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1.1 Ordinary (r, r′) Flips

X smooth projective,

ψ : X → X̄ log-extremal small contraction,

R = R+[C], the log-extremal ray,

Z ⊂ X and S ⊂ X̄: ψ exceptional sets,

ψ̄ = ψ|Z : Z → S, Zs := ψ̄−1(s).

ψ is a (r, r′) flipping contraction if

(i) ψ̄ : Z = PS(F ) → S for some rank r + 1

vector bundle F over a smooth base S,

(ii) NZ/X |Zs
∼= OPr(−1)⊕(r′+1).
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Fact: Let ψ̄ : Z = PS(F ) → S and V → Z a

vector bundle such that V |Zs is trivial ∀s ∈ S.

Then V ∼= ψ̄∗F ′ for some vector bundle F ′.

Apply to V = OPS(F )(1)⊗NZ/X, we get

NZ/X
∼= OPS(F )(−1)⊗ ψ̄∗F ′.

Since OPZ(L⊗F )(−1) = φ̄∗L ⊗ OPZ(F )(−1) for

L ∈ Pic(Z), on the blow-up φ : Y = BlZX → X,

E = PZ(NZ/X) ∼= PZ(ψ̄∗F ′) = ψ̄∗PS(F
′) = PS(F )×SPS(F

′),

NE/Y = OPZ(NZ/X)(−1) = φ̄∗OPS(F )(−1)⊗ φ̄′∗OPS(F ′)(−1).
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Basic diagram: g = ψ ◦ φ : Y → X̄, ḡ = g|E,

E = PS(F )×S PS(F ′) ⊂ Y

φ̄ssffffffffffffffffffffff

φ̄′ ++WWWWWWWWWWWWWWWWWWWW

ḡ ⊂g

²²

Z = PS(F ) ⊂ X
ψ̄

++XXXXXXXXXXXXXXXXXXXXXXXXX
Z ′ = PS(F ′)

ψ̄′

ssggggggggggggggggggggggg

S ⊂ X̄

The pair (F, F ′) is unique up to a twisting:

(F, F ′) ∼ (F ⊗ L, F ′ ⊗ L∗) for all L ∈ Pic(S).

Theorem 1 Ordinary (r, r′)-flip f : X 99K X ′
exists. Moreover, Y = Γ̄f = X×X̄ X ′ ⊂ X×X ′.
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Proof. From 0 → TC → TX |C → NC/X → 0 and

NC/X
∼= OC(1)⊕(r−1) ⊕ OC(−1)⊕(r′+1),

KX.C = 2g(C)− 2− ((r − 1)− (r′ + 1)) = r′ − r.

Pick a line CY ∈ φ̄−1(pt), φ(CY ) = C. Then

KY .CY = (φ∗KX + r′E).CY = (r′ − r)− r′ = −r < 0.

Let H be very ample on X and L a supporting

divisor of C. Let c = H.C. For large k,

kφ∗L− (φ∗H + cE)

is big and nef, and vanishes precisely on [CY ].

Thus CY is a KY -negative extremal ray and

φ′ : Y → X ′ exists by the cone theorem. ¤
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1.2 Analytic Local Models

F → S, F ′ → S: holomorphic vector bundles,

ψ̄ : Z = PS(F ) → S, ψ̄′ : Z′ = PS(F ′) → S,

E = Z ×S Z′ with projections φ̄ and φ̄′.
Y = total space of N := φ̄∗OZ(−1)⊗φ̄′∗OZ′(−1),

E = zero section, NE/Y = N .

We have analytic contraction diagram

E
φ̄
}}zz

zz
zz

zz EEE
E

φ̄′

""EE
E

� � j // Y
φ
||yy

yy
yyy

y
φ′

""FFFFFFFF

Z

ψ̄ !!CC
CC

CC
CC

� � i // X

ψ
!!DDDDDDDD Z ′

zzz
z

ψ̄′
}}zzz

z

� � i′ // X ′

ψ′
||yy

yy
yy

yy
y

S � �

j ′
// X
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X and X ′ are smooth, S = Sing(X̄).

X = total space of NZ/X = OPS(F )(−1)⊗ ψ̄∗F ′,

X ′ = total space of NZ ′/X ′ = OPS(F ′)(−1)⊗ ψ̄′∗F .

