Towards A + B Theory in Conifold Transitions for Calabi–Yau Threefolds

Chin-Lung Wang National Taiwan University (Joint work with Yuan-Pin Lee and Hui-Wen Lin)

> Second Annual Meeting of ICCM Taipei, Taiwan December 27, 2018

1/24

Contents

- 1 Calabi–Yau 3-folds
- 2 A model and B model
- 3 Mirror, flops, and transitions
- 4 An observation from ordinary k-fold singularity
- 5 Statements for conifold transitions
- 6 Linked GW invariants for A model
- 7 Linked B model via VMHS

I. Calabi–Yau 3-folds

- A projective manifold X/\mathbb{C} is Calabi–Yau if $\pi_1(X)$ is finite and $K_X = 0$ (or $c_1(X) = 0$).
- ▶ Yau's solution to the Calabi conjecture \implies for any cpt Kähler *X* with $c_1(X)_{\mathbb{R}} = 0$, \exists finite cover $\widetilde{X} \to X$:

$$\widetilde{X} = A \times B \times C.$$

 $A \cong \mathbb{C}^g / \Lambda$ (flat), *B* is hyperkähler (SU(m)), and *C* is CY (SU(n)). Also $\pi_1(B) = \pi_1(C) = 0$, *C* is projective.

- ► The first new case appears in dim = 3. We have $h^1(\mathscr{O}) = h^2(\mathscr{O}) = 0$. WLOG we assume that $\pi_1(X) = 0$.
- Question: classification of CY 3-folds?
- ▶ What is the global structure (symmetries?) of *M*_{CY3}?

Examples. Adjunction formula for hypersurfaces $X \subset Y$:

$$K_X = (K_Y + X)|_X = 0 \iff X$$
 is anti-canonical in Fano Y.
 $X = (n+1) \subset P^n$. E.g. the Fermat hypersurfaces
 $x_0^{n+1} + \dots + x_n^{n+1} = 0$

is a CY
$$(n-1)$$
-fold. E.g. quintic 3-folds.
• $X = (\vec{d}_1, \dots, \vec{d}_k) \subset \prod_{i=1}^m P^{n_i}$ with $\vec{d}_j = (d_{ji})_{i=1}^m$ and
 $\sum_{j=1}^k d_{ji} = n_i + 1, \qquad 1 \le i \le m.$

This is a CICY of dimension $D = \sum n_i - m$.

• Let N_D be the numbers of them. Then $N_3 = 7890$.

▶ **Toric CY.** A lattice polytope $\triangle \subset M_{\mathbb{R}}$, $M \cong \mathbb{Z}^{n+1}$ is reflexive if $0 \in \text{int } \triangle$ and its polar (dual) polytope

$$riangle^\circ := \{ w \in N := M^\vee \mid \langle w, v \rangle \ge -1, \, \forall v \in riangle \}$$

is also a lattice polytope, in $N_{\mathbb{R}}$.

Number of them [Kruezer–Skarke, 2000]:

 $N_1 = 16$, $N_2 = 4319$, $N_3 = 473800776$,....

• For a reflexive pair $(\triangle, \triangle^{\circ})$, the toric variety

$$P_{\triangle} := \operatorname{Proj}(\bigoplus_{k \ge 0} \mathbb{C}^{k \triangle \cap M})$$

is Fano with $H^0(K_{P_{\wedge}}^{-1}) = \bigoplus_{v \in \triangle \cap M} \mathbb{C} t^v$; similarly for P_{\triangle° .

• For a general section f, $X_f := \{f = 0\}$ is a CY *n*-fold.

II. Classical A model and B model

The Hodge numbers of a CY 3-fold X are

- ► $h^{11} = h^1(X, \Omega_X) = h^2$ parametrizes Kähler classes.
- A(X) = QH(X) is the g = 0 Gromov–Witten theory in

$$\omega = B + iH \in \mathscr{K}_{X}^{\mathbb{C}} = H^{2}(X, \mathbb{R}) \oplus \sqrt{-1}\operatorname{Amp}(X).$$

*h*²¹ = *h*¹(*X*, *T_X*) parametrizes complex deformations.
 B(*X*) = (*H*³, ∇^{GM}) is the VHS on the complex moduli *M_X* under the Gauss–Manin connection with lattice *H*³(*X*, ℤ).

