Ordinary Flops

CHIN-LUNG WANG

(NCU and NCTS) (Joint work with H.-W. Lin)

September 6, 2004

CONTENTS

- 1. Ordinary flips/flops and local models
- 2. Chow motives and Poincaré pairing
- 3. Ordinary/quantum product for simple flops
- 4. Deformations and degenerations
- 5. Slicing Mukai flops

1.1 Ordinary (r, r') Flips

X smooth projective, $\psi: X \to \overline{X}$ log-extremal small contraction, $R = \mathbb{R}^+[C]$, the log-extremal ray, $Z \subset X$ and $S \subset \overline{X}$: ψ exceptional sets, $\overline{\psi} = \psi|_Z: Z \to S, Z_s := \overline{\psi}^{-1}(s).$

 ψ is a (r, r') flipping contraction if (i) $\bar{\psi} : Z = \mathbb{P}_S(F) \to S$ for some rank r + 1vector bundle F over a smooth base S, (ii) $N_{Z/X}|_{Z_s} \cong \mathcal{O}_{\mathbb{P}^r}(-1)^{\oplus (r'+1)}$. **Fact:** Let $\overline{\psi} : Z = \mathbb{P}_S(F) \to S$ and $V \to Z$ a vector bundle such that $V|_{Z_s}$ is trivial $\forall s \in S$. Then $V \cong \overline{\psi}^* F'$ for some vector bundle F'.

Apply to
$$V = \mathcal{O}_{\mathbb{P}_{S}(F)}(1) \otimes N_{Z/X}$$
, we get
 $N_{Z/X} \cong \mathcal{O}_{\mathbb{P}_{S}(F)}(-1) \otimes \overline{\psi}^{*}F'.$
Since $\mathcal{O}_{\mathbb{P}_{Z}(L \otimes F)}(-1) = \overline{\phi}^{*}L \otimes \mathcal{O}_{\mathbb{P}_{Z}(F)}(-1)$ for
 $L \in \operatorname{Pic}(Z)$, on the blow-up $\phi : Y = \operatorname{Bl}_{Z}X \to X,$
 $E = \mathbb{P}_{Z}(N_{Z/X}) \cong \mathbb{P}_{Z}(\overline{\psi}^{*}F') = \overline{\psi}^{*}\mathbb{P}_{S}(F') = \mathbb{P}_{S}(F) \times_{S}\mathbb{P}_{S}(F'),$
 $N_{E/Y} = \mathcal{O}_{\mathbb{P}_{Z}(N_{Z/X})}(-1) = \overline{\phi}^{*}\mathcal{O}_{\mathbb{P}_{S}(F)}(-1) \otimes \overline{\phi}'^{*}\mathcal{O}_{\mathbb{P}_{S}(F')}(-1).$

The pair (F, F') is unique up to a twisting: $(F, F') \sim (F \otimes L, F' \otimes L^*)$ for all $L \in \text{Pic}(S)$.

Theorem 1 Ordinary (r, r')-flip $f : X \dashrightarrow X'$ exists. Moreover, $Y = \overline{\Gamma}_f = X \times_{\overline{X}} X' \subset X \times X'$. *Proof.* From $0 \to T_C \to T_X|_C \to N_{C/X} \to 0$ and $N_{C/X} \cong \mathcal{O}_C(1)^{\oplus (r-1)} \oplus \mathcal{O}_C(-1)^{\oplus (r'+1)}$,

 $K_X C = 2g(C) - 2 - ((r-1) - (r'+1)) = r' - r.$ Pick a line $C_Y \in \bar{\phi}^{-1}(\text{pt}), \ \phi(C_Y) = C.$ Then

 $K_Y \cdot C_Y = (\phi^* K_X + r'E) \cdot C_Y = (r' - r) - r' = -r < 0.$

Let H be very ample on X and L a supporting divisor of C. Let c = H.C. For large k,

 $k\phi^*L - (\phi^*H + cE)$

is big and nef, and vanishes precisely on $[C_Y]$. Thus C_Y is a K_Y -negative extremal ray and $\phi': Y \to X'$ exists by the cone theorem. \Box

1.2 Analytic Local Models

$$\begin{split} F &\to S, \ F' \to S: \text{ holomorphic vector bundles,} \\ \bar{\psi} : Z &= \mathbb{P}_S(F) \to S, \ \bar{\psi}' : Z' = \mathbb{P}_S(F') \to S, \\ E &= Z \times_S Z' \text{ with projections } \bar{\phi} \text{ and } \bar{\phi}'. \\ Y &= \text{total space of } N := \bar{\phi}^* \mathfrak{O}_Z(-1) \otimes \bar{\phi}'^* \mathfrak{O}_{Z'}(-1), \\ E &= \text{zero section, } N_{E/Y} = N. \end{split}$$

We have analytic contraction diagram

X and X' are smooth, $S = \text{Sing}(\bar{X})$.