Again, (F, F ′) and (F1, F ′1) define isomorphic

analytic local model if and only if (F1, F ′1) =

(F ⊗ L, F ′ ⊗ L∗) for some L ∈ Pic(S).

An ordinary (r, r)-flip is called an ordinary Pr

flop or simply a Pr flop.
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2.1 Canonical Correspondences

M: category of motives. Objects = smooth

varieties, morphisms = correspondences

HomM(X̂1, X̂2) = A∗(X1 ×X2)

under composition law: for U ∈ A∗(X1 × X2),

V ∈ A∗(X2×X3), pij : X1×X2×X3 → Xi×Xj,

V ◦ U = p13∗(p∗12U.p∗23V ),

[U ] : A∗(X1) → A∗(X2); a 7→ p2∗(U.p∗1a).
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Induced map on T -valued points Hom(T̂ , X̂i):

UT : A∗(T ×X1)
U◦−→A∗(T ×X2).

Identity Principle: Let U, V ∈ Hom(X̂, X̂ ′).
Then U = V if and only if UT = VT for all T .

(UX ◦∆X = VX ◦∆X ′ implies U = V .)

Theorem 2 For ordinary flops f : X 99K X ′,
the graph closure F := Γ̄f induces X̂ ∼= X̂ ′ via

F∗ ◦ F = ∆X and F ◦ F∗ = ∆X ′.
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Proof. For any T , idT × f : T ×X 99K T ×X ′ is
also an ordinary flop. By the identity principle

we only need to show F∗F = id on A∗(X).

FW = p′∗(Γ̄f .p∗W ) = φ′∗φ∗W.

φ∗W = W̃ + j∗
(
c(E).φ̄∗s(W ∩ Z, W )

)
dimW

,

where 0 → NE/Y → φ∗NZ/X → E → 0 and

s(W ∩ Z, W ) is the relative Segre class.

Observation: the error term is lying over W∩Z.
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Pr × Pr // E2r+s � � //

²²

Y 2r+s+1

Pr // Zr+s

²²

Ss

Let W ∈ Ak(X). By Chow’s moving lemma we

may assume that W intersects Z transversally.

dimW ∩ Z := ` = k + (r + s) − (2r + s + 1) =

k−r−1. Since dimφ−1(W ∩Z) = `+r < k, we

get φ∗W = W̃ and φ−1(W ) ∩ E = φ−1(W ∩ Z).

Hence FW = W ′, the proper transform of W

in X ′. (W ′ may not be transversal to Z′.)
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Let B be an irreducible component of W ∩ Z

and B̄ = ψ̄(B) ⊂ S with dimension `B ≤ `.

Notice that W ′∩Z′ has irreducible components

{ψ̄′−1(B̄)}B. Let φ′∗W ′ = W̃ +
∑

B EB.

EB ⊂ φ̄′−1ψ̄−1(B̄), a Pr × Pr bundle over B̄.

For the generic point s ∈ B̄, we thus have

dimEB,s ≥ k− `B = r + 1 + (`− `B) > r = 1
22r.

In particular, EB,s contains positive dimensional

fibers of φ and φ′ and φ∗(EB) = 0. So F∗FW =

W . The proof is completed. ¤
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2.2 The Poincaré Pairing

Corollary 3 Let f : X 99K X ′ be an ordinary

flop. If dimα + dimβ = dimX, then

(Fα.Fβ) = (α.β).

That is, F is orthogonal with respect to (−.−).

Proof. α.β = φ∗α.φ∗β = (φ′∗Fα + ξ).φ∗β =

(φ′∗Fα).φ∗β = Fα.(φ′∗φ∗β) = Fα.Fβ. ¤

Remark: F−1 = F∗ both in the sense of corre-

spondences and Poincaré pairing.
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3.1 Triple Product for Simple Flops

f : X 99K X ′ a simple Pr flop, S = pt,

h = hyperplane class of Z = Pr,

h′ = hyperplane class of Z′,
x = [h× Pr], y = [Pr × h′] in E = Pr × Pr.

φ∗[hs] = xsyr − xs+1yr−1 + · · ·+ (−1)r−sxrys,

F[hs] = (−1)r−s[h′s],

φ′∗α′ = φ∗α+(α.hr−i)
xi + (−1)i−1yi

x + y
, α ∈ Ai(X).
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Theorem 4 For simple Pr-flops, α ∈ Ai(X),

β ∈ Aj(X), γ ∈ Ak(X) with i ≤ j ≤ k ≤ r,

i + j + k = dimX = 2r + 1,

Fα.Fβ.Fγ = α.β.γ + (−1)r(α.hr−i)(β.hr−j)(γ.hr−k).

