Towards $A+B$ Theory in Conifold Transitions for Calabi-Yau Threefolds

Chin-Lung Wang
National Taiwan University
(Joint work with Yuan-Pin Lee and Hui-Wen Lin)

Second Annual Meeting of ICCM
Taipei, Taiwan
December 27, 2018

Contents

1 Calabi-Yau 3-folds
2 A model and B model
3 Mirror, flops, and transitions
4 An observation from ordinary k-fold singularity
5 Statements for conifold transitions
6 Linked GW invariants for A model
7 Linked B model via VMHS

I. Calabi-Yau 3-folds

- A projective manifold X / \mathbb{C} is Calabi-Yau if $\pi_{1}(X)$ is finite and $K_{X}=0\left(\right.$ or $\left.c_{1}(X)=0\right)$.
- Yau's solution to the Calabi conjecture \Longrightarrow for any cpt Kähler X with $c_{1}(X)_{\mathbb{R}}=0, \exists$ finite cover $\widetilde{X} \rightarrow X$:

$$
\widetilde{X}=A \times B \times C
$$

$A \cong \mathbb{C}^{g} / \Lambda$ (flat), B is hyperkähler $(\mathrm{SU}(\mathrm{m}))$, and C is CY $(\mathrm{SU}(\mathrm{n}))$. Also $\pi_{1}(B)=\pi_{1}(C)=0, C$ is projective.

- The first new case appears in $\operatorname{dim}=3$. We have $h^{1}(\mathscr{O})=h^{2}(\mathscr{O})=0$. WLOG we assume that $\pi_{1}(X)=0$.
- Question: classification of CY 3-folds?
- What is the global structure (symmetries?) of $\mathscr{M}_{\mathrm{CY}}$?
- Examples. Adjunction formula for hypersurfaces $X \subset Y$:

$$
K_{X}=\left.\left(K_{Y}+X\right)\right|_{X}=0 \Longleftrightarrow X \text { is anti-canonical in Fano } Y .
$$

- $X=(n+1) \subset P^{n}$. E.g. the Fermat hypersurfaces

$$
x_{0}^{n+1}+\cdots+x_{n}^{n+1}=0
$$

is a $C Y(n-1)$-fold. E.g. quintic 3 -folds.

- $X=\left(\vec{d}_{1}, \ldots, \vec{d}_{k}\right) \subset \prod_{i=1}^{m} P^{n_{i}}$ with $\vec{d}_{j}=\left(d_{j i}\right)_{i=1}^{m}$ and

$$
\sum_{j=1}^{k} d_{j i}=n_{i}+1, \quad 1 \leq i \leq m
$$

This is a CICY of dimension $D=\sum n_{i}-m$.

- Let N_{D} be the numbers of them. Then $N_{3}=7890$.
- Toric CY. A lattice polytope $\triangle \subset M_{\mathbb{R}}, M \cong \mathbb{Z}^{n+1}$ is reflexive if $0 \in \operatorname{int} \triangle$ and its polar (dual) polytope

$$
\triangle^{\circ}:=\left\{w \in N:=M^{\vee} \mid\langle w, v\rangle \geq-1, \forall v \in \triangle\right\}
$$

is also a lattice polytope, in $N_{\mathbb{R}}$.

- Number of them [Kruezer-Skarke, 2000]:

$$
\mathbf{N}_{1}=16, \quad \mathbf{N}_{2}=4319, \quad \mathbf{N}_{3}=473800776, \ldots
$$

- For a reflexive pair $\left(\triangle, \triangle^{\circ}\right)$, the toric variety

$$
P_{\triangle}:=\operatorname{Proj}\left(\bigoplus_{k \geq 0} C^{k \triangle \cap M}\right)
$$

is Fano with $H^{0}\left(K_{P_{\Delta}}^{-1}\right)=\bigoplus_{v \in \triangle \cap M} \mathbb{C} t^{v}$; similarly for $P_{\triangle^{\circ}}$.

