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LECTURE ONE

» Joint project with Chang-Shou Lin.

» The Green function G(z,w) on a flat torus E = Ep = C/A,
A = Zwi + Zw; is the unique function on E x E which satisfies

1

—N\G(z,w) = dy(z) — ]

and f E (z,w)dA = 0, where &, is the Dirac measure with
singularity at z = w.

» Because of the translation invariance of A\,, we have

G(z,w) = G(z —w,0) and it is enough to consider the Green
function G(z) := G(z,0). Asymptotically

1
G(z) = —5 - log 2] +0(|z/%).
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G can be explicitly solved in terms of elliptic functions.

Letz =x+iy, T:= wy/w; =a+ib € Hand q = ¢ with
|g| = e~ ™ < 1. Then we denote E = E; and

% (z;T) = —i Z (fl)”q(”+%)ze(2n+l)m’z‘

n=-—0o
(Neron): On E; (notice the T dependence),

1
G(z;T) = 5 lo

% (z 1)

1,5
Blo7(0;7)

‘|‘E]/

+C(7).

The structure of G, especially its critical points and critical
values, will be the fundamental objects that interest us.
VG(z) =00onE; <

G -1

o _ 7+ AN
5 = in ((10g191)z+2mb> =0.



> Recall the Weierstrass elliptic functions wrt. A :

z2+ L ( E)’

weA><

——/ @:74_...’

—exp/ ((w)ydw=z+---.

> 0 is entire, odd with a simple zero on lattice points and
1
0(z + wj) = —liFH29) g (2)

with 17, = {(z + w;) — {(z) = 2{(4w;) the quasi-periods.

» Indeed 81(2)
enz*/2Y1\2)
U(Z) 19/ (0)

Hence {(z) — 11z = (log 91(z))-.
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Wesetw; =1, wy =7T=a+bi, w3 =wy +wy,and E = E+.
z = twy +swy = (t + sa) + sbi = x + yi.

By Legendre relation 11wy — #pwq = 271, we compute
(log¥1), + 2711'% = ((z) — mz + 2mis

= {(z) — mt — mswy + (mwa —12)s
= {(z) =ty —sna.

Hence VG(z) = 0 if and only if
G = — - (Z(twr +sw) — (g +s72)) = 0
7= E(C w1 + 5wy 1 +sn2 ) =0.

Question: How many critical points can G have in E? What is
the dependence in T € H?



» The 3 half periods are trivial critical points. Indeed,
G(z) = G(—z) = VG(z) = —=VG(-2z2).
Letp = Jw; thenp = —pin E and so VG(p) = —VG(p) = 0.
» Other critical points must appear in pair £z € E.
Example (Maximal principle)
For rectangular tori E: (wq,wy) = (1,7 = bi), %wi, i=1,2,3are

precisely all the critical points.

Example (Z3 symmetry)
For the torus E with T = p := ¢™/3

3 half periods %wi plus %wg, %wg.

» However, it is very difficult to study the critical points from the
“simple equation” {(fwy + swy) = tyy + sy, directly.

, there are at least 5 critical points:



In PDE, the geometry of G(z, w) plays fundamental role in the
non-linear mean field equations (= Liouville equation with
singular RHS): On a flat torus E it takes the form (p € R4)

Au+ e = pdy.

Originated from the prescribed curvature problem (Nirenberg
problem, constant K = 1 with cone metrics etc.).

The mean field limit of Euler flow in statistic physics. Related to
the self-dual condensation of abelian Chern-Simons-Higgs
model (Nolasco and Tarantello 1999).

In Arithmetic Geometry, G(z, w) also appears in the Arakelov
geometry as the intersection number of two sections z and w of
the arithmetic surface £ — SpecZ U {oo} at the oo fiber £ =
Riemann surface E.



» When p ¢ 87N, it has been proved by C.-C. Chen and C.-S. Lin
that the Leray-Schauder degree is

dp=n+1 for pe (8nm,8(n+1)m),

so the equation has solutions, independent of the shape of E.

» The first interesting case is when p = 87T where the degree
theory fails completely.

Theorem (Existence criterion via VG for n = 1)

For p = 87, the mean field equation on a flat torus E = C/A:
Au+e = 87'[50

has solutions if and only if the G has more than 3 critical points. Moreover,
each extra pair of critical points p corresponds to an one parameter family
of solutions u,, where lim, _, ) (z) blows up precisely at z = +p.



» Structure of solutions.

» Liouville’s theorem says that any solution u of Au +¢* = 0ina
simply connected domain (2 C C must be of the form

8lf'|?
BRI CRRE

where f, called a developing map of u, is meromorphic in Q).

> It is straightforward to show that for p = 877 € IR,

1" 17\ 2
5(f) EJ;/ - % (?) = Uz — %ui = —217(17+1)le +0O(1).

Le., any developing map f of u has the same Schwartz derivative
S(f), which is elliptic on E. Hence S(f) = —2(y(n + 1)p(z) + B).



» By the theory of ODE, locally f = wy /w, for two solutions w; of
the Lamé equation L, gy = 0:

v+ 380y =" = (11 + Dp(z) + Bly =0

for some B € C.
» Furthermore, for any two developing maps f and f of u, there

exists S = (¥ __17) € PSU(2) such that f i 1.
(‘7 p @ f=9= af +p
> So, solutions to the mean field equation correspond to Lamé
equations with unitary projective monodromy groups.



» Geometrically the Liouville equation is simply the prescribing
Gauss curvature equation in the new metric g = e“gg over D,
where w = u/2 —log V2 and Qo is the Euclidean flat metric on C:

Ky =—e"Au=1. (1)

» Itis then clear the inverse stereographic projection C — S?