 $X = ext{total space of } N_{Z/X} = \mathcal{O}_{\mathbb{P}_S(F)}(-1) \otimes ar{\psi}^* F',$

 $X' = \text{total space of } N_{Z'/X'} = \mathcal{O}_{\mathbb{P}_{S}(F')}(-1) \otimes \overline{\psi}'^{*}F.$

Again, (F, F') and (F_1, F'_1) define isomorphic analytic local model if and only if $(F_1, F'_1) =$ $(F \otimes L, F' \otimes L^*)$ for some $L \in \text{Pic}(S)$.

An ordinary (r, r)-flip is called an ordinary \mathbb{P}^r flop or simply a \mathbb{P}^r flop.

2.1 Canonical Correspondences

 \mathcal{M} : category of motives. Objects = smooth varieties, morphisms = correspondences

 $\operatorname{Hom}_{\mathcal{M}}(\widehat{X}_1, \widehat{X}_2) = A^*(X_1 \times X_2)$

under composition law: for $U \in A^*(X_1 \times X_2)$, $V \in A^*(X_2 \times X_3)$, $p_{ij} : X_1 \times X_2 \times X_3 \rightarrow X_i \times X_j$,

 $V \circ U = p_{13*}(p_{12}^*U.p_{23}^*V),$

 $[U] : A^*(X_1) \to A^*(X_2); \quad a \mapsto p_{2*}(U.p_1^*a).$

Induced map on T-valued points $Hom(\hat{T}, \hat{X}_i)$:

 $U_T: A^*(T \times X_1) \xrightarrow{U \circ} A^*(T \times X_2).$

Identity Principle: Let $U, V \in \text{Hom}(\hat{X}, \hat{X}')$. Then U = V if and only if $U_T = V_T$ for all T. $(U_X \circ \Delta_X = V_X \circ \Delta_{X'} \text{ implies } U = V.)$

Theorem 2 For ordinary flops $f : X \dashrightarrow X'$, the graph closure $\mathcal{F} := \overline{\Gamma}_f$ induces $\widehat{X} \cong \widehat{X}'$ via $\mathcal{F}^* \circ \mathcal{F} = \Delta_X$ and $\mathcal{F} \circ \mathcal{F}^* = \Delta_{X'}$. *Proof.* For any T, $\operatorname{id}_T \times f : T \times X \dashrightarrow T \times X'$ is also an ordinary flop. By the identity principle we only need to show $\mathcal{F}^*\mathcal{F} = \operatorname{id}$ on $A^*(X)$.

 $\mathcal{F}W = p'_*(\bar{\Gamma}_f \cdot p^*W) = \phi'_*\phi^*W.$

 $\phi^*W = \tilde{W} + j_* (c(\mathcal{E}).\overline{\phi}^*s(W \cap Z, W))_{\dim W},$ where $0 \to N_{E/Y} \to \phi^*N_{Z/X} \to \mathcal{E} \to 0$ and $s(W \cap Z, W)$ is the relative Segre class. Observation: the error term is lying over $W \cap Z$.

Let $W \in A_k(X)$. By Chow's moving lemma we may assume that W intersects Z transversally. $\dim W \cap Z := \ell = k + (r + s) - (2r + s + 1) =$ k - r - 1. Since $\dim \phi^{-1}(W \cap Z) = \ell + r < k$, we get $\phi^*W = \tilde{W}$ and $\phi^{-1}(W) \cap E = \phi^{-1}(W \cap Z)$. Hence $\mathcal{F}W = W'$, the proper transform of Win X'. (W' may not be transversal to Z'.) Let *B* be an irreducible component of $W \cap Z$ and $\overline{B} = \overline{\psi}(B) \subset S$ with dimension $\ell_B \leq \ell$. Notice that $W' \cap Z'$ has irreducible components $\{\overline{\psi}'^{-1}(\overline{B})\}_B$. Let $\phi'^*W' = \widetilde{W} + \sum_B E_B$.

 $E_B \subset \overline{\phi}'^{-1}\overline{\psi}^{-1}(\overline{B})$, a $\mathbb{P}^r \times \mathbb{P}^r$ bundle over \overline{B} . For the generic point $s \in \overline{B}$, we thus have $\dim E_{B,s} \geq k - \ell_B = r + 1 + (\ell - \ell_B) > r = \frac{1}{2}2r$.