- For a general section $f, X_{f}:=\{f=0\}$ is a CY n-fold.

II. Classical A model and B model

- The Hodge numbers of a CY 3-fold X are

- $h^{11}=h^{1}\left(X, \Omega_{X}\right)=h^{2}$ parametrizes Kähler classes.
- $A(X)=Q H(X)$ is the $g=0$ Gromov-Witten theory in

$$
\omega=B+i H \in \mathscr{K}_{\mathrm{X}}^{\mathrm{C}}=H^{2}(X, \mathbb{R}) \oplus \sqrt{-1} \operatorname{Amp}(X) .
$$

- $h^{21}=h^{1}\left(X, T_{X}\right)$ parametrizes complex deformations.
- $B(X)=\left(\mathcal{H}^{3}, \nabla^{G M}\right)$ is the VHS on the complex moduli \mathscr{M}_{X} under the Gauss-Manin connection with lattice $H^{3}(X, \mathbb{Z})$.
- A model. For a CY 3-fold X, let $\beta \in H_{2}(X, \mathbb{Z})$,

$$
\bar{M}(X, \beta)=\left\{h: C \rightarrow X \text { stable } \mid C \text { is nodal, } p_{a}(C)=0, h_{*}[C]=\beta\right\} / \sim .
$$

- Virtual dim $=0$: the essential genus 0 GW invariants are

$$
n_{\beta}^{X}=\langle-\rangle_{\beta}^{X}=\int_{[M(X, \beta)]^{\text {virt }}} \mathbf{1} \in \mathbb{Q} .
$$

- Toric example. Let $X_{f} \subset P_{\triangle}$ with $f \in H^{0}\left(K_{P_{\triangle}}^{-1}\right)$.
- $A\left(X_{f}\right)$ is determined by \mathbb{C}^{\times}-localization data [LLY, G 1999]:

$$
I^{X}\left(q^{\bullet}, z^{-1}\right)=\sum_{\beta \in H_{2}\left(X_{f}, Z\right)} q^{\beta} \frac{\prod_{m=1}^{K^{-1} \cdot \beta}\left(K_{P_{\Delta}}^{-1}+m z\right)}{\prod_{\rho \in \Sigma_{1}} \prod_{m=1}^{D_{\rho} \cdot \beta}\left(D_{\rho}+m z\right)}
$$

- Σ is the normal fan of P_{\triangle} and D_{ρ} is the torus invariant divisor corresponding to the one-edge $\rho \in \Sigma_{1}, q^{\beta}=e^{2 \pi i(\beta . \omega)}$.
- B model. For the CY family $\pi: \mathscr{X} \rightarrow S:=\mathscr{M}_{X}$,

$$
\begin{gathered}
\mathcal{H}^{3}:=R^{3} \pi_{*} \mathbb{C} \otimes \mathscr{O}_{S} \rightarrow S, \\
F^{p}=\pi_{*} \Omega_{\mathscr{X} / S^{\prime}}^{p} \mathcal{H}^{p q}=F^{p} \cap \overline{F^{q}}, \Omega \in \Gamma\left(S, F^{3}\right) . \text { Then } \\
\nabla^{G M} F^{p} \hookrightarrow F^{p-1} \otimes \Omega_{S^{\prime}}^{1}, \quad\left\langle\nabla_{\partial / \partial x_{j}}^{G M} \Omega\right\rangle_{j=1}^{h^{21}}=\mathcal{H}^{21} .
\end{gathered}
$$

- Periods. Let $\delta_{m} \in H_{3}(X)$ be a basis with dual $\delta_{m}^{*} \in H^{3}(X)$. For $\eta \in \Gamma\left(S, \mathcal{H}^{3}\right)$, since $\nabla^{G M} \delta_{m}^{*}=0$, we have

$$
\nabla_{\partial / \partial x_{j}}^{G M} \eta=\sum_{m} \delta_{m}^{*} \frac{\partial}{\partial x_{j}} \int_{\delta_{m}} \eta, \quad j \in\left[1, h^{21}\right] .
$$

$\mathrm{GM} \Longleftrightarrow$ Picard-Fuchs equations of period integrals $\int_{\delta_{m}} \Omega$.

