## Ordinary Flops

## CHIN-LUNG WANG <br> (NCU and NCTS) <br> (Joint work with H.-W. Lin)

September 6, 2004

## CONTENTS

1. Ordinary flips/flops and local models
2. Chow motives and Poincaré pairing
3. Ordinary/quantum product for simple flops
4. Deformations and degenerations
5. Slicing - Mukai flops

### 1.1 Ordinary ( $r, r^{\prime}$ ) Flips

$X$ smooth projective,
$\psi: X \rightarrow \bar{X}$ log-extremal small contraction,
$R=\mathbb{R}^{+}[C]$, the log-extremal ray,
$Z \subset X$ and $S \subset \bar{X}: \psi$ exceptional sets, $\bar{\psi}=\left.\psi\right|_{Z}: Z \rightarrow S, Z_{s}:=\bar{\psi}^{-1}(s)$.
$\psi$ is a ( $r, r^{\prime}$ ) flipping contraction if
(i) $\bar{\psi}: Z=\mathbb{P}_{S}(F) \rightarrow S$ for some rank $r+1$ vector bundle $F$ over a smooth base $S$, (ii) $\left.N_{Z / X}\right|_{Z_{s}} \cong \mathcal{O}_{\mathbb{P} r}(-1)^{\oplus\left(r^{\prime}+1\right)}$.

Fact: Let $\bar{\psi}: Z=\mathbb{P}_{S}(F) \rightarrow S$ and $V \rightarrow Z$ a vector bundle such that $\left.V\right|_{Z_{s}}$ is trivial $\forall s \in S$. Then $V \cong \bar{\psi}^{*} F^{\prime}$ for some vector bundle $F^{\prime}$.

Apply to $V=\mathcal{O}_{\mathbb{P}_{S}(F)}(1) \otimes N_{Z / X}$, we get

$$
N_{Z / X} \cong \mathcal{O}_{\mathbb{P}_{S}(F)}(-1) \otimes \bar{\psi}^{*} F^{\prime}
$$

Since $\mathcal{O}_{\mathbb{P}_{Z}(L \otimes F)}(-1)=\bar{\phi}^{*} L \otimes \mathcal{O}_{\mathbb{P}_{Z}(F)}(-1)$ for $L \in \operatorname{Pic}(Z)$, on the blow-up $\phi: Y=\mathrm{BI}_{Z} X \rightarrow X$,

$$
\begin{gathered}
E=\mathbb{P}_{Z}\left(N_{Z / X}\right) \cong \mathbb{P}_{Z}\left(\bar{\psi}^{*} F^{\prime}\right)=\bar{\psi}^{*} \mathbb{P}_{S}\left(F^{\prime}\right)=\mathbb{P}_{S}(F) \times_{S} \mathbb{P}_{S}\left(F^{\prime}\right), \\
N_{E / Y}=\mathcal{O}_{\mathbb{P}_{Z}\left(N_{Z / X}\right)}(-1)=\bar{\phi}^{*} \mathcal{O}_{\mathbb{P}_{s}(F)}(-1) \otimes \bar{\phi}^{\prime *} \mathcal{O}_{\mathbb{P}_{S}\left(F^{\prime}\right)}(-1) .
\end{gathered}
$$

Basic diagram: $g=\psi \circ \phi: Y \rightarrow \bar{X}, \bar{g}=\left.g\right|_{E}$,


The pair $\left(F, F^{\prime}\right)$ is unique up to a twisting: $\left(F, F^{\prime}\right) \sim\left(F \otimes L, F^{\prime} \otimes L^{*}\right)$ for all $L \in \operatorname{Pic}(S)$.

Theorem 1 Ordinary $\left(r, r^{\prime}\right)$-flip $f: X \rightarrow X^{\prime}$ exists. Moreover, $Y=\bar{\Gamma}_{f}=X \times \bar{X} X^{\prime} \subset X \times X^{\prime}$.