In particular, $E_{B,s}$ contains positive dimensional fibers of ϕ and ϕ' and $\phi_*(E_B) = 0$. So $\mathcal{F}^*\mathcal{F}W = W$. The proof is completed.

2.2 The Poincaré Pairing

Corollary 3 Let $f : X \dashrightarrow X'$ be an ordinary flop. If dim α + dim β = dim X, then

 $(\mathfrak{F}\alpha.\mathfrak{F}\beta)=(\alpha.\beta).$

That is, \mathfrak{F} is orthogonal with respect to (-.-).

Proof. $\alpha.\beta = \phi^* \alpha.\phi^*\beta = (\phi'^* \mathfrak{F}\alpha + \xi).\phi^*\beta = (\phi'^* \mathfrak{F}\alpha).\phi^*\beta = \mathfrak{F}\alpha.(\phi'_*\phi^*\beta) = \mathfrak{F}\alpha.\mathfrak{F}\beta.$

Remark: $\mathcal{F}^{-1} = \mathcal{F}^*$ both in the sense of correspondences and Poincaré pairing.

3.1 Triple Product for Simple Flops

$$f: X \longrightarrow X' \text{ a simple } \mathbb{P}^r \text{ flop, } S = \text{pt,}$$

$$h = \text{hyperplane class of } Z = \mathbb{P}^r,$$

$$h' = \text{hyperplane class of } Z',$$

$$x = [h \times \mathbb{P}^r], \ y = [\mathbb{P}^r \times h'] \text{ in } E = \mathbb{P}^r \times \mathbb{P}^r.$$

$$\phi^*[h^s] = x^s y^r - x^{s+1} y^{r-1} + \dots + (-1)^{r-s} x^r y^s,$$

$$\mathcal{F}[h^s] = (-1)^{r-s} [h'^s],$$

$$\phi'^* \alpha' = \phi^* \alpha + (\alpha \cdot h^{r-i}) \frac{x^i + (-1)^{i-1} y^i}{x + y}, \quad \alpha \in A^i(X).$$

Theorem 4 For simple \mathbb{P}^r -flops, $\alpha \in A^i(X)$, $\beta \in A^j(X)$, $\gamma \in A^k(X)$ with $i \leq j \leq k \leq r$, $i+j+k = \dim X = 2r+1$,

 $\mathfrak{F}\alpha.\mathfrak{F}\beta.\mathfrak{F}\gamma = \alpha.\beta.\gamma + (-1)^r (\alpha.h^{r-i})(\beta.h^{r-j})(\gamma.h^{r-k}).$

Example:
$$r = 2$$
, dim $X = 5$, $(i, j, k) = (1, 2, 2)$:
 $T\alpha.T\beta.T\gamma = \alpha'.\beta'.\gamma' = \phi'^*\alpha'.\phi'^*\gamma'.\phi^*\gamma'$
 $= (\phi^*\alpha + (\alpha.h)E)(\phi^*\beta + (\beta.Z)(x-y))(\phi^*\gamma + (\gamma.Z)(x-y))$
 $= \alpha.\beta.\gamma + (\beta.Z)(\gamma.Z)\phi^*\alpha.(x-y)^2$
 $+ (\alpha.h)(\gamma.Z)\phi^*\beta.E.(x-y) + (\alpha.h)(\beta.Z)\phi^*\gamma.E.(x-y)$
 $+ (\alpha.h)(\beta.Z)(\gamma.Z)E.(x-y)^2$
 $= \alpha.\beta.\gamma + (\alpha.h)(\beta.Z)(\gamma.Z).$

3.2 Quantum Corrections (Outline)

The three point functions

$$\begin{aligned} \langle \alpha, \beta, \gamma \rangle &= \sum_{d \in A_1(X)} \langle \alpha, \beta, \gamma \rangle_{0,3,d} \\ &= \alpha.\beta.\gamma + \sum_{k \in \mathbb{N}} \langle \alpha, \beta, \gamma \rangle_{0,3,k[C]} q^{k[C]} \\ &+ \sum_{d \neq k[C]} \langle \alpha, \beta, \gamma \rangle_{0,3,d} q^d \end{aligned}$$

and (-,-) determine the quantum product. The difference of $\alpha.\beta.\gamma$ is already determined. Deformations to the normal cone: $\mathcal{X} = X \times \mathbb{P}^1$, $\Phi : M \to \mathcal{X}$ be the blowing-up along $Z \times \{\infty\}$. $M_t \cong X$ for all $t \neq \infty$ and $M_\infty = Y \cup \tilde{E}$ where $\tilde{E} = \mathbb{P}_S(N_{Z/X} \oplus \mathbb{O})$. $Y \cap \tilde{E} = E = \mathbb{P}_S(N_{Z/X})$ is the infinity part of \tilde{E} . Similarly $\Phi' : M' \to \mathcal{X}' = X' \times \mathbb{P}^1$ and $M'_\infty = Y' \cup \tilde{E}'$. Y = Y' and E = E'.