- Toric example: $B\left(X_{f}\right)$ is determined by the GKZ* system:
(1) symmetry operators;
(2) for ℓ a relation of $m_{i} \in \triangle \cap M$ with $\sum \ell_{i}=0$,

$$
\square_{\ell}:=\prod_{\ell_{i}>0} \partial_{i}^{\ell_{i}}-\prod_{\ell_{i}<0} \partial_{i}^{-\ell_{i}} .
$$

III. Mirror, flops, and transitions

- Mirror symmetry.
- Topological MS: $\left(Y, Y^{\circ}\right)$ is a mirror pair of CY 3-folds if

$$
h^{21}(Y)=h^{11}\left(Y^{\circ}\right), \quad h^{11}(Y)=h^{21}\left(Y^{\circ}\right)
$$

- Classical MS, or $A \leftrightarrow B$ MS: $B(Y) \cong A\left(Y^{\circ}\right), A(Y) \cong B\left(Y^{\circ}\right)$.
- Toric Example: Consider 2 families of CY 3-folds

$$
X_{f} \subset P_{\triangle r} \quad X_{g}^{\circ} \subset P_{\triangle^{\circ}}
$$

- Topological MS holds [Batyrev '94].
- $A \leftrightarrow B$ MS holds for "many cases".
- Observation: $\Sigma_{1}=$ rays from 0 to $\operatorname{Vert}\left(\triangle^{\circ}\right)$.
- [HLY 1998] \exists max-deg-point (\Rightarrow mirror transform).
- Flops. A D-flop between CY 3-folds is a birational diagram

where ψ is D-negative (log-extremal) and ψ^{\prime} is D^{\prime}-positive.
- [Kollár, Kawamata 1988] Birational CY 3-folds are connected by flops. 3D flops are classified.
- [Kollár-Mori 1992] Birational CY 3-folds Y and Y^{\prime} have

$$
\mathscr{M}_{X} \cong \mathscr{M}_{X^{\prime}} \Longrightarrow B(Y) \cong B\left(Y^{\prime}\right)
$$

since flops can be performed in flat families.

- [Li-Ruan 2000] $A(Y) \cong A\left(Y^{\prime}\right)$ under $q^{\beta} \mapsto q^{f_{*} \beta}\left(\ell \mapsto-\ell^{\prime}\right)$.
- Transitions.
- Geometric transition $X \nearrow Y$ (or $Y \searrow X$) of CY 3-folds:

$$
\left.X \leadsto\right|^{Y} \begin{array}{ll}
\psi & K_{Y}=\psi^{*} K_{\bar{X}}, \\
\bar{X} & N F_{\infty}^{3}=0 .
\end{array}
$$

- $X \nearrow Y$ is a conifold transition if $\bar{X}_{\text {sing }}$ has only ODPs

$$
\left(\bar{X}, p_{i}\right):=\left\{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=0\right\} .
$$

- Q1 [Reid 1987] Can ALL CY 3-folds be connected through (possibly non-projective) conifold transitions?
- Q2 [W 2009] Does $(A(X), B(X))$ determines $(A(Y), B(Y))$ and vice versa? Notice $A(X)<A(Y)$ and $B(X)>B(Y)$.