Proof. From $\left.0 \rightarrow T_{C} \rightarrow T_{X}\right|_{C} \rightarrow N_{C / X} \rightarrow 0$ and $N_{C / X} \cong \mathcal{O}_{C}(1)^{\oplus(r-1)} \oplus \mathcal{O}_{C}(-1)^{\oplus\left(r^{\prime}+1\right)}$,

$$
K_{X} \cdot C=2 g(C)-2-\left((r-1)-\left(r^{\prime}+1\right)\right)=r^{\prime}-r .
$$

Pick a line $C_{Y} \in \bar{\phi}^{-1}(\mathrm{pt}), \phi\left(C_{Y}\right)=C$. Then

$$
K_{Y} \cdot C_{Y}=\left(\phi^{*} K_{X}+r^{\prime} E\right) \cdot C_{Y}=\left(r^{\prime}-r\right)-r^{\prime}=-r<0 .
$$

Let $H$ be very ample on $X$ and $L$ a supporting divisor of $C$. Let $c=H . C$. For large $k$,

$$
k \phi^{*} L-\left(\phi^{*} H+c E\right)
$$

is big and nef, and vanishes precisely on [ $C_{Y}$ ]. Thus $C_{Y}$ is a $K_{Y}$-negative extremal ray and $\phi^{\prime}: Y \rightarrow X^{\prime}$ exists by the cone theorem.

### 1.2 Analytic Local Models

$F \rightarrow S, F^{\prime} \rightarrow S$ : holomorphic vector bundles,
$\bar{\psi}: Z=\mathbb{P}_{S}(F) \rightarrow S, \bar{\psi}^{\prime}: Z^{\prime}=\mathbb{P}_{S}\left(F^{\prime}\right) \rightarrow S$,
$E=Z \times_{S} Z^{\prime}$ with projections $\bar{\phi}$ and $\bar{\phi}^{\prime}$.
$Y=$ total space of $N:=\bar{\phi}^{*} O_{Z}(-1) \otimes \bar{\phi}^{*} O_{Z^{\prime}}(-1)$,
$E=$ zero section, $N_{E / Y}=N$.
We have analytic contraction diagram

$X$ and $X^{\prime}$ are smooth, $S=\operatorname{Sing}(\bar{X})$.

$$
\begin{aligned}
X & =\text { total space of } N_{Z / X}=\mathcal{O}_{\mathbb{P}_{s}(F)}(-1) \otimes \bar{\psi}^{*} F^{\prime}, \\
X^{\prime} & =\text { total space of } N_{Z^{\prime} / X^{\prime}}=\mathcal{O}_{\mathbb{P}_{s}\left(F^{\prime}\right)}(-1) \otimes \bar{\psi}^{* *} F .
\end{aligned}
$$

Again, ( $F, F^{\prime}$ ) and ( $F_{1}, F_{1}^{\prime}$ ) define isomorphic analytic local model if and only if ( $F_{1}, F_{1}^{\prime}$ ) $=$ $\left(F \otimes L, F^{\prime} \otimes L^{*}\right)$ for some $L \in \operatorname{Pic}(S)$.

An ordinary ( $r, r$ )-flip is called an ordinary $\mathbb{P}^{r}$ flop or simply a $\mathbb{P}^{r}$ flop.

### 2.1 Canonical Correspondences

$\mathcal{M}$ : category of motives. Objects $=$ smooth varieties, morphisms $=$ correspondences

$$
\operatorname{Hom}_{\mathcal{M}}\left(\hat{X}_{1}, \hat{X}_{2}\right)=A^{*}\left(X_{1} \times X_{2}\right)
$$

under composition law: for $U \in A^{*}\left(X_{1} \times X_{2}\right)$, $V \in A^{*}\left(X_{2} \times X_{3}\right), p_{i j}: X_{1} \times X_{2} \times X_{3} \rightarrow X_{i} \times X_{j}$,

$$
\begin{gathered}
V \circ U=p_{13 *}\left(p_{12}^{*} U \cdot p_{23}^{*} V\right), \\
{[U]: A^{*}\left(X_{1}\right) \rightarrow A^{*}\left(X_{2}\right) ; \quad a \mapsto p_{2 *}\left(U \cdot p_{1}^{*} a\right) .}
\end{gathered}
$$

Induced map on $T$-valued points $\operatorname{Hom}\left(\widehat{T}, \widehat{X}_{i}\right)$ :

$$
U_{T}: A^{*}\left(T \times X_{1}\right) \xrightarrow{U \circ} A^{*}\left(T \times X_{2}\right) .
$$

Identity Principle: Let $U, V \in \operatorname{Hom}\left(\hat{X}, \hat{X}^{\prime}\right)$. Then $U=V$ if and only if $U_{T}=V_{T}$ for all $T$. ( $U_{X} \circ \Delta_{X}=V_{X} \circ \Delta_{X^{\prime}}$ implies $U=V$.)