• A model. For a CY 3-fold *X*, let $\beta \in H_2(X, \mathbb{Z})$,

 $\overline{M}(X,\beta) = \{h: C \to X \text{ stable} \mid C \text{ is nodal}, p_a(C) = 0, h_*[C] = \beta\} / \sim .$

▶ Virtual dim = 0: the essential genus 0 GW invariants are

$$n_{\beta}^{\mathrm{X}} = \langle - \rangle_{\beta}^{\mathrm{X}} = \int_{[\overline{M}(X,\beta)]^{virt}} \mathbf{1} \in \mathbb{Q}.$$

- *Toric example.* Let $X_f \subset P_{\triangle}$ with $f \in H^0(K_{P_{\triangle}}^{-1})$.
- $A(X_f)$ is determined by \mathbb{C}^{\times} -localization data [LLY, G 1999]:

$$I^{X}(q^{\bullet}, z^{-1}) = \sum_{\beta \in H_{2}(X_{f}, \mathbb{Z})} q^{\beta} \frac{\prod_{m=1}^{K^{-1}, \beta} (K_{P_{\Delta}}^{-1} + mz)}{\prod_{\rho \in \Sigma_{1}} \prod_{m=1}^{D_{\rho}, \beta} (D_{\rho} + mz)}$$

► Σ is the *normal fan* of P_{\triangle} and D_{ρ} is the *torus invariant divisor* corresponding to the one-edge $\rho \in \Sigma_1$, $q^{\beta} = e^{2\pi i (\beta \cdot \omega)}$.

► **B model.** For the CY family
$$\pi : \mathscr{X} \to S := \mathscr{M}_X$$
,
 $\mathcal{H}^3 := R^3 \pi_* \mathbb{C} \otimes \mathscr{O}_S \to S$,
 $F^p = \pi_* \Omega^p_{\mathscr{X}/S}, \, \mathcal{H}^{pq} = F^p \cap \overline{F^q}, \, \Omega \in \Gamma(S, F^3)$. Then
 $\nabla^{GM} F^p \hookrightarrow F^{p-1} \otimes \Omega^1_S, \qquad \langle \nabla^{GM}_{\partial/\partial x_j} \Omega \rangle_{j=1}^{h^{21}} = \mathcal{H}^{21}.$

▶ **Periods.** Let $\delta_m \in H_3(X)$ be a basis with dual $\delta_m^* \in H^3(X)$. For $\eta \in \Gamma(S, \mathcal{H}^3)$, since $\nabla^{GM} \delta_m^* = 0$, we have

$$abla^{GM}_{\partial/\partial x_j}\eta = \sum_m \delta^*_m rac{\partial}{\partial x_j} \int_{\delta_m} \eta, \qquad j \in [1,h^{21}].$$

GM \iff Picard–Fuchs equations of period integrals $\int_{\delta_m} \Omega$.

Toric example: B(X_f) is *determined* by the GKZ* system:
(1) symmetry operators;

(2) for ℓ a relation of $m_i \in \Delta \cap M$ with $\sum \ell_i = 0$,

$$\Box_\ell := \prod_{\ell_i > 0} \partial_i^{\ell_i} - \prod_{\ell_i < 0} \partial_i^{-\ell_i}.$$

III. Mirror, flops, and transitions

Mirror symmetry.

► *Topological MS*: (*Y*, *Y*°) is a mirror pair of CY 3-folds if

$$h^{21}(Y) = h^{11}(Y^{\circ}), \qquad h^{11}(Y) = h^{21}(Y^{\circ}).$$

- *Classical MS*, or $A \leftrightarrow B$ MS: $B(Y) \cong A(Y^{\circ}), A(Y) \cong B(Y^{\circ})$.
- Toric Example: Consider 2 families of CY 3-folds

$$X_f \subset P_{\triangle}, \qquad X_g^\circ \subset P_{\triangle^\circ}.$$

- Topological MS holds [Batyrev '94].
- $A \leftrightarrow B$ MS holds for "many cases".
- Observation: $\Sigma_1 = \text{rays from } 0 \text{ to Vert}(\triangle^\circ).$
- ▶ [HLY 1998] \exists max-deg-point (\Rightarrow mirror transform).

▶ Flops. A *D*-flop between CY 3-folds is a birational diagram

where ψ is *D*-negative (log-extremal) and ψ' is *D'*-positive.

- [Kollár, Kawamata 1988] Birational CY 3-folds are connected by flops. 3D flops are classified.
- ▶ [Kollár–Mori 1992] Birational CY 3-folds Y and Y' have

$$\mathcal{M}_X \cong \mathcal{M}_{X'} \Longrightarrow B(Y) \cong B(Y')$$

since flops can be *performed in flat families*.