IV. An observation from ordinary k-fold singularity

A + B Model in

Quantum Geometry

Oct. 12, 2009

NTU Math
Dragon

LOCAL EXAMPLES: Consider the dim k hyper-surface $X_{0} \subset C^{k+1}$:

$$
x_{0}^{k}+x_{1}^{k}+\cdots+x_{k}^{k}=0
$$

with $p=0 \in X_{0}$ being an ordinary k-fold singularity. The blow-up f: $X=B l_{p}\left(X_{0}\right) \rightarrow X_{0}$ is crepant with exceptional divisor

$$
E=(k) \subset P^{K}, H_{E / X}=\left.0(-1)\right|_{E}
$$

The local structure of $E \subset X$, namely the germ (E, X) is equivalent to P^{k} "cut out" by the rank 2 vector bundle:

$$
\nabla_{k}=0(k) \oplus 0(-1) \rightarrow P^{k} .
$$

X_{0} can be smoothed into a flat family $M \rightarrow \Delta$ with general smooth fiber $X^{\prime}=M_{t}$. The semi-stable reduction $\pi: W \rightarrow \Delta$ is used to compare X and X^{\prime} since $W_{t}=X^{\prime}$ and $W_{0}=X \cup E^{\prime}$ for some Fano E^{\prime}.

Quantum Transition from A to B:

The Gromov-Witten extremal function $f(a)=\Sigma_{d \in \mathbb{N}}<a>_{\mathrm{dI}} q^{\mathrm{dIT}}$ attached to the extremal ray $I \in \mathbb{H E}(X)$ can be calculated, using the quantum Serre duality principle, by the bundle

$$
\nabla_{k}^{+}=0(k) \oplus 0(I) \rightarrow P^{k} .
$$

This is in turn reduced to $O(k) \rightarrow P^{k-1}$, the Calabi-Yau $C Y_{k}$!
Where is the Picard-Fuchs operator P_{k} for $f(a) ?$
Since $\operatorname{dim} C Y_{k}=k-2$, we must have $\operatorname{deg} P=k-2$. But $\operatorname{dim} X^{\prime}=$ k. It must be the case that there is a "sub-VHS of $\mathrm{R}^{k} \pi * C$ of weight $\underline{k}-2^{\prime \prime}$ which starts at $\Omega \in H^{n-1,1}=H^{1}\left(X^{\prime}, T\right)$. Let Γ be the vanishing cycle along π, then P_{k} is the Picard-Fuchs op for $\int_{r} \Omega$.

V. Statements for conifold transitions

Let $X \nearrow Y$ be a projective conifold transition of CY 3-folds through \bar{X} with k ODPs $p_{1}, \ldots, p_{k}, \pi: \mathscr{X} \rightarrow \Delta, \psi: Y \rightarrow \bar{X}$:

$$
\begin{aligned}
& C_{i} \subset Y \\
& \left.\right|_{S_{i} / X}=T^{*} S^{3} \quad S_{C_{i} / Y}=\mathscr{O}_{P^{1}}(-1)^{\oplus 2} \\
& S_{i} \subset X \xrightarrow{\pi} \xrightarrow{\psi_{i} \in \bar{X}}
\end{aligned}
$$

Let $\mu:=h^{2,1}(X)-h^{2,1}(Y)>0$ and $\rho:=h^{1,1}(Y)-h^{1,1}(X)>0$.

$$
\chi(X)-k \chi\left(S^{3}\right)=\chi(Y)-k \chi\left(S^{2}\right) \Longrightarrow \mu+\rho=k .
$$

Hence there are non-trivial relations between the "vanishing cycles":

$$
\begin{array}{rll}
A & =\left(a_{i j}\right) \in M_{k \times \mu}, & \sum_{i=1}^{k} a_{i j}\left[C_{i}\right]=0, \\
B & =\left(b_{i j}\right) \in M_{k \times \rho,}, & \sum_{i=1}^{k} b_{i j}\left[S_{i}\right]=0 .
\end{array}
$$

Let $0 \rightarrow V_{\mathbb{Z}} \hookrightarrow H_{3}(X, \mathbb{Z}) \rightarrow H_{3}(\bar{X}, \mathbb{Z}) \rightarrow 0$ and $V:=C_{\mathbb{Z}} \otimes \mathbb{C}$.