Theorem 2 For ordinary flops $f: X \rightarrow X^{\prime}$, the graph closure $\mathcal{F}:=\bar{\Gamma}_{f}$ induces $\hat{X} \cong \hat{X}^{\prime}$ via $\mathcal{F}^{*} \circ \mathcal{F}=\Delta_{X}$ and $\mathcal{F} \circ \mathcal{F}^{*}=\Delta_{X^{\prime}}$.

Proof. For any $T, \mathrm{id}_{T} \times f: T \times X \rightarrow T \times X^{\prime}$ is also an ordinary flop. By the identity principle we only need to show $\mathfrak{F}^{* \mathcal{F}}=$ id on $A^{*}(X)$.

$$
\begin{gathered}
\mathcal{F} W=p_{*}^{\prime}\left(\bar{\Gamma}_{f} \cdot p^{*} W\right)=\phi_{*}^{\prime} \phi^{*} W \\
\phi^{*} W=\tilde{W}+j_{*}\left(c(\mathcal{E}) \cdot \bar{\phi}^{*} s(W \cap Z, W)\right)_{\operatorname{dim} W},
\end{gathered}
$$

where $0 \rightarrow N_{E / Y} \rightarrow \phi^{*} N_{Z / X} \rightarrow \mathcal{E} \rightarrow 0$ and $s(W \cap Z, W)$ is the relative Segre class.
Observation: the error term is lying over $W \cap Z$.


Let $W \in A_{k}(X)$. By Chow's moving lemma we may assume that $W$ intersects $Z$ transversally. $\operatorname{dim} W \cap Z:=\ell=k+(r+s)-(2 r+s+1)=$ $k-r-1$. Since $\operatorname{dim} \phi^{-1}(W \cap Z)=\ell+r<k$, we get $\phi^{*} W=\tilde{W}$ and $\phi^{-1}(W) \cap E=\phi^{-1}(W \cap Z)$. Hence $\mathcal{F} W=W^{\prime}$, the proper transform of $W$ in $X^{\prime}$. ( $W^{\prime}$ may not be transversal to $Z^{\prime}$.)

Let $B$ be an irreducible component of $W \cap Z$ and $\bar{B}=\bar{\psi}(B) \subset S$ with dimension $\ell_{B} \leq \ell$. Notice that $W^{\prime} \cap Z^{\prime}$ has irreducible components $\left\{\bar{\psi}^{\prime-1}(\bar{B})\right\}_{B}$. Let $\phi^{\prime *} W^{\prime}=\tilde{W}+\sum_{B} E_{B}$.
$E_{B} \subset \bar{\phi}^{\prime-1} \bar{\psi}^{-1}(\bar{B})$, a $\mathbb{P}^{r} \times \mathbb{P}^{r}$ bundle over $\bar{B}$. For the generic point $s \in \bar{B}$, we thus have $\operatorname{dim} E_{B, s} \geq k-\ell_{B}=r+1+\left(\ell-\ell_{B}\right)>r=\frac{1}{2} 2 r$.

In particular, $E_{B, s}$ contains positive dimensional fibers of $\phi$ and $\phi^{\prime}$ and $\phi_{*}\left(E_{B}\right)=0$. So $\mathcal{F}^{*} \mathcal{F} W=$ $W$. The proof is completed.