Example: r = 2, dimX = 5, (i, j, k) = (1,2,2):

Tα.Tβ.Tγ = α′.β′.γ′ = φ′∗α′.φ′∗γ′.φ∗γ′

= (φ∗α + (α.h)E)(φ∗β + (β.Z)(x− y))(φ∗γ + (γ.Z)(x− y))

= α.β.γ + (β.Z)(γ.Z)φ∗α.(x− y)2

+ (α.h)(γ.Z)φ∗β.E.(x− y) + (α.h)(β.Z)φ∗γ.E.(x− y)

+ (α.h)(β.Z)(γ.Z)E.(x− y)2

= α.β.γ + (α.h)(β.Z)(γ.Z).
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3.2 Quantum Corrections (Outline)

The three point functions

〈α, β, γ〉 =
∑

d∈A1(X)
〈α, β, γ〉0,3,d

= α.β.γ +
∑

k∈N 〈α, β, γ〉0,3,k[C] q
k[C]

+
∑

d 6=k[C]
〈α, β, γ〉0,3,d qd

and (−,−) determine the quantum product.

The difference of α.β.γ is already determined.
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Deformations to the normal cone: X = X×P1,

Φ : M → X be the blowing-up along Z × {∞}.
Mt

∼= X for all t 6= ∞ and M∞ = Y ∪ Ẽ where

Ẽ = PS(NZ/X ⊕ O). Y ∩ Ẽ = E = PS(NZ/X) is

the infinity part of Ẽ. Similarly Φ′ : M ′ → X′ =
X ′×P1 and M ′∞ = Y ′∪ Ẽ′. Y = Y ′ and E = E′.

When S = pt, Ẽ ∼= Ẽ′. J. Li’s degeneration

formula (A. Li and Y. Ruan) implies the equiv-

alence of 〈α, β, γ〉0,3,d with d 6= k[C].
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For simple P1-flops, the second term gives
∑

k
(α.k[C])(β.k[C])(γ.k[C])

〈
I0,0,k[C]

〉
qk[C].

= (α.C)(β.C)(γ.C)
q[C]

1− q[C]

by the multiple cover formula (Voisin).

For simple P2-flops of type (1,2,2),

〈α, β, γ〉0,3,k[C] = k(α.C)(β.Z)(γ.Z)

×
∫

M0,2(P2,k)
c3(k−1)(R

1π∗e∗3O(−1)⊕3),

with e3 : M0,3(P2, k) → X and π : M0,3(P2, k) →
M0,2(P2, k). (Work in progress.)
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3.3 Some Explicit Formulae

For Pr-flop with non-trivial base S, α ∈ A∗(Z)

has the form α =
∑

ξiψ̄∗ai; ξ = c1(OP(F )(−1)),

ai ∈ A∗(S). E = φ̄∗OP(F )(−1)⊗ φ̄′∗QF ′.

Fα =
∑

F(ξi).ψ̄′∗ai =
∑

φ̄′∗(cr(E).φ̄∗ξi).ψ̄′∗ai.

Fξ1 = (−1)r−1(ξ′ − ψ̄∗[c1(F ) + c1(F
′)]).

Fξ2 = (−1)r−2(ξ′2 − ψ̄∗[(c1 + c′1).ξ
′ + (c2

1 + c1c
′
1 − c2 + c′2)]).

Fξ3 = (−1)r−3(ξ′3 − ψ̄′∗[(c1 + c′1)ξ
′2 + (c2

1 + c1c
′
1 − c2 + c′2)ξ

′

+ (c3
1 − 2c1c2 − c2c

′
1 + c2

1c
′
1 + c1c

′
2 + c3)]).
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4.1 Deformations

Theorem 5 Ordinary flips deform in families:

let f : X 99K X ′ be an (r, r′) flip with base S and

X → ∆ be a smooth family with X0 = X. Then

there is a smooth family X′ → ∆ and a ∆-

birational map F : X 99K X′ such that F0 = f .

Moreover, F is also an (r, r′) flip, with base

S → ∆ an one parameter deformations of S.

