]
k=1 ] 1/k
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7=0
Care must be exercised in using the approx-

1mation.
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e Continuously compounded return:
re = In(1 4+ Ry)
For multiperiod returns, we have
(k) =ri+ri 1+ T
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e Capital Asset Pricing Model (CAPM): Sharpe

(1964, J. of Finance, 425-442)
Consider the joint distribution of N return

at a single time index t. Or, study the dis-
tribution of { Ry, - - -, Rt}
e In this course, we emphasize on the dynamic

structure of individual asset returns.
Study the distribution of { Ry, ---, Rir}.

e How do we describe the joint distribution of

{th t= 1

— It 1s usetul to partition the joint distribu-

tion F(Ril, Tt ,RZ'T; 9) asS

F(Rzl)F<R22|Rzl) T F<RiT‘Rz’,T—17 T

T
= F(Rzl) 11 F(Rit‘Ri,t—la T 7Ri1)7

where 6 is a vector of parameters.

— This partition highlights the temporal de-
pendence of the simple return R;; of asset
2. The main issue is how the conditional

distribution evolves over time.

e One version of the random-walk hypothesis

Ri1)



is that
F(Rit|Ri,t—17 e 7Ri1) — F<th)

This means that returns are temporally in-
dependent and are not predictable.

e For index returns or lower-frequency returns,
we usually treat returns as continuous ran-
dom variables.

We use density instead of distribution.

Write f(Rz'h Ty, Rz’T; 9) asS
T
f(Ri1;0) t1212 f(Rit|Rig—1,- -+, Ri1; 0).

e For high-frequency asset returns, discrete-
ness becomes an issue. For example, stock
prices change in multiplies of a tick size in
the New York Stock Exchange. The tick size
was one eights of a dollar before July 1997
and is one sixteenths of a dollar now.



Marginal Distributions of Asset Returns

e When asset returns have weak empirical se-
rial correlations, their marginal distributions
are close to their conditional distributions.
Moreover, it is easier to estimate marginal
distributions than conditional distributions
using past returns.

e Normal distributions:
A traditional assumption is that the simple
returns { R;; }1_, are independent and identi-
cally distributed as normal with fixed mean
and variance.
It encounters several difficulties:

— The lower bound of a simple return is
—1.

— If R;; 1s normally distributed, the mul-
tiperiod simple return R;(k) is not nor-
mally distributed.

— The normality assumption is not supported
by many empirical asset returns, which
tend to have excess kurtosis.

e The skewness and kurtosis of a random vari-



able X are defined as

S(X) = E(X — pux)*/ox,
K(X) = E(X - px)'/o%.

— The quantity K(X) — 3 is called the ex-
cess kurtosis because K(X) = 3 when
X is normally distributed.

— A distribution with positive excess kur-
tosis is said to have heavy tails, implying
that the distribution puts more mass on
the tails of its support than a distribu-
tion does.

In practice, it means that a random sam-
ple from such a distribution tends to con-
tain more extreme values.

— Let {x1,...,z7} be a sample of X with
T" observations. The sample skewness is

A 1 T A
S(X) = o 2 (@ = fix )’

~

,&X — T_l > Lt,
t=1

~

OA'A%( = T_ltgl(ﬂft — ﬂx)z.
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The sample kurtosis is

A 1 T A
K(X) = gor & (o — )"

— Under normality assumption, S (X) and
K (X) are distributed asymptotically as
normal with zero mean and variances 6/7T°
and 24 /T, respectively.

e Lognormal distribution:
Another commonly used assumption is that
the log returns r; of an asset is independent
and identically distributed as normal with

mean 4 and variance .

— The simple returns are then iid lognor-
mal random variables with mean and vari-
ance given by

E(R;) = exp(p+0°/2),
Var(Ry) = exp(2u + o)[exp(c?) — 1].
— Let my; and ms be the mean and vari-

ance of the simple return R;. Then the
mean and variance of the corresponding



log return r; are
_ mi+1

W1+ ma/(1+my)?]
Var(ry) = In|l+my/(1+ m1)2] .

E(ry) = In

— Because sum of a finite umber of iid nor-
mal random variables is normal, 74(k) is
also normally distributed under the nor-
mal assumption for {r;}.

— There 1s no lower bound for r; and the
lower bound for Ry is satisfied using 1 +
Ry = exp(r).

— But the lognormal assumption is not con-
sistent with all the properties of historical
stock returns.

e Stable distribution:
It is capable of capturing excess kurtosis
shown by historical stock returns.

— Cauchy distribution is a stable distribu-

tion. The density function of Cauchy is
1
T) = . —00 < x < 00.
It is symmetric against its mean 0, but
has infinite variance.
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— Nonnormal stable distributions do not have
a finite variance, which is in conflict with
most finance theories.

— The stable distribution is stable under
addition.

e Scale-Mixture of Normal Distribution:
[t assumes that the log return r; is normally

distributed N (u, o?).

— But o2 is a random variable that follows
a positive distribution.

— As an example,o? will take on two pos-
sible values o7 and o3 with probability
] — o and o« where 0 < o« < 1. Then
T ~ (1 - OA)N(,LL, 0-%) + OéN(lLL, 0-%)

— 03 is much larger than 0. When o =
0.05, it says that majority of the returns
follow a simple normal distribution but
also capture the property of excess kur-

tosIs.
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Empirical Properties of Returns

e Figure 1 shows the probability density func-
tions of finite-mixture of normal, Cauchy,
and standard normal distributions.

e Figure 2 shows the time plots of monthly
simple returns and log returns of IBM from
January 1927 to December 1997.

e Figure 3 shows the same plots for the monthly
returns of value-weighted market index.

e Figures 3 and 4 show that the basic patterns
of simple and log returns are similar.

e Figure 4 shows the empirical density func-

tions of monthly simple and log returns of
IBM.

