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I. Calabi—Yau 3-folds

» A projective manifold X/C is Calabi—Yau if 711 (X) is finite
and Kx = 0 (or c1(X) = 0).

» Yau'’s solution to the Calabi conjecture = for any cpt
Kéhler X with ¢1(X)r = 0, 3 finite cover X — X:

X=AxBxC.

A = C8&/A (flat), B is hyperkdhler (SU(m)), and C is CY
(SU(n)). Also 711(B) = m1(C) = 0, C is projective.

> The first new case appears in dim = 3. We have
h'(0) = h?(0) = 0. WLOG we assume that 7r1(X) = 0.

» Question: classification of CY 3-folds?

» What is the global structure (symmetries?) of .#cy3?

3/24



v

v

v

v

Examples. Adjunction formula for hypersurfaces X C Y:

Kx = (Ky + X)|x = 0 <= X is anti-canonical in Fano Y.

X = (n+1) C P". E.g. the Fermat hypersurfaces

isa CY (n — 1)-fold. E.g. quintic 3-folds.
X = (21, e ,l_jk) C H;mzl P" with 3] = (dﬂ);ﬂzl and

k
dﬁ:ni—kl, 1<i<m.

j=1

This is a CICY of dimension D = Y _n; — m.

Let Np be the numbers of them. Then N3 = 7890.
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Toric CY. A lattice polytope A C Mg, M = Z" 1 is
reflexive if 0 € int A and its polar (dual) polytope

N ={weN:=M"| {w,0) >—-1,Voe A}

is also a lattice polytope, in NR.
Number of them [Kruezer-Skarke, 2000]:

N; =16, Ny =4319, N3 =473800776,....

For a reflexive pair (A, A°), the toric variety

Py = Proj(P,_, CFAnM)

is Fano with HO(KI?}\) = @Bperqn C 17 similarly for Pe.

For a general section f, Xy := {f = 0} is a CY n-fold.
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I. Classical A model and B model
» The Hodge numbers of a CY 3-fold X are

1
0 0
0 h* 0
1 h21 h12 1
0 ht! 0
0 0
1
» 1! = hl(X,Qx) = h? parametrizes Kahler classes.
» A(X) = QH(X) is the g = 0 Gromov-Witten theory in
w=B+iH € % = H*(X,R) © v —1Amp(X).
» 12! = 1 (X, Tx) parametrizes complex deformations.
» B(X) = (H3, VM) is the VHS on the complex moduli .Zx

under the Gauss-Manin connection with lattice H*(X, Z).
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A model. For a CY 3-fold X, let B € Hy(X, Z),

M(X,B) = {h: C — X stable | Cisnodal, p,(C) =0, h[C] = B}/ ~ .

Virtual dim = 0: the essential genus 0 GW invariants are

X X
pr— bl == 1 .
"= /Mx,ﬂ)]w‘" =@

Toric example. Let Xy C Pp with f € HO(Kp ).
A(Xy) is determined by C*-localization data [LLY, G 1999]:

< P (Kp L + mz)

m=1

IX(qolzfl) — Z ,3
‘BGHz(Xf, ) H‘oezl H ﬁ(DP + mZ)

2. is the normal fan of P and D, is the torus invariant divisor

corresponding to the one-edge p € X, gf = &7 (F),
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» B model. For the CY family 7 : 2" — S := #x,
H? = R®m1.C® 05 — S,
Fr = .00 o, HP = FP 0T, Q) € T(S, F°). Then
— 21
VMP P leoay, (V55000 =+
» Periods. Let §,, € H3(X) be a basis with dual 5}, € H3(X).
For 7 € T(S, H?), since VoM, = 0, we have
_ - 21
va/ax max] / n, jELR]

GM<=> Picard—Fuchs equations of period integrals | 5, O
> Toric example: B(Xy) is determined by the GKZ* system:
(1) symmetry operators;
(2) for ¢ arelationof m; € ANMwith ) ¢; =

u; —H£>o Hﬁ<o i o



III. Mirror, flops, and transitions

v

Mirror symmetry.
Topological MS: (Y, Y?) is a mirror pair of CY 3-folds if

v

h21<Y) — hll(yo), hll(Y) — h21(YO).

v

v

Toric Example: Consider 2 families of CY 3-folds

Xr C Py, X; C Ppo.

v

Topological MS holds [Batyrev "94].
A <+ B MS holds for “many cases”.

v

v

Observation: X1 = rays from 0 to Vert(A°).

v

[HLY 1998] 4 max-deg-point (= mirror transform).

Classical MS, or A <+ BMS: B(Y) = A(Y?), A(Y) = B(Y").
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» Flops. A D-flop between CY 3-folds is a birational diagram

tcy Y
X\ y
X
where ¢ is D-negative (log-extremal) and ¢’ is D'-positive.

» [Kollar, Kawamata 1988] Birational CY 3-folds are
connected by flops. 3D flops are classified.

» [Kollar-Mori 1992] Birational CY 3-folds Y and Y’ have
My = My = B(Y) = B(Y/)

since flops can be performed in flat families.
» [Li-Ruan 2000] A(Y) =2 A(Y’) under gf — ¢/+F (£ — —1").