► [Li-Ruan 2000] $A(Y) \cong A(Y')$ under $q^{\beta} \mapsto q^{f_*\beta}$ $(\ell \mapsto -\ell')$.

Transitions.

• Geometric transition $X \nearrow Y$ (or $Y \searrow X$) of CY 3-folds:

$$Y \qquad K_Y = \psi^* K_{\overline{X}},$$

$$\downarrow^{\psi} \qquad X \longrightarrow \overline{X} \qquad NF_{\infty}^3 = 0.$$

• $X \nearrow Y$ is a conifold transition if \overline{X}_{sing} has only ODPs

$$(\overline{X}, p_i) := \{x_1^2 + x_2^2 + x_3^2 + x_4^2 = 0\}.$$

- Q1 [Reid 1987] Can ALL CY 3-folds be connected through (possibly non-projective) conifold transitions?
- ▶ Q2 [W 2009] Does (A(X), B(X)) determines (A(Y), B(Y)) and vice versa? Notice A(X) < A(Y) and B(X) > B(Y).

IV. An observation from ordinary *k*-fold singularity

A + B Model in Quantum Geometry Oct. 12, 2009 NTU Math Dragon

LOCAL EXAMPLES: Consider the dim k hyper-surface $X_0 \subset C^{k+1}$:

 $x_0^k + x_1^k + \cdots + x_k^k = 0$

with $p = 0 \in X_0$ being an ordinary k-fold singularity. The blow-up f: $X = Bl_p(X_0) \rightarrow X_0$ is crepant with exceptional divisor $E = (k) \subset P^k, N_{E/X} = O(-1)|_E$.

The local structure of $E \subset X$, namely the germ (E, X) is equivalent to P^k "cut out" by the rank 2 vector bundle:

 $V_k = O(k) \oplus O(-1) \rightarrow P^k$.

 X_0 can be smoothed into a flat family $M \to \Delta$ with general smooth fiber $X' = M_t$. The <u>semi-stable reduction $\pi: W \to \Delta$ </u> is used to compare X and X' since $W_t = X'$ and $W_0 = X \cup E'$ for some Fano E'.

Quantum Transition from A to B:

The Gromov-Witten extremal function $f(a) = \sum_{d \in \mathbb{N}} \langle a \rangle_{dL} q^{dL}$ attached to the extremal ray $L \in NE(X)$ can be calculated, using the quantum Serre duality principle, by the bundle

 $V_k^+ = O(k) \oplus O(1) \rightarrow P^k$.

This is in turn reduced to $O(k) \rightarrow P^{k-1}$, the Calabi-Yau CY_k ! Where is the Picard-Fuchs operator P_k for f(a)?

Since dim $CY_k = k - 2$, we must have deg P = k - 2. But dim X' = k. It must be the case that there is a "sub-VHS of $\mathbb{R}^k \pi_* \mathbb{C}$ of weight $\underline{k-2}$ " which starts at $\Omega \in \mathbb{H}^{n-1,1} = \mathbb{H}^1(X', T)$. Let Γ be the vanishing cycle along π , then P_k is the Picard-Fuchs op for $\int_{\Gamma} \Omega$.

V. Statements for conifold transitions

Let $X \nearrow Y$ be a *projective* conifold transition of CY 3-folds through \overline{X} with *k* ODPs $p_1, \ldots, p_k, \pi : \mathscr{X} \to \Delta, \psi : Y \to \overline{X}$:

$$\begin{array}{ccc} C_i \subset Y & & N_{C_i/Y} = \mathscr{O}_{P^1}(-1)^{\oplus 2} \\ & & & & \\ & & & \\ & & & \\ N_{S_i/X} = T^*S^3 & & S_i \subset X \xrightarrow{\pi} p_i \in \overline{X} \end{array}$$

Let
$$\mu := h^{2,1}(X) - h^{2,1}(Y) > 0$$
 and $\rho := h^{1,1}(Y) - h^{1,1}(X) > 0$.
 $\chi(X) - k\chi(S^3) = \chi(Y) - k\chi(S^2) \Longrightarrow \mu + \rho = k.$

Hence there are non-trivial relations between the "vanishing cycles":

$$A = (a_{ij}) \in M_{k \times \mu}, \qquad \sum_{i=1}^{k} a_{ij}[C_i] = 0,$$

$$B = (b_{ij}) \in M_{k \times \rho}, \qquad \sum_{i=1}^{k} b_{ij}[S_i] = 0.$$

 Let $0 \to V_{\mathbb{Z}} \hookrightarrow H_3(X, \mathbb{Z}) \to H_3(\bar{X}, \mathbb{Z}) \to 0$ and $V := C_{\mathbb{Z}} \otimes \mathbb{C}$.