— Also shown, by a smooth line, in each
oraph is the normal probability density
evaluated using the sample mean and stan-
dard deviation of IBM given in Table 2.

— The plots indicates that the normality
is questionable for monthly IBM returns.
The empirical density function has a higher
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peak around its mean, but fatter tails
than normal.

e Table 2 provides some summary statistics of
simple and log returns for selected U.S. mar-
ket indexes and individual stocks.

— Daily returns of the market indexes and
individual stocks tend to have high ex-
cess kurtoses.

— For monthly series, the returns of market
indexes have higher excess kurtoses than
individual stocks.

— The mean of a daily return series is close
to zero whereas that of a monthly return
series is slightly larger.

— Monthly returns have higher standard de-
viations than individual stocks.

— The skewness is not a serious problem for
both daily and monthly returns.

— The summary statistics show that the
difference between simple and log returns
are not substantial.
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Figure 1: Comparison of Finite-mixture, Stable, and Standard Normal Density Functions.
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Figure 2: Time plots of monthly returns of IBM from January, 1926 to December, 1997. The upper
panel is for simple net returns and the lower panel is for log returns.
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Figure 3: Time plots of monthly returns of the value-weighted index from January, 1926 to December,
1997. The upper panel is for simple net returns and the lower panel is for log returns.
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Figure 4: Comparison of empirical and normal densities for the monthly simple and log returns of
IBM. The sample period is from January, 1926 to December, 1997. The left plot is for simple returns
and the right plot for log returns. The normal density, shown by the smooth line, uses the sample
mean and standard deviation given in Table 2.

10



Table 2: Summary Statistics for Daily and Monthly Simple and Log Returns of Selected Indexes and
Stocks. Returns are in percent and the sample period ends at December 31, 1997. The summary
statistics are defined in equations (10)-(13).

Standard Excess
Security Start size | Mean  Devia. Skew. Kurt. Min. Max.

(a) Daily simple returns (in percent)
Value-weighted index 62/7/3 8938 | 0.049 0.798 —-1.23 30.06 —17.18 8.67
Equal-weighted index 62/7/3 8938 | 0.083 0.674 —-1.09 18.09 —-10.48 6.95
Intern. Bus. Machines | 62/7/3 8938 | 0.050 1.479 0.01 11.34 —-2296 1294
Intel 72/12/15 6329 | 0.138 2.880 —-0.17  6.76 —29.57 26.38
3M 62/7/3 8938 | 0.051 1.395 —0.55 16.92 —25.98 11.54
Microsoft 86/3/14 2985 | 0.201 2.422 -0.47 12.08 —-30.13 17.97
Citi-Group 86/10/30 2825 | 0.125 2.124 —-0.06 9.16 —21.74 20.75

(b) Daily log returns (in percent)
Value-weighted index 62/7/3 8938 | 0.046 0.803 —1.66 40.06 —18.84 8.31
Equal-weighted index 62/7/3 8938 | 0.080 0.676 —-1.29 19.98 —11.08 6.72
Intern. Bus. Machines | 62/7/3 8938 | 0.039 1.481 -0.33 1521 —-26.09 12.17
Intel 72/12/15 6329 | 0.096 2.894 —-0.59 881 —35.06 23.41
3M 62/7/3 8938 | 0.041 1.403 —-1.05 27.03 —30.08 10.92
Microsoft 86/3/14 2985 | 0.171 2.443 —1.10 19.65 —35.83 16.53
Citi-Group 86/10/30 2825 | 0.102 2.128 —-0.44 10.68 —24.51 18.86
(c) Monthly simple returns (in percent)

Value-weighted index 26/1 864 | 0.99 5.49 0.23 813 —29.00 38.28
Equal-weighted index 26/1 864 | 1.32 7.54 1.65 15.24 —31.23 65.51
Intern. Bus. Machines 26/1 864 1.42 6.70 0.17 194 -26.19 35.12
Intel 72/12 300 | 2.86 12.95 0.59 329 —44.87 62.50
3M 46/2 623 | 1.36 6.46 0.16 0.89 —27.83 25.77
Microsoft 86/4 141 | 4.26 10.96 0.81 2.32 —2491 51.55
Citi-Group 86/11 134 2.55 9.17 —0.14 047 —26.46 26.08

(d) Monthly log returns (in percent)
Value-weighted index 26/1 864 | 0.83 5.48 -0.53 731 3425 3241
Equal-weighted index 26/1 864 | 1.04 7.24 034 891 —37.44 50.38
Intern. Bus. Machines 26/1 864 | 1.19 6.63 —-0.22 2,05 —30.37 30.10
Intel 72/12 300 | 2.03 12.63 —-0.32 320 —59.54 48.55
M 46/2 623 1.15 6.39 —-0.14 1.32 —32.61 22.92
Microsoft 86/4 141 3.64 10.29 0.29 1.32 —28.64 41.58
Citi-Group 86/11 134 | 2.11 9.11 —0.50 1.14  -30.73 23.18
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