Theorem (Basic exact sequence)

We have an exact sequence of weight two pure Hodge structures:

$$
0 \rightarrow H^{2}(Y) / H^{2}(X) \xrightarrow{B} \mathbb{C}^{k} \xrightarrow{A^{t}} V \rightarrow 0 .
$$

Since $\psi: Y \rightarrow \bar{X}$ deforms in families, this identifies \mathscr{M}_{Y} as a codimenison μ boundary strata in $\mathscr{M}_{\overline{\mathrm{X}}}$ and locally $\mathscr{M}_{\overline{\mathrm{X}}} \cong \Delta^{\mu} \times \mathscr{M}_{Y}$. Write $V=\mathbb{C}\left\langle\Gamma_{1}, \ldots, \Gamma_{\mu}\right\rangle$ in terms of a basis Γ_{j} 's. Then the α-periods

$$
r_{j}=\int_{\Gamma_{j}} \Omega, \quad 1 \leq j \leq \mu
$$

form the degeneration coordinates around $[\bar{X}]$. The discriminant loci of $\mathscr{M}_{\overline{\mathrm{X}}}$ is described by a central hyperplane arrangement $D_{B}=\bigcup_{i=1}^{k} D_{i}$:

Proposition (Friedman 1986)

Let $w_{i}=a_{i 1} r_{1}+\cdots+a_{i \mu} r_{\mu}$, then the divisor $D_{i}:=\left\{w_{i}=0\right\} \subset \mathscr{M}_{\overline{\mathrm{X}}}$ is the loci where the sphere S_{i} shrinks to an ODP p_{i}.

- The β-periods in transversal directions are given by a function u :

$$
u_{p}=\partial_{p} u=\int_{\beta_{p}} \Omega
$$

- The Bryant-Griffiths-Yukawa couplings extend over D_{B} and

$$
u_{p m n}:=\partial_{p m n}^{3} u=O(1)+\sum_{i=1}^{k} \frac{1}{2 \pi \sqrt{-1}} \frac{a_{i p} a_{i m} a_{i n}}{w_{i}}=\int \partial_{p} \partial_{m} \partial_{n} \Omega \wedge \Omega
$$

for $1 \leq p, m, n \leq \mu$. It is holomorphic outside this index range.

- Let $y=\sum_{i=1}^{k} y_{i} e_{i} \in \mathbb{C}^{k}$, with $e^{i \prime}$ s being the dual basis on $\left(\mathbb{C}^{k}\right)^{\vee}$. The trivial logarithmic connection on $\underline{\mathbb{C}}^{k} \oplus\left(\underline{\mathbb{C}}^{k}\right)^{\vee} \longrightarrow \mathbb{C}^{k}$ is

$$
\nabla^{k}=d+\frac{1}{z} \sum_{i=1}^{k} \frac{d y_{i}}{y_{i}} \otimes\left(e^{i} \otimes e_{i}^{*}\right)
$$

Theorem (Local invariance: $\operatorname{Exc}(\mathscr{A})+\operatorname{Exc}(\mathscr{B})=$ trivial $)$
(1) ∇^{k} restricts to the logarithmic part of $\nabla^{G M}$ on V^{*}.