When S = pt, $\tilde{E} \cong \tilde{E}'$. J. Li's degeneration formula (A. Li and Y. Ruan) implies the equivalence of $\langle \alpha, \beta, \gamma \rangle_{0,3,d}$ with $d \neq k[C]$. For simple \mathbb{P}^1 -flops, the second term gives $\sum_k (\alpha.k[C])(\beta.k[C])(\gamma.k[C]) \left\langle I_{0,0,k[C]} \right\rangle q^{k[C]}.$ $= (\alpha.C)(\beta.C)(\gamma.C) \frac{q^{[C]}}{1-q^{[C]}}$

by the multiple cover formula (Voisin). For simple \mathbb{P}^2 -flops of type (1,2,2),

$$\langle \alpha, \beta, \gamma \rangle_{0,3,k[C]} = k(\alpha,C)(\beta,Z)(\gamma,Z)$$

$$\times \int_{\overline{\mathcal{M}}_{0,2}(\mathbb{P}^2,k)} c_{3(k-1)}(R^1\pi_*e_3^*\mathcal{O}(-1)^{\oplus 3}),$$

with $e_3 : \overline{\mathcal{M}}_{0,3}(\mathbb{P}^2, k) \to X \text{ and } \pi : \overline{\mathcal{M}}_{0,3}(\mathbb{P}^2, k) \to \overline{\mathcal{M}}_{0,2}(\mathbb{P}^2, k).$ (Work in progress.)

3.3 Some Explicit Formulae

For \mathbb{P}^r -flop with non-trivial base $S, \alpha \in A^*(Z)$ has the form $\alpha = \sum \xi^i \overline{\psi}^* a_i$; $\xi = c_1(\mathcal{O}_{\mathbb{P}(F)}(-1))$, $a_i \in A^*(S)$. $\mathcal{E} = \overline{\phi}^* \mathcal{O}_{\mathbb{P}(F)}(-1) \otimes \overline{\phi}'^* \mathcal{Q}_{F'}$.

 $\mathfrak{F}\alpha = \sum \mathfrak{F}(\xi^i).\bar{\psi}'^*a_i = \sum \bar{\phi}'_*(c_r(\mathcal{E}).\bar{\phi}^*\xi^i).\bar{\psi}'^*a_i.$

$$\begin{aligned} \mathfrak{F}\xi^{1} &= (-1)^{r-1} (\xi' - \bar{\psi}^{*} [c_{1}(F) + c_{1}(F')]). \\ \mathfrak{F}\xi^{2} &= (-1)^{r-2} (\xi'^{2} - \bar{\psi}^{*} [(c_{1} + c_{1}').\xi' + (c_{1}^{2} + c_{1}c_{1}' - c_{2} + c_{2}')]). \\ \mathfrak{F}\xi^{3} &= (-1)^{r-3} (\xi'^{3} - \bar{\psi}'^{*} [(c_{1} + c_{1}')\xi'^{2} + (c_{1}^{2} + c_{1}c_{1}' - c_{2} + c_{2}')\xi' \\ &+ (c_{1}^{3} - 2c_{1}c_{2} - c_{2}c_{1}' + c_{1}^{2}c_{1}' + c_{1}c_{2}' + c_{3})]). \end{aligned}$$

4.1 Deformations

Theorem 5 Ordinary flips deform in families: let $f : X \to X'$ be an (r, r') flip with base S and $\mathcal{X} \to \Delta$ be a smooth family with $\mathcal{X}_0 = X$. Then there is a smooth family $\mathcal{X}' \to \Delta$ and a Δ birational map $F : \mathcal{X} \to \mathcal{X}'$ such that $F_0 = f$. Moreover, F is also an (r, r') flip, with base $S \to \Delta$ an one parameter deformations of S.

Key: the ray [C] is stable in deformations.

Idea. Hilb $_{C/X}$ is a G(2, r+1) bundle over S.