Key: the ray [C] is stable in deformations.
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Idea. Hilb C/X is a G(2, r + 1) bundle over S.

NC/X
∼= O(1)⊕(r−1) ⊕ O(−1)⊕(r′+1) ⊕ Os+1.

H1(C, O(k)) = 0 for all k ≥ −1 implies that

Hilb C/X is smooth at [C] for all C ⊂ Z and

the natural map π : Hilb C/X → ∆ is a smooth

fibration with special fiber Hilb C/X. By the

stability of Grassmannian bundles we obtain

Z → S → ∆. The supporting line bundles L

for C on X is the unique extension of the sup-

porting line bundle L for C on X. ¤
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4.2 Degenerations

Fact. Every three dimensional smooth flop is

the limit of composite of P1 flops.

Question: What is the closure of composite

of general ordinary flops?
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5.1 Generalized Mukai Flops

ψ : (X, Z) → (X̄, S) with NZ/X = T ∗Z/S ⊗ ψ̄∗L,

L ∈ Pic(S). Will construct the local model as

a section of ordinary flops with F ′ = F ∗ ⊗ L.

E = PS(F )×S PS(F ′) ⊂ Y
Φ

ssgggggggggggggggggggggg
Φ′

++XXXXXXXXXXXXXXXXXXXXXX

g

²²

Z = PS(F ) ⊂ X

Ψ
++XXXXXXXXXXXXXXXXXXXXXXXXX

Z ′ = PS(F ′) ⊂ X′

Ψ′
ssffffffffffffffffffffffffff

S ⊂ X̄

Suppose ∃ bi-linear map F ×S F ′ → ηS to a line

bundle ηS over S. OP(F )(−1) → ψ̄∗F pulls back

to φ̄∗OP(F )(−1) → ḡ∗F , hence a linear map
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φ̄∗OZ(−1)⊗E φ̄′∗OZ′(−1) → ḡ∗(F ⊗S F ′) → ḡ∗ηS.

Y := inverse image of the zero section of ḡ∗ηS

in Y. X = Φ(Y ) ⊃ Z, X ′ = Φ′(Y ) ⊃ Z′, X̄ =

g(Y ) ⊃ S with restriction maps φ, φ′, ψ, ψ′. By

tensoring the Euler sequence

0 → OZ(−1) → ψ̄∗F → Q→ 0

with S∗ = OZ(1) and notice that S∗⊗Q ∼= TZ/S,

we get by dualization

0 → T ∗Z/S → OZ(−1)⊗ ψ̄∗F ∗ → OZ → 0.
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The inclusion maps Z ↪→ X ↪→ X leads to

0 → NZ/X → NZ/X → NX/X|Z → 0.

NX/X|Z = O(X)|Z = ψ̄∗O(X̄)|S. Denote O(X̄)|S
by L. Recall NZ/X

∼= OPS(F )(−1) ⊗ ψ̄∗F ′. By

tensoring with ψ̄∗L∗, we get

0 → NZ/X ⊗ ψ̄∗L∗ → OPS(F )(−1)⊗ ψ̄∗(F ′ ⊗ L∗) → OZ → 0.

So F ′ = F ∗⊗L if and only if NZ/X
∼= T ∗Z/S⊗ψ̄∗L.
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5.2 Mukai Flops as Limits of Isomorphisms

For Mukai flops, L ∼= OS, F ′ = F ∗ with duality

pairing F ×S F ∗ → OS. Consider π : Y → C via

Y → ḡ∗OS = OE
∼= E× C π2−→C.

We get a fibration with Yt := π−1(t), being

smooth for t 6= 0 and Y0 = Y ∪ E. E = Y ∩ E

restricts to the degree (1,1) hypersurface over

each fiber along E → S. Let Xt, X′t and X̄t be

the proper transforms of Yt in X, X′ and X̄.
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For t 6= 0, all maps in the diagram

Yt

}}{{
{{

{{
{{

!!CC
CC

CC
CC

Xt

ÃÃB
BB

BB
BB

B
X′t

~~||
||

||
||

X̄t

are all isomorphisms. For t = 0 this is the

Mukai flop. Thus Mukai flops are limits of iso-

morphisms. They preserve all interesting in-

variants like diffeomorphism type, Hodge type

(Chow motive via [Y ]+[E]) and quantum rings

etc. In fact all quantum corrections are zero.
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