» Transitions.
» Geometric transition X Y (or Y N\, X) of CY 3-folds:

Y Ky = ¢*K,
Y
X ~=X NF3, = 0.
» X " Yisa conifold transition if Ysing has only ODPs
(X,pi) = {3f + 3 + 23+ = 0}

» Q1 [Reid 1987] Can ALL CY 3-folds be connected through
(possibly non-projective) conifold transitions?

» Q2 [W 2009] Does (A(X), B(X)) determines (A(Y), B(Y))
and vice versa? Notice A(X) < A(Y) and B(X) > B(Y).
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IV. An observation from ordinary k-fold singularity
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LOCAL EXAMPLES: Consider the dim k hyper=surface X, C C*"';

Xoo + X 4+ > +x =0
with p = 0 € X, being an ordinary k=fold singularity. The blow=up
f: X = B1l,(X,) — X, is crepant with exceptional divisor

E= (k) C Py Hgx = 0(=1) |z
The local structure of E C X, namely the germ (E, X) is equivalent

to P* “cut out” by the rank 2 vector bundle:

V. = 0(k)®do(-1) — P~

X, can be smoothed into a flat family M — A with general smooth

fiber X’ = M;. The semi=stable reduction 73 W — A is used to compare

X and X’ since W, = X' and W, = XUE’ for some Fano E’.



Quantum Transition from A to B:

The Gromov-Witten extremal function f(a) = Ziy <8>4 g attached
to the extremal ray L € RE(X) can be calculated, using the quantunm
Serre duality principle, by the bundle

V. = 0(k)Do(1) — P~
This is in turn reduced to O0(k) — P*', the Calabi=Yau CY,!
Where is the Picard-Fuchs operator P, for f(a)?

Since dim CY, = k = 2, we must have deg P = k = 2. But dim X’ =

k. It must be the case that there is a “sub=VHS of R7:C of weight

k = 2” which starts at Q e "' =8 (X', 7). Let [ be the vanishing

cycle along m, then P, is the Picard-=Fuchs op for er .



V. Statements for conifold transitions

Let X Y be a projective conifold transition of CY 3-folds through X
withkODPspy,...,pr, m: Z =AY = X:

Gcy Ne,y = Op (-1)%?
|+
NSI»/X:T*S3 SiCX’\/ZT/\»piEX
Let p := h*>1(X) — h*Y(Y) > 0 and p := KV (Y) — kY1 (X) > 0.

X(X) = kx(8%) = x(Y) —=kx(8*) = p+p =k

Hence there are non-trivial relations between the “vanishing cycles”:
Y

k

A= (lill']‘) € kal"’ Zi:l aij[Ci] =0,
k

B = (bj) € Mkxp, Y., bijlSi] = 0.
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Let0 — Vg < H3(X,Z) — H3(X,Z) — 0and V := Cz ® C.
Theorem (Basic exact sequence)

We have an exact sequence of weight two pure Hodge structures:
2 2 B, ck A
0—H(Y)/H(X)—C"—V —0.

Sincep : Y — X deforms in families, this identifies .#y as a
codimenison i boundary strata in .#% and locally .# = A X #y.
Write V = C(Ty,...,T) in terms of a basis T;’s. Then the a-periods

ri= [ Q, 1<j<
j /l"j SIS M

form the degeneration coordinates around [X]. The discriminant loci of
M is described by a central hyperplane arrangement Dp = U?:l D;:

Proposition (Friedman 1986)

Let w; = ajyry + - - - + a1y, then the divisor D; := {w; = 0} C . is the
loci where the sphere S; shrinks to an ODP p;.
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» The B-periods in transversal directions are given by a function u:

Uy = oyl = @)
P s Bp

» The Bryant-Griffiths—Yukawa couplings extend over Dp and

k e
L 3 _ 1 lp m*in _
U = Oyt = O(1) +i; S = /apamanﬂ AO
for1 < p,m,n < u. It is holomorphic outside this index range.
> Lety = Zi'(:l y;e; € CK, with ¢”’s being the dual basis on (CF)V.
The trivial logarithmic connection on C* @& (C*)Y — Ckis

d
Vk=d+ - Zl . yl (d ®ef).

Theorem (Local invariance: Exc(«) + Exc(#) = trivial)

(1) V¥ restricts to the logarithmic part of VM on V*.
(2) VK restricts to the logarithmic part of VPProVin o H2(Y) /H?(X).
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Theorem (Linked .7 + % theory)

Let [X] be a nearby point of [X] in .4,
(1) o/ (X) is a sub-theory of <7 (Y) (i.e. quantum sub-ring).
(2) A(Y) is a sub-theory of #(X) (sub-moduli, invariant sub-VHS).
(3) </ (Y) can be reconstructed from a “refined <7 theory” on
o._ koo
X2 =X\{J_,Si
“linked” by the vanishing 3-spheres in 2(X).
(4) B(X) can be reconstructed from the variations of MHS on H3(Y°),
o . k .
Y=Y\ Ui:l G,
“linked” by the exceptional curves in <7 (Y).