Theorem (Basic exact sequence)

We have an exact sequence of weight two pure Hodge structures:

$$0 \to H^2(Y)/H^2(X) \xrightarrow{B} \mathbb{C}^k \xrightarrow{A^t} V \to 0.$$

Since $\psi : Y \to \overline{X}$ deforms in families, this identifies \mathscr{M}_Y as a codimension μ boundary strata in $\mathscr{M}_{\overline{X}}$ and *locally* $\mathscr{M}_{\overline{X}} \cong \Delta^{\mu} \times \mathscr{M}_Y$. Write $V = \mathbb{C} \langle \Gamma_1, \dots, \Gamma_{\mu} \rangle$ in terms of a basis Γ_i 's. Then the α -periods

$$r_j = \int_{\Gamma_j} \Omega, \qquad 1 \le j \le \mu$$

form the *degeneration coordinates* around $[\overline{X}]$. The discriminant loci of $\mathcal{M}_{\overline{X}}$ is described by a central hyperplane arrangement $D_B = \bigcup_{i=1}^k D_i$: Proposition (Friedman 1986)

Let $w_i = a_{i1}r_1 + \cdots + a_{i\mu}r_{\mu}$, then the divisor $D_i := \{w_i = 0\} \subset \mathcal{M}_{\overline{X}}$ is the loci where the sphere S_i shrinks to an ODP p_i .

• The β -periods in transversal directions are given by a function *u*:

$$u_p = \partial_p u = \int_{\beta_p} \Omega$$

▶ The Bryant–Griffiths–Yukawa couplings extend over *D*_B and

$$u_{pmn}:=\partial_{pmn}^{3}u=O(1)+\sum_{i=1}^{k}rac{1}{2\pi\sqrt{-1}}rac{a_{ip}a_{im}a_{in}}{w_{i}}=\int\partial_{p}\partial_{m}\partial_{n}\Omega\wedge\Omega$$

for $1 \le p, m, n \le \mu$. It is holomorphic outside this index range.

▶ Let $y = \sum_{i=1}^{k} y_i e_i \in \mathbb{C}^k$, with $e^{i's}$ being the dual basis on $(\mathbb{C}^k)^{\vee}$. The trivial logarithmic connection on $\underline{\mathbb{C}}^k \oplus (\underline{\mathbb{C}}^k)^{\vee} \longrightarrow \mathbb{C}^k$ is

$$\nabla^k = d + \frac{1}{z} \sum_{i=1}^k \frac{dy_i}{y_i} \otimes (e^i \otimes e_i^*).$$

Theorem (Local invariance: $Exc(\mathscr{A}) + Exc(\mathscr{B}) = trivial)$

- (1) ∇^k restricts to the logarithmic part of ∇^{GM} on V^* .
- (2) ∇^k restricts to the logarithmic part of ∇^{Dubrovin} on $H^2(Y)/H^2(X)$.

Theorem (Linked $\mathscr{A} + \mathscr{B}$ theory)

Let [X] *be a nearby point of* $[\overline{X}]$ *in* $\mathcal{M}_{\overline{X}}$ *,*

- (1) $\mathscr{A}(X)$ is a sub-theory of $\mathscr{A}(Y)$ (i.e. quantum sub-ring).
- (2) $\mathscr{B}(Y)$ is a sub-theory of $\mathscr{B}(X)$ (sub-moduli, invariant sub-VHS).
- (3) $\mathscr{A}(Y)$ can be reconstructed from a "refined \mathscr{A} theory" on

$$X^\circ := X \setminus \bigcup_{i=1}^k S_i$$

"linked" by the vanishing 3-spheres in $\mathscr{B}(X)$.

(4) $\mathscr{B}(X)$ can be reconstructed from the variations of MHS on $H^3(Y^{\circ})$,

$$Y^{\circ} := Y \setminus \bigcup_{i=1}^{k} C_{i},$$

"linked" by the exceptional curves in $\mathscr{A}(Y)$.

For (3) and (4), effective methods are under developed.