Theorem (Linked $\mathscr{A}+\mathscr{B}$ theory)

Let $[X]$ be a nearby point of $[\bar{X}]$ in $\mathscr{M}_{\bar{X}}$,
(1) $\mathscr{A}(X)$ is a sub-theory of $\mathscr{A}(Y)$ (i.e. quantum sub-ring).
(2) $\mathscr{B}(Y)$ is a sub-theory of $\mathscr{B}(X)$ (sub-moduli, invariant sub-VHS).
(3) $\mathscr{A}(Y)$ can be reconstructed from a "refined \mathscr{A} theory" on

$$
X^{\circ}:=X \backslash \bigcup_{i=1}^{k} S_{i}
$$

"linked" by the vanishing 3-spheres in $\mathscr{B}(X)$.
(4) $\mathscr{B}(X)$ can be reconstructed from the variations of $M H S$ on $H^{3}\left(Y^{\circ}\right)$,

$$
Y^{\circ}:=Y \backslash \bigcup_{i=1}^{k} C_{i}
$$

"linked" by the exceptional curves in $\mathscr{A}(Y)$.
For (3) and (4), effective methods are under developed.

VI. Linked GW invariants for \mathscr{A} model

- It is easy to see that $\mathscr{A}(X) \subset \mathscr{A}(Y)$: for $0 \neq \beta \in H_{2}(X)$, by degeneration formula in GW theory [Li] we can show

$$
n_{\beta}^{X}=\sum_{\gamma \mapsto \beta} n_{\gamma}^{Y}
$$

- To determine $\mathscr{A}(Y)$ from $\mathscr{A}(X)+\mathscr{B}(X)$, it is equivalent to find a definition of each individual term n_{γ}^{Y} with the same β in terms of a refined data in X.

Lemma
$H_{2}\left(X^{\circ}\right) \cong H_{2}\left(Y^{\circ}\right) \cong H_{2}(Y)$. In particular, for a map $h: C \rightarrow X^{\circ}$, $\gamma:=h_{*}[C] \in H_{2}(Y)$ is well-defined.

- This γ is called a linking data (β, L). It encodes the link between $h(C)(2 \mathrm{D})$ and $S_{i}{ }^{\prime} \mathrm{s}(3 \mathrm{D})$ inside a 6 D space X.
- If the stable maps $h: C \rightarrow X$ do not touch $\bigcup_{i} S_{i}^{3}$, then the linked GW invariants $n_{(\beta, L)}^{X}$ is defined and $n_{(\beta, L)}^{X}=n_{\gamma}^{Y}$.
- In general this is not true. However, it is true in the virtual sense, which is all we need:

Proposition

For X_{t} with $t \in \mathbb{A}^{1} \backslash\{0\}$ small in the degenerating family $\pi: \mathscr{X} \rightarrow \mathbb{A}^{1}$ arising from the semi-stable reduction, we have a decomposition of the virtual class $\left[\bar{M}\left(X_{t}, \beta\right)\right]^{\text {virt }}$ into a finite disjoint union of cycles

$$
\left[\bar{M}\left(X_{t}, \beta\right)\right]^{\mathrm{virt}}=\coprod_{\gamma \in H_{2}\left(X^{\circ}\right)}\left[\bar{M}\left(X_{t}, \gamma\right)\right]^{\mathrm{virt}},
$$

where $[\bar{M}(Y, \gamma)]^{\text {virt }} \sim\left[\bar{M}\left(X_{t}, \gamma\right)\right]^{\text {virt }} \in A_{\text {vdim }}\left(\bar{M}\left(X_{t}, \beta\right)\right)$ is a cycle class corresponding to the linking data γ of X_{t}.

VII. Linked \mathscr{B} model via VMHS

- $\mathscr{B}(Y)$ is a sub-theory of $\mathscr{B}(X)$ by viewing $\mathscr{M}_{Y} \hookrightarrow \mathscr{M}_{\bar{X}}$ as a boundary strata of \mathscr{M}_{X}.
- We will show that $\mathscr{B}(Y)$, together with the knowledge of extremal curves $\mathrm{Z}:=\bigcup_{i} C_{i} \subset Y$ determines $\mathscr{B}(X)$.
- Proposition

There is a short exact sequence of mixed Hodge structures

$$
\begin{equation*}
0 \rightarrow V \rightarrow H^{3}(X) \rightarrow H^{3}(U) \rightarrow 0 \tag{1}
\end{equation*}
$$

where $H^{3}(X)$ is equipped with the limiting MHS of Schmid,

$$
V \cong H_{\infty}^{1,1} H^{3}(X)
$$

and $H^{3}(U)$ is equipped with the canonical mixed Hodge structure of Deligne. In particular, $F^{3} H^{3}(X) \cong F^{3} H^{3}(U), F^{2} H^{3}(X) \cong F^{2} H^{3}(U)$.