### 2.2 The Poincaré Pairing

Corollary 3 Let $f: X \rightarrow X^{\prime}$ be an ordinary flop. If $\operatorname{dim} \alpha+\operatorname{dim} \beta=\operatorname{dim} X$, then

$$
(\mathcal{F} \alpha, \mathcal{F} \beta)=(\alpha, \beta) .
$$

That is, $\mathcal{F}$ is orthogonal with respect to (-.-).
Proof. $\alpha . \beta=\phi^{*} \alpha \cdot \phi^{*} \beta=\left(\phi^{*} \mathcal{F} \alpha+\xi\right) \cdot \phi^{*} \beta=$ $\left(\phi^{\prime *} \mathcal{F} \alpha\right) . \phi^{*} \beta=\mathcal{F} \alpha .\left(\phi_{*}^{\prime} \phi^{*} \beta\right)=\mathcal{F} \alpha . \mathcal{F} \beta$.

Remark: $\mathcal{F}^{-1}=\mathcal{F}^{*}$ both in the sense of correspondences and Poincaré pairing.

### 3.1 Triple Product for Simple Flops

$f: X \rightarrow X^{\prime}$ a simple $\mathbb{P}^{r}$ flop, $S=\mathrm{pt}$, $h=$ hyperplane class of $Z=\mathbb{P}^{r}$, $h^{\prime}=$ hyperplane class of $Z^{\prime}$,

$$
x=\left[h \times \mathbb{P}^{r}\right], y=\left[\mathbb{P}^{r} \times h^{\prime}\right] \text { in } E=\mathbb{P}^{r} \times \mathbb{P}^{r} .
$$

$$
\phi^{*}\left[h^{s}\right]=x^{s} y^{r}-x^{s+1} y^{r-1}+\cdots+(-1)^{r-s} x^{r} y^{s},
$$

$$
\mathcal{F}\left[h^{s}\right]=(-1)^{r-s}\left[h^{\prime s}\right],
$$

$$
\phi^{\prime *} \alpha^{\prime}=\phi^{*} \alpha+\left(\alpha . h^{r-i}\right) \frac{x^{i}+(-1)^{i-1} y^{i}}{x+y}, \quad \alpha \in A^{i}(X) .
$$

Theorem 4 For simple $\mathbb{P}^{r}$-flops, $\alpha \in A^{i}(X)$, $\beta \in A^{j}(X), \gamma \in A^{k}(X)$ with $i \leq j \leq k \leq r$, $i+j+k=\operatorname{dim} X=2 r+1$,
$\mathcal{F} \alpha . \mathcal{F} \beta . \mathcal{F} \gamma=\alpha . \beta . \gamma+(-1)^{r}\left(\alpha . h^{r-i}\right)\left(\beta . h^{r-j}\right)\left(\gamma . h^{r-k}\right)$.

Example: $r=2, \operatorname{dim} X=5,(i, j, k)=(1,2,2)$ :

$$
\begin{aligned}
& T \alpha . T \beta . T \gamma=\alpha^{\prime} \cdot \beta^{\prime} \cdot \gamma^{\prime}=\phi^{\prime *} \alpha^{\prime} \cdot \phi^{\prime *} \gamma^{\prime} \cdot \phi^{*} \gamma^{\prime} \\
& =\left(\phi^{*} \alpha+(\alpha . h) E\right)\left(\phi^{*} \beta+(\beta . Z)(x-y)\right)\left(\phi^{*} \gamma+(\gamma . Z)(x-y)\right) \\
& =\alpha . \beta \cdot \gamma+(\beta . Z)(\gamma \cdot Z) \phi^{*} \alpha \cdot(x-y)^{2} \\
& \quad+(\alpha . h)(\gamma . Z) \phi^{*} \beta \cdot E \cdot(x-y)+(\alpha . h)(\beta . Z) \phi^{*} \gamma \cdot E \cdot(x-y) \\
& \quad \quad+(\alpha . h)(\beta . Z)(\gamma . Z) E .(x-y)^{2} \\
& =\alpha . \beta . \gamma+(\alpha . h)(\beta . Z)(\gamma . Z) .
\end{aligned}
$$

### 3.2 Quantum Corrections (Outline)

The three point functions

$$
\begin{aligned}
\langle\alpha, \beta, \gamma\rangle= & \sum_{d \in A_{1}(X)}\langle\alpha, \beta, \gamma\rangle_{0,3, d} \\
= & \alpha \cdot \beta \cdot \gamma+\sum_{k \in \mathbb{N}}\langle\alpha, \beta, \gamma\rangle_{0,3, k[C]} q^{k[C]} \\
& +\sum_{d \neq k[C]}\langle\alpha, \beta, \gamma\rangle_{0,3, d} q^{d}
\end{aligned}
$$

and $(-,-)$ determine the quantum product. The difference of $\alpha . \beta . \gamma$ is already determined.