VI. Linked GW invariants for *A* model

► It is easy to see that $\mathscr{A}(X) \subset \mathscr{A}(Y)$: for $0 \neq \beta \in H_2(X)$, by degeneration formula in GW theory [Li] we can show

$$n_{\beta}^{X} = \sum_{\gamma \mapsto \beta} n_{\gamma}^{Y}.$$

To determine A(Y) from A(X) + B(X), it is equivalent to find a definition of each individual term n^Y_γ with the same β in terms of a refined data in X.

Lemma

 $H_2(X^\circ) \cong H_2(Y^\circ) \cong H_2(Y)$. In particular, for a map $h : C \to X^\circ$, $\gamma := h_*[C] \in H_2(Y)$ is well-defined.

► This γ is called a linking data (β, L) . It encodes the link between h(C) (2D) and S_i 's (3D) inside a 6D space *X*.

- If the stable maps h : C → X do not touch ∪_i S³_i, then the linked GW invariants n^X_(β,L) is defined and n^X_(β,L) = n^Y_γ.
- In general this is not true. However, it is true in the virtual sense, which is all we need:

Proposition

For X_t with $t \in \mathbb{A}^1 \setminus \{0\}$ small in the degenerating family $\pi : \mathscr{X} \to \mathbb{A}^1$ arising from the semi-stable reduction, we have a decomposition of the virtual class $[\overline{M}(X_t, \beta)]^{\text{virt}}$ into a finite disjoint union of cycles

$$[\overline{M}(X_t,\beta)]^{\mathrm{virt}} = \coprod_{\gamma \in H_2(X^\circ)} [\overline{M}(X_t,\gamma)]^{\mathrm{virt}},$$

where $[\overline{M}(Y,\gamma)]^{\text{virt}} \sim [\overline{M}(X_t,\gamma)]^{\text{virt}} \in A_{\text{vdim}}(\overline{M}(X_t,\beta))$ is a cycle class corresponding to the linking data γ of X_t .

VII. Linked *B* model via VMHS

- ▶ $\mathscr{B}(Y)$ is a sub-theory of $\mathscr{B}(X)$ by viewing $\mathscr{M}_Y \hookrightarrow \mathscr{M}_{\overline{X}}$ as a boundary strata of \mathscr{M}_X .
- ▶ We will show that $\mathscr{B}(Y)$, together with the knowledge of extremal curves $Z := \bigcup_i C_i \subset Y$ determines $\mathscr{B}(X)$.

Proposition

There is a short exact sequence of mixed Hodge structures

$$0 \to V \to H^3(X) \to H^3(U) \to 0, \tag{1}$$

where $H^3(X)$ is equipped with the limiting MHS of Schmid,

 $V \cong H^{1,1}_{\infty}H^3(X),$

and $H^3(U)$ is equipped with the canonical mixed Hodge structure of Deligne. In particular, $F^3H^3(X) \cong F^3H^3(U)$, $F^2H^3(X) \cong F^2H^3(U)$.

• We have on \overline{X} , $U \cong \overline{X}^{\circ} := \overline{X} \setminus p$, where $p = \bigcup \{p_i\}$:

$$\cdots H^1_p(\Theta_{\bar{X}}) \to H^1(\Theta_{\bar{X}}) \to H^1(U, T_U) \to H^2_p(\Theta_{\bar{X}}) \to \cdots$$

▶ [Schlessinge] p_i is a hypersurface singularity \implies depth $\mathscr{O}_{p_i} = 3 \implies H_p^1(\Theta_{\bar{X}}) = 0$ and $H_p^2(\Theta_{\bar{X}}) \cong \bigoplus_{i=1}^k \mathbb{C}_{p_i}$:

$$0 \to H^1(\Theta_{\bar{X}}) \to H^1(U, T_U) \to H^2_p(\Theta_{\bar{X}}) \to \cdots$$

Comparing with the local to global spectral sequence

$$0 \to H^{1}(\Theta_{\bar{X}}) \xrightarrow{\lambda} Ext^{1}(\Omega_{\bar{X}}, \mathscr{O}_{\bar{X}}) \to H^{0}(\mathscr{E}xt^{1}(\Omega_{\bar{X}}, \mathscr{O}_{\bar{X}})) \xrightarrow{\kappa} H^{2}(\Theta_{\bar{X}}),$$

▶ ⇒ $\text{Def}(\bar{X}) \cong H^1(U, T_U)$. Similarly, for $Y \supset Z = \bigcup C_i$ we get

 $\operatorname{Def}(Y) = H^1(T_Y) \subset H^1(U, T_U) \cong \operatorname{Def}(\bar{X}),$

and then $\mathscr{M}_Y \hookrightarrow \mathscr{M}_{\bar{X}}$ (unobstructedness theorem).