- We have on $\bar{X}, U \cong \bar{X}^{\circ}:=\bar{X} \backslash p$, where $p=\bigcup\left\{p_{i}\right\}:$

$$
\cdots H_{p}^{1}\left(\Theta_{\bar{X}}\right) \rightarrow H^{1}\left(\Theta_{\bar{X}}\right) \rightarrow H^{1}\left(U, T_{U}\right) \rightarrow H_{p}^{2}\left(\Theta_{\bar{X}}\right) \rightarrow \cdots
$$

- [Schlessinge] p_{i} is a hypersurface singularity \Longrightarrow depth $\mathscr{O}_{p_{i}}=3 \Longrightarrow H_{p}^{1}\left(\Theta_{\bar{X}}\right)=0$ and $H_{p}^{2}\left(\Theta_{\bar{X}}\right) \cong \bigoplus_{i=1}^{k} \mathbb{C}_{p_{i}}$:

$$
0 \rightarrow H^{1}\left(\Theta_{\bar{X}}\right) \rightarrow H^{1}\left(U, T_{U}\right) \rightarrow H_{p}^{2}\left(\Theta_{\bar{X}}\right) \rightarrow \cdots
$$

- Comparing with the local to global spectral sequence

$$
0 \rightarrow H^{1}\left(\Theta_{\bar{X}}\right) \xrightarrow{\lambda} \operatorname{Ext}^{1}\left(\Omega_{\bar{X}}, \mathscr{O}_{\bar{X}}\right) \rightarrow H^{0}\left(\mathscr{E} x t^{1}\left(\Omega_{\bar{X}}, \mathscr{O}_{\bar{X}}\right)\right) \xrightarrow{\kappa} H^{2}\left(\Theta_{\bar{X}}\right)
$$

$\Rightarrow \operatorname{Def}(\bar{X}) \cong H^{1}\left(U, T_{U}\right)$. Similarly, for $Y \supset Z=\bigcup C_{i}$ we get

$$
\operatorname{Def}(Y)=H^{1}\left(T_{Y}\right) \subset H^{1}\left(U, T_{U}\right) \cong \operatorname{Def}(\bar{X})
$$

and then $\mathscr{M}_{Y} \hookrightarrow \mathscr{M}_{\bar{X}}$ (unobstructedness theorem).

- Write $\mathscr{I}:=\mathscr{I}_{\mathscr{M}_{Y}}$ as the ideal sheaf of $\mathscr{M}_{Y} \subset \mathscr{M}_{\overline{\mathrm{X}}}$.
- Since $H^{2}\left(U, T_{U}\right) \neq 0$, the deformation of U could be obstructed. Nevertheless, the first-order deformation of U exists and is parameterized by $H^{1}\left(U, T_{U}\right) \supset \operatorname{Def}(Y)$.
- Therefore, we have the following smooth family

$$
\pi: \mathfrak{U} \rightarrow \mathcal{Z}_{1}:=Z_{\mathscr{M}_{\bar{X}}}\left(\mathscr{I}^{2}\right) \supset \mathscr{M}_{Y},
$$

where $\mathcal{Z}_{1}=Z_{\mathcal{M}_{\bar{\chi}}}\left(\mathscr{I}^{2}\right)$ stands for the nonreduced subscheme of $\mathscr{M}_{\bar{X}}$ as the first jet extension of \mathscr{M}_{Y} in $\mathscr{M}_{\bar{X}}$.