Deformations to the normal cone: $X=X \times \mathbb{P}^{1}$, $\Phi: M \rightarrow X$ be the blowing-up along $Z \times\{\infty\}$. $M_{t} \cong X$ for all $t \neq \infty$ and $M_{\infty}=Y \cup \tilde{E}$ where $\tilde{E}=\mathbb{P}_{S}\left(N_{Z / X} \oplus \mathcal{O}\right) . \quad Y \cap \tilde{E}=E=\mathbb{P}_{S}\left(N_{Z / X}\right)$ is the infinity part of $\tilde{E}$. Similarly $\Phi^{\prime}: M^{\prime} \rightarrow X^{\prime}=$ $X^{\prime} \times \mathbb{P}^{1}$ and $M_{\infty}^{\prime}=Y^{\prime} \cup \tilde{E}^{\prime} . Y=Y^{\prime}$ and $E=E^{\prime}$.

When $S=\mathrm{pt}, \tilde{E} \cong \tilde{E}^{\prime}$. J. Li's degeneration formula (A. Li and Y . Ruan) implies the equivalence of $\langle\alpha, \beta, \gamma\rangle_{0,3, d}$ with $d \neq k[C]$.

For simple $\mathbb{P}^{1}$-flops, the second term gives

$$
\begin{gathered}
\sum_{k}(\alpha \cdot k[C])(\beta \cdot k[C])(\gamma \cdot k[C])\left\langle I_{0,0, k[C]}\right\rangle q^{k[C]} . \\
=(\alpha \cdot C)(\beta \cdot C)(\gamma \cdot C) \frac{q^{[C]}}{1-q^{[C]}}
\end{gathered}
$$

by the multiple cover formula (Voisin).
For simple $\mathbb{P}^{2}$-flops of type $(1,2,2)$,

$$
\begin{aligned}
& \langle\alpha, \beta, \gamma\rangle_{0,3, k[C]}=k(\alpha . C)(\beta . Z)(\gamma . Z) \\
& \quad \times \int_{\overline{\mathcal{M}}_{0,2}\left(\mathbb{P}^{2}, k\right)} c_{3(k-1)}\left(R^{1} \pi_{*} e_{3}^{*} \mathcal{O}(-1)^{\oplus 3}\right),
\end{aligned}
$$

with $e_{3}: \overline{\mathcal{M}}_{0,3}\left(\mathbb{P}^{2}, k\right) \rightarrow X$ and $\pi: \overline{\mathcal{M}}_{0,3}\left(\mathbb{P}^{2}, k\right) \rightarrow$ $\overline{\mathcal{M}}_{0,2}\left(\mathbb{P}^{2}, k\right)$. (Work in progress.)

### 3.3 Some Explicit Formulae

For $\mathbb{P}^{r}$-flop with non-trivial base $S, \alpha \in A^{*}(Z)$ has the form $\alpha=\sum \xi^{i} \bar{\psi}^{*} a_{i} ; \xi=c_{1}\left(\mathcal{O}_{\mathbb{P}(F)}(-1)\right)$, $a_{i} \in A^{*}(S) . \mathcal{E}=\bar{\phi}^{*} \mathcal{O}_{\mathbb{P}(F)}(-1) \otimes \bar{\phi}^{* *} \mathcal{Q}_{F^{\prime}}$.