For (3) and (4), effective methods are under developed.
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VI. Linked GW invariants for .« model

» Itis easy to see that &/ (X) C &7(Y): for 0 # B € Hy(X), by
degeneration formula in GW theory [Li] we can show

X _ Y
ng = ZVHﬁ n.

» To determine 7 (Y) from <7 (X) + #(X), it is equivalent to
find a definition of each individual term nl; with the same
B in terms of a refined data in X.

Lemma
Hy(X°) = Hy(Y°) = Ho(Y). In particular, for amap h : C — X°,
v := h.[C] € Hy(Y) is well-defined.

» This v is called a linking data (B, L). It encodes the link
between (C) (2D) and S;’s (3D) inside a 6D space X.
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» If the stable maps i : C = X do not touch U, S?, then the
linked GW invariants n BL) is defined and n¥ (L) = nY

» In general this is not true. However, it is true in the virtual
sense, which is all we need:

Proposition

For X; with t € A\ {0} small in the degenerating family

7T 2 — A arising from the semi-stable reduction, we have a
decomposition of the virtual class [M(X;, B)]V™ into a finite disjoint
union of cycles

IO ) i I (6 o)

where [M(Y, 7))V ~ [M(X;, 7)™ € Aygim (M(X4, B)) is a cycle
class corresponding to the linking data <y of X;.
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VII. Linked %4 model via VMHS

» A(Y) is a sub-theory of #(X) by viewing .#y — .5 as a
boundary strata of .#x.

» We will show that #(Y), together with the knowledge of
extremal curves Z := |J; C; C Y determines #(X).

» Proposition
There is a short exact sequence of mixed Hodge structures

0—V—HX)— H(U) —0, (1)
where H®(X) is equipped with the limiting MHS of Schmid,
V = Hy'H(X),

and H3(U) is equipped with the canonical mixed Hodge structure of
Deligne. In particular, FPH3(X) = FPH3(U), F?H3(X) = F?H3(U).
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Wehaveon X, U~ X := X\ p, where p = U{p:}:
.- Hy(0g) = H'(©g) = H'(U,Ty) = H;(@g) — - - - .

[Schlessinge] p; is a hypersurface singularity —>
depth @, = 3 = H}(®%) = 0 and H2(Ox) = @i, Cy;:

0— H'(Og) = H' (U, Ty) = Hy(©g) — -+ .
Comparing with the local to global spectral sequence
0 — H'(®x) & Ext!(Qx, 0%) — H(&xt'(Qx, %)) > HY(Oy),
= Def(X) = H'(U, Ty). Similarly, for Y D Z = |JC; we get
Def(Y) = H(Ty) ¢ H (U, Ty) = Def(X),

and then .#y — .45 (unobstructedness theorem).
Write .¥ := .7 4, as the ideal sheaf of .#y C ..
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Since H?(U, Ty;) # 0, the deformation of U could be
obstructed. Nevertheless, the first-order deformation of U
exists and is parameterized by H! (U, Ty;) D Def(Y).

Therefore, we have the following smooth family
= 2= Z,///Y(f2) D My,

where 21 = Z, (.#?) stands for the nonreduced
subscheme of .# as the first jet extension of .#y in .#.

[Katz] VM for 7t : 8l — Z; is defined by the lattice
y

H3(U,Z) C H3(U,C). It underlies VMHS instead of VHS.

The proposition implies
WH3(U) =0, i<2, WzCW,

with Gry H3(U) = H3(Y) and Gry’ H3(U) = V*,
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The Hodge filtration of the local system F* = H3(U, C):
FP={FPcFcF cF}

satisfies Griffiths” transversality.

Since Ky; =2 0y, F2 is a line bundle over 2, spanned by
Qe Qg{/gl. Near [Y] € Z3,

F? is then spanned by () and v(Q))

where v runs through a basis of H' (U, Ty).

Notice that v(Q)) € Wj precisely when v € H'(Y, Ty).
Proposition = F? C F2 on H3(U) over Z; lifts uniquely to
3 C F? on H3(X) over Z; with

FPxp, PP
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» The complete lifting F* is then determined since
f:l — ( F3)L

by the first Hodge-Riemann relation on H3(X).

» Now F* over Z; uniquely determines a horizontal map
Z — D.
» Since it has maximal tangent dimension
(U, Ty) = h'(X, Tx),
it determines the maximal horizontal slice
p: M —D

with .# = ./ near #y.
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» Let I' be the monodromy group generated by the local
monodromy T = exp N{) around the divisor

Di = {ZUZ' = E]yzl aijrj = 0}
» Under the coordinates t = (r,s), the period map
k .
47 : MX = MX\Ui:lDl —D/T
is then given (by an extension of Schmid’s NOT) as

k

_ logw; (i
¢(r,s) = exp <ZZ‘{ 27‘(\/le ) P(r,s),

» Since N() is determined by the Picard—Lefschetz formula,
the period map ¢ is completely determined by A and C;’s.

» Hence the refined 2 model on Y\Z = U determines the #
model on X. END
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