 $N_{C/\mathfrak{X}} \cong \mathcal{O}(1)^{\oplus (r-1)} \oplus \mathcal{O}(-1)^{\oplus (r'+1)} \oplus \mathcal{O}^{s+1}.$ $H^1(C, \mathcal{O}(k)) = 0$ for all $k \ge -1$ implies that Hilb_{C/\mathfrak{X}} is smooth at [C] for all $C \subset Z$ and the natural map π : Hilb_{C/\mathfrak{X}} $\to \Delta$ is a smooth fibration with special fiber Hilb_{C/X}. By the stability of Grassmannian bundles we obtain $\mathfrak{Z} \to \mathfrak{S} \to \Delta$. The supporting line bundles \mathfrak{L} for C on \mathfrak{X} is the unique extension of the supporting line bundle L for C on X.

4.2 Degenerations

Fact. Every three dimensional smooth flop is the limit of composite of \mathbb{P}^1 flops.

Question: What is the closure of composite of general ordinary flops?

5.1 Generalized Mukai Flops

 $\psi : (X,Z) \to (\bar{X},S)$ with $N_{Z/X} = T^*_{Z/S} \otimes \bar{\psi}^* L$, $L \in \operatorname{Pic}(S)$. Will construct the local model as a section of ordinary flops with $F' = F^* \otimes L$.

 $\bar{\phi}^* \mathfrak{O}_Z(-1) \otimes_{\mathcal{E}} \bar{\phi}'^* \mathfrak{O}_{Z'}(-1) \to \bar{g}^*(F \otimes_S F') \to \bar{g}^* \eta_S.$ $Y := \text{inverse image of the zero section of } \bar{g}^* \eta_S$ in $\mathcal{Y}. \ X = \Phi(Y) \supset Z, \ X' = \Phi'(Y) \supset Z', \ \bar{X} =$ $g(Y) \supset S$ with restriction maps $\phi, \phi', \psi, \psi'.$ By tensoring the Euler sequence

 $0 \to \mathfrak{O}_Z(-1) \to \overline{\psi}^* F \to \mathcal{Q} \to 0$

with $S^* = \mathcal{O}_Z(1)$ and notice that $S^* \otimes Q \cong T_{Z/S}$, we get by dualization

 $0 \to T^*_{Z/S} \to \mathfrak{O}_Z(-1) \otimes \overline{\psi}^* F^* \to \mathfrak{O}_Z \to 0.$

The inclusion maps $Z \hookrightarrow X \hookrightarrow \mathfrak{X}$ leads to

 $0 \to N_{Z/X} \to N_{Z/X} \to N_{X/X}|_Z \to 0.$

 $N_{X/\chi}|_Z = \mathcal{O}(X)|_Z = \bar{\psi}^* \mathcal{O}(\bar{X})|_S.$ Denote $\mathcal{O}(\bar{X})|_S$ by L. Recall $N_{Z/\chi} \cong \mathcal{O}_{\mathbb{P}_S(F)}(-1) \otimes \bar{\psi}^* F'.$ By tensoring with $\bar{\psi}^* L^*$, we get $0 \to N_{Z/X} \otimes \bar{\psi}^* L^* \to \mathcal{O}_{\mathbb{P}_S(F)}(-1) \otimes \bar{\psi}^* (F' \otimes L^*) \to \mathcal{O}_Z \to 0.$

So $F' = F^* \otimes L$ if and only if $N_{Z/X} \cong T^*_{Z/S} \otimes \overline{\psi}^* L$.

5.2 Mukai Flops as Limits of Isomorphisms

For Mukai flops, $L \cong \mathcal{O}_S$, $F' = F^*$ with duality pairing $F \times_S F^* \to \mathcal{O}_S$. Consider $\pi : \mathcal{Y} \to \mathbb{C}$ via

 $\mathcal{Y} \to \bar{g}^* \mathcal{O}_S = \mathcal{O}_{\mathcal{E}} \cong \mathcal{E} \times \mathbb{C} \xrightarrow{\pi_2} \mathbb{C}.$

We get a fibration with $\mathcal{Y}_t := \pi^{-1}(t)$, being smooth for $t \neq 0$ and $\mathcal{Y}_0 = Y \cup \mathcal{E}$. $E = Y \cap \mathcal{E}$ restricts to the degree (1, 1) hypersurface over each fiber along $\mathcal{E} \to S$. Let \mathcal{X}_t , \mathcal{X}'_t and $\overline{\mathcal{X}}_t$ be the proper transforms of \mathcal{Y}_t in \mathcal{X} , \mathcal{X}' and $\overline{\mathcal{X}}$. For $t \neq 0$, all maps in the diagram

are all isomorphisms. For t = 0 this is the Mukai flop. Thus Mukai flops are limits of isomorphisms. They preserve all interesting invariants like diffeomorphism type, Hodge type (Chow motive via $[Y] + [\mathcal{E}]$) and quantum rings etc. In fact all quantum corrections are zero.