• Write $\mathscr{I} := \mathscr{I}_{\mathscr{M}_Y}$ as the ideal sheaf of $\mathscr{M}_Y \subset \mathscr{M}_{\bar{X}}$.

- Since H²(U, T_U) ≠ 0, the deformation of U could be obstructed. Nevertheless, *the first-order deformation of U exists* and is parameterized by H¹(U, T_U) ⊃ Def(Y).
- Therefore, we have the following smooth family

$$\pi:\mathfrak{U}\to\mathcal{Z}_1:=Z_{\mathscr{M}_{\overline{X}}}(\mathscr{I}^2)\supset\mathscr{M}_Y,$$

where $Z_1 = Z_{\mathcal{M}_{\overline{X}}}(\mathscr{I}^2)$ stands for the nonreduced subscheme of $\mathscr{M}_{\overline{X}}$ as the first jet extension of \mathscr{M}_Y in $\mathscr{M}_{\overline{X}}$.

- ► [Katz] ∇^{GM} for $\pi : \mathfrak{U} \to \mathcal{Z}_1$ is defined by the lattice $H^3(\mathcal{U},\mathbb{Z}) \subset H^3(\mathcal{U},\mathbb{C})$. It underlies VMHS instead of VHS.
- The proposition implies

$$W_i H^3(U) = 0, \quad i \leq 2; \qquad W_3 \subset W_4$$

with $\operatorname{Gr}_3^W H^3(U) \cong H^3(Y)$ and $\operatorname{Gr}_4^W H^3(U) \cong V^*$.

• The Hodge filtration of the local system $F^0 = H^3(U, \mathbb{C})$:

$$F^{\bullet} = \{F^3 \subset F^2 \subset F^1 \subset F^0\}$$

satisfies Griffiths' transversality.

► Since $K_U \cong \mathcal{O}_U$, F^3 is a line bundle over \mathcal{Z}_1 spanned by $\Omega \in \Omega^3_{\mathcal{U}/\mathcal{Z}_1}$. Near $[Y] \in \mathcal{Z}_1$,

 F^2 is then spanned by Ω and $v(\Omega)$

where *v* runs through a basis of $H^1(U, T_U)$.

- Notice that $v(\Omega) \in W_3$ precisely when $v \in H^1(Y, T_Y)$.
- Proposition $\Rightarrow F^3 \subset F^2$ on $H^3(U)$ over \mathcal{Z}_1 lifts uniquely to $\tilde{F}^3 \subset \tilde{F}^2$ on $H^3(X)$ over \mathcal{Z}_1 with

$$\tilde{F}^3 \cong F^3$$
, $\tilde{F}^2 \cong F^2$.

• The complete lifting \tilde{F}^{\bullet} is then determined since

$$\tilde{F}^1 = (\tilde{F}^3)^{\perp}$$

by the first Hodge–Riemann relation on $H^3(X)$.

▶ Now \tilde{F}^{\bullet} over Z_1 uniquely determines a horizontal map

$$\mathcal{Z}_1 \to \check{\mathbb{D}}.$$

Since it has maximal tangent dimension

$$h^1(U,T_U)=h^1(X,T_X),$$

it determines the maximal horizontal slice

$$\psi:\mathscr{M} o\check{\mathbb{D}}$$

with $\mathscr{M} \cong \mathscr{M}_{\overline{X}}$ near \mathscr{M}_{Y} .

 Let Γ be the monodromy group generated by the local monodromy T⁽ⁱ⁾ = exp N⁽ⁱ⁾ around the divisor

$$D_i := \{w_i = \sum_{j=1}^{\mu} a_{ij}r_j = 0\}.$$

• Under the coordinates $\mathbf{t} = (r, s)$, the period map

$$\phi: \mathcal{M}_X = \mathcal{M}_{\bar{X}} \setminus \bigcup_{i=1}^k D^i \to \mathbb{D}/\Gamma$$

is then given (by an extension of Schmid's NOT) as

$$\phi(r,s) = \exp\left(\sum_{i=1}^k \frac{\log w_i}{2\pi\sqrt{-1}} N^{(i)}\right) \psi(r,s),$$

- Since N⁽ⁱ⁾ is determined by the Picard–Lefschetz formula, the period map φ is completely determined by A and C_i's.
- ► Hence the refined \mathscr{B} model on $Y \setminus Z = U$ determines the \mathscr{B} model on *X*.