$$
\mathcal{F} \alpha=\sum \mathcal{F}\left(\xi^{i}\right) \cdot \bar{\psi}^{\prime *} a_{i}=\sum \bar{\phi}_{*}^{\prime}\left(c_{r}(\mathcal{E}) \cdot \bar{\phi}^{*} \xi^{i}\right) \cdot \bar{\psi}^{\prime *} a_{i} .
$$

$$
\begin{aligned}
\mathcal{F} \xi^{1}= & (-1)^{r-1}\left(\xi^{\prime}-\bar{\psi}^{*}\left[c_{1}(F)+c_{1}\left(F^{\prime}\right)\right]\right) . \\
\mathcal{F} \xi^{2}= & (-1)^{r-2}\left(\xi^{\prime 2}-\bar{\psi}^{*}\left[\left(c_{1}+c_{1}^{\prime}\right) \cdot \xi^{\prime}+\left(c_{1}^{2}+c_{1} c_{1}^{\prime}-c_{2}+c_{2}^{\prime}\right)\right]\right) . \\
\mathcal{F} \xi^{3}= & (-1)^{r-3}\left(\xi^{\prime 3}-\bar{\psi}^{* *}\left[\left(c_{1}+c_{1}^{\prime}\right) \xi^{\prime 2}+\left(c_{1}^{2}+c_{1} c_{1}^{\prime}-c_{2}+c_{2}^{\prime}\right) \xi^{\prime}\right.\right. \\
& \left.\left.+\left(c_{1}^{3}-2 c_{1} c_{2}-c_{2} c_{1}^{\prime}+c_{1}^{2} c_{1}^{\prime}+c_{1} c_{2}^{\prime}+c_{3}\right)\right]\right) .
\end{aligned}
$$

### 4.1 Deformations

Theorem 5 Ordinary flips deform in families: let $f: X \rightarrow X^{\prime}$ be an $\left(r, r^{\prime}\right)$ flip with base $S$ and $X \rightarrow \Delta$ be a smooth family with $X_{0}=X$. Then there is a smooth family $X^{\prime} \rightarrow \Delta$ and a $\Delta$ birational map $F: X \rightarrow X^{\prime}$ such that $F_{0}=f$. Moreover, $F$ is also an ( $r, r^{\prime}$ ) flip, with base $\mathcal{S} \rightarrow \Delta$ an one parameter deformations of $S$.

Key: the ray $[C]$ is stable in deformations.

Idea. Hilb ${ }_{C / X}$ is a $G(2, r+1)$ bundle over $S$.

$$
N_{C / X} \cong \mathcal{O}(1)^{\oplus(r-1)} \oplus \mathcal{O}(-1)^{\oplus\left(r^{\prime}+1\right)} \oplus \mathcal{O}^{s+1}
$$

$H^{1}(C, \mathcal{O}(k))=0$ for all $k \geq-1$ implies that Hilb $_{C / X}$ is smooth at [ $C$ ] for all $C \subset Z$ and the natural map $\pi: \operatorname{Hilb}_{C / X} \rightarrow \Delta$ is a smooth fibration with special fiber Hilb ${ }_{C / X}$. By the stability of Grassmannian bundles we obtain $\mathcal{Z} \rightarrow \mathcal{S} \rightarrow \Delta$. The supporting line bundles $\mathcal{L}$ for $C$ on $X$ is the unique extension of the supporting line bundle $L$ for $C$ on $X$.

### 4.2 Degenerations

Fact. Every three dimensional smooth flop is the limit of composite of $\mathbb{P}^{1}$ flops.

Question: What is the closure of composite of general ordinary flops?

### 5.1 Generalized Mukai Flops

$\psi:(X, Z) \rightarrow(\bar{X}, S)$ with $N_{Z / X}=T_{Z / S}^{*} \otimes \bar{\psi}^{*} L$, $L \in \operatorname{Pic}(S)$. Will construct the local model as a section of ordinary flops with $F^{\prime}=F^{*} \otimes L$.