- [Katz] $\nabla^{G M}$ for $\pi: \mathfrak{U} \rightarrow \mathcal{Z}_{1}$ is defined by the lattice $H^{3}(U, \mathbb{Z}) \subset H^{3}(U, \mathbb{C})$. It underlies VMHS instead of VHS.
- The proposition implies

$$
W_{i} H^{3}(U)=0, \quad i \leq 2 ; \quad W_{3} \subset W_{4}
$$

with $\operatorname{Gr}_{3}^{W} H^{3}(U) \cong H^{3}(Y)$ and $\operatorname{Gr}_{4}^{W} H^{3}(U) \cong V^{*}$.

- The Hodge filtration of the local system $F^{0}=H^{3}(U, \mathbb{C})$:

$$
F^{\bullet}=\left\{F^{3} \subset F^{2} \subset F^{1} \subset F^{0}\right\}
$$

satisfies Griffiths' transversality.

- Since $K_{U} \cong \mathscr{O}_{U}, F^{3}$ is a line bundle over \mathcal{Z}_{1} spanned by $\Omega \in \Omega_{\mathcal{U} / \mathcal{Z}_{1}}^{3}$. Near $[Y] \in \mathcal{Z}_{1}$,
F^{2} is then spanned by Ω and $v(\Omega)$
where v runs through a basis of $H^{1}\left(U, T_{U}\right)$.
- Notice that $v(\Omega) \in W_{3}$ precisely when $v \in H^{1}\left(Y, T_{Y}\right)$.
- Proposition $\Rightarrow F^{3} \subset F^{2}$ on $H^{3}(U)$ over \mathcal{Z}_{1} lifts uniquely to $\tilde{F}^{3} \subset \tilde{F}^{2}$ on $H^{3}(X)$ over \mathcal{Z}_{1} with

$$
\tilde{F}^{3} \cong F^{3}, \quad \tilde{F}^{2} \cong F^{2}
$$

- The complete lifting \tilde{F}^{\bullet} is then determined since

$$
\tilde{F}^{1}=\left(\tilde{F}^{3}\right)^{\perp}
$$

by the first Hodge-Riemann relation on $H^{3}(X)$.

- Now \tilde{F}^{\bullet} over \mathcal{Z}_{1} uniquely determines a horizontal map

$$
\mathcal{Z}_{1} \rightarrow \check{\text { Ď }}
$$

- Since it has maximal tangent dimension

$$
h^{1}\left(U, T_{U}\right)=h^{1}\left(X, T_{X}\right)
$$

it determines the maximal horizontal slice

$$
\psi: \mathscr{M} \rightarrow \check{\mathbb{D}}
$$

with $\mathscr{M} \cong \mathscr{M}_{\overline{\mathrm{X}}}$ near \mathscr{M}_{Y}.

- Let Γ be the monodromy group generated by the local monodromy $T^{(i)}=\exp N^{(i)}$ around the divisor

$$
D_{i}:=\left\{w_{i}=\sum_{j=1}^{\mu} a_{i j} r_{j}=0\right\}
$$

- Under the coordinates $\mathbf{t}=(r, s)$, the period map

$$
\phi: \mathcal{M}_{X}=\mathcal{M}_{\bar{X}} \backslash \bigcup_{i=1}^{k} D^{i} \rightarrow \mathbb{D} / \Gamma
$$

is then given (by an extension of Schmid's NOT) as

$$
\phi(r, s)=\exp \left(\sum_{i=1}^{k} \frac{\log w_{i}}{2 \pi \sqrt{-1}} N^{(i)}\right) \psi(r, s)
$$

- Since $N^{(i)}$ is determined by the Picard-Lefschetz formula, the period map ϕ is completely determined by A and $C_{i}{ }^{\prime}$ s.
- Hence the refined \mathscr{B} model on $Y \backslash Z=U$ determines the \mathscr{B} model on X.