Suppose $\exists$ bi-linear map $F \times{ }_{S} F^{\prime} \rightarrow \eta_{S}$ to a line bundle $\eta_{S}$ over $S . \mathcal{O}_{\mathbb{P}(F)}(-1) \rightarrow \bar{\psi}^{*} F$ pulls back to $\bar{\phi}^{*} \mathcal{O}_{\mathbb{P}(F)}(-1) \rightarrow \bar{g}^{*} F$, hence a linear map
$\bar{\phi}^{*} \Theta_{Z}(-1) \otimes_{\mathcal{E}} \bar{\phi}^{\prime *} \Theta_{Z^{\prime}}(-1) \rightarrow \bar{g}^{*}\left(F \otimes_{S} F^{\prime}\right) \rightarrow \bar{g}^{*} \eta_{S}$. $Y:=$ inverse image of the zero section of $\bar{g}^{*} \eta_{S}$ in $y . X=\Phi(Y) \supset Z, X^{\prime}=\Phi^{\prime}(Y) \supset Z^{\prime}, \bar{X}=$ $g(Y) \supset S$ with restriction maps $\phi, \phi^{\prime}, \psi, \psi^{\prime}$. By tensoring the Euler sequence

$$
0 \rightarrow \mathcal{O}_{Z}(-1) \rightarrow \bar{\psi}^{*} F \rightarrow \mathcal{Q} \rightarrow 0
$$

with $\mathcal{S}^{*}=\mathcal{O}_{Z}(1)$ and notice that $\mathcal{S}^{*} \otimes \mathcal{Q} \cong T_{Z / S}$, we get by dualization

$$
0 \rightarrow T_{Z / S}^{*} \rightarrow \mathcal{O}_{Z}(-1) \otimes \bar{\psi}^{*} F^{*} \rightarrow \mathcal{O}_{Z} \rightarrow 0
$$

The inclusion maps $Z \hookrightarrow X \hookrightarrow X$ leads to

$$
\left.0 \rightarrow N_{Z / X} \rightarrow N_{Z / X} \rightarrow N_{X / X}\right|_{Z} \rightarrow 0
$$

$\left.N_{X / X}\right|_{Z}=\left.\mathcal{O}(X)\right|_{Z}=\left.\bar{\psi}^{*} \mathcal{O}(\bar{X})\right|_{S}$. Denote $\left.\mathcal{O}(\bar{X})\right|_{S}$ by $L$. Recall $N_{Z / X} \cong \mathcal{O}_{\mathbb{P}_{S}(F)}(-1) \otimes \bar{\psi}^{*} F^{\prime}$. By tensoring with $\bar{\psi}^{*} L^{*}$, we get
$0 \rightarrow N_{Z / X} \otimes \bar{\psi}^{*} L^{*} \rightarrow \mathcal{O}_{\mathbb{P}_{s}(F)}(-1) \otimes \bar{\psi}^{*}\left(F^{\prime} \otimes L^{*}\right) \rightarrow \mathcal{O}_{Z} \rightarrow 0$.
So $F^{\prime}=F^{*} \otimes L$ if and only if $N_{Z / X} \cong T_{Z / S}^{*} \otimes \bar{\psi}^{*} L$.

### 5.2 Mukai Flops as Limits of Isomorphisms

For Mukai flops, $L \cong \mathcal{O}_{S}, F^{\prime}=F^{*}$ with duality pairing $F \times_{S} F^{*} \rightarrow \mathcal{O}_{S}$. Consider $\pi: y \rightarrow \mathbb{C}$ via

$$
y \rightarrow \bar{g}^{*} \mathcal{O}_{S}=\mathcal{O}_{\mathcal{E}} \cong \mathcal{E} \times \mathbb{C} \xrightarrow{\pi_{2}} \mathbb{C}
$$

We get a fibration with $y_{t}:=\pi^{-1}(t)$, being smooth for $t \neq 0$ and $y_{0}=Y \cup \mathcal{E} . E=Y \cap \mathcal{E}$ restricts to the degree $(1,1)$ hypersurface over each fiber along $\mathcal{E} \rightarrow S$. Let $X_{t}, X_{t}^{\prime}$ and $\bar{X}_{t}$ be the proper transforms of $y_{t}$ in $X, X^{\prime}$ and $\bar{X}$.

For $t \neq 0$, all maps in the diagram

are all isomorphisms. For $t=0$ this is the Mukai flop. Thus Mukai flops are limits of isomorphisms. They preserve all interesting invariants like diffeomorphism type, Hodge type (Chow motive via $[Y]+[\varepsilon]$ ) and quantum rings etc. In fact all quantum corrections are zero.