2x 2y —1+2% 412
XIYIZ = 4 4
( ) (1—|—x2+y2 142 +y? 1+x2+y2>

provides solutions to (1) with conformal factor

1 1
ew fnd eiM*ElOgZ =

1+ z)%



» Starting from this special solution for D = A, the unit disk,
general solutions on simply connected domain D can be
obtained by using the Riemann mapping theorem via a
holomorphic map

f:D— A

» The conformal factor is then the one as expected:

u __ 8|.f/‘2
CT AT P

» The problem is to glue the local developing maps to a “global
one”. This is a monodromy problem on the once punctured
torus E* = E\{0}. Since it is homotopic to “8”, we have

Hl(EX,Xo) =ZxZ

being a free group of rank two.



Lemma (Developing map for 7 = 1/ € %Z)

Given A, for p = 4rtl, £ € IN, by analytic continuation across A\, f is glued
into a meromorphic function on C. (Instead of on E = C/A.)

> First constraint from the double periodicity:

fz+wr) =Sif, flz4+wr) =Sof
with 5§15, = £5,5; (abelian projective monodromy).
> Second constraint from the Dirac singularity:
(1) If f(z) has a zero/pole at zg ¢ A then order r = 1.
(2) f(z) =ag+ap1(z—20)F1 + - beregularatzy € A.



» Type I (Topological) Solutions <= ¢ = 2n 4 1:

fetw)=f@),  flaton)= o
Then ¢ = (logf)" = f'/f takes the form
l

; (z—pi) = C(z—pi—w2)) +c

which is ellipticon E' = C/ A/, A’ = Zwy + Z2w, with the only
(highest order) zeros at zp = 0 (mod A) of order ¢ = 2n + 1.

» The equations 0 = g(0) = ¢"(0) = ¢*)(0) = - - - implies that f is
an even function (a non-trivial symmetric function argument).
So f has simple zeros at £p;, ..., £p, and wy /2.

» The remaining equations 0 = ¢’(0) = ¢"’(0) = ¢!®(0) = - --
leads to the polynomial system for p(p;)’s:



Theorem (Type I integrability, p = 47(2n + 1))
(1) Forp =4ml, £ = 2n+ 1. All solutions are of type I and even. f has
simple zeros at wy /2 and £p; fori =1,...,n, and poles q; = p; + w».

(2) Forx;:= p(p;), Xi = p(q;),andm =1,...,n,

Yo =Y =, (m—e)(Em—e) =1,

or some constants ¢y, and u = (ex — eq)(ep — e3). This is a 2n affine
K
polynomial system in C*" of degree 2"n!.

(3) The corresponding Lamé equation Ly—, 1,2 py = 0 has finite
monodromy group M (in fact PM = V4) hence there is a polynomial
pn of degree n + 1 such that p,(B) = 0. (Brioschi-Halphen 1894.)

This is a far more precise than the degree counting formula.



Example (o = 47, n = 0, unique solution)
The developing map is given by f(z) = f(0) exp [; g(w) dw with

g (2)0p (2 — w3)
o (z + 3w1)op (z — Jw1 — wy) ’

g(z)=A

where the residue at z = %wl is fiexed to be 1 by choosing

g (w1 + wy)

A= T T .
op (w1)0p (w1 + W)

Here all elliptic functions are with respect to A’ = Zw; + Z2ws.
Example (p = 127, n = 1, two solutions)
Letp; =a.pp = —aand p3 = %wl. Then

(p(a) —e2)? + 3(e1 —e3)(p(a) —e2) —p = 0.

The two solutions coincide precisely when T = ¢7/3.



» Type II (Scaling Family) Solutions <= 1 =n ({ = 2n):
flzt+w) =ef(z),  flz+ws)=%f(2).
» If f satisfies this, ¢'f also satisfies this for any A € R. Thus

| 8e2A V/( ’2
uy(z) = log m
is a scaling family of solutions with developing maps {e"f}.

> u, is a blow-up sequence. The blow-up points for A — oo
(resp. —o0) are precisely zeros (resp. poles) of f(z).

> ¢ = (logf)' is elliptic on E = C/A, with highest order zero at
z =0of order £ = 2n.



v

0=¢0)=¢"0)="---= g(zn_l)(O) implies that g is even.
Suppose that g(z) has zeros £py, - - - , £p,. We may write

¢ (p1) ¢ (pn)
ST o T T E ety
constraint by 0 = g”(0) = - - - = ¢(2"=2)(0). These give rise to

the first n — 1 equations on py, ..., py. (g(0) = 0 is automatic.)
To be written down and discussed in the next lecture.

And then .
f2) = FO)exp [ g(2)de

which should satisfies (the n-th equation)

/gEv—l]R, i=1,2.
L;



> Periods integrals. Let L1, L, be the fundamental 1-cycles. Set

Fip) = [ 0@ p)de,

where p # Jw; (mod A) and

¢ (p)
AP = o o)

Lemma (Periods integrals and critical points)

Let p = twy + swy, then (up to 47tilN)

2(w18(p) —mp) = 2(5(p) — tm — sip)wy — 47ts,
F2(p) = 2(w2l(p) —m2p) = 2(G(p) — tn — s1j2)wo + 4rtit.

» Hence solution {u, } corresponds to +p ¢ E[2] with VG(p)

=20(p) = Cp+¢)—¢(p—2Q).

=0.



» Whenp =81 ({ =2),p1 =p,p2 = —p,8(z) = Q(z,p) and

£(2) =f(O) exp [ () dz

gives rise to a solution <=
Fi(p) e V—-1R,i=1,2,<= VG(p) = 0.
» Theorem (Uniqueness, Lin-W 2006, 2010)
For p = 8, the mean field equation Au + e* = pdy on a flat torus has at
most one solution up to scaling.
» Theorem (Number of critical points)
The Green function has either 3 or 5 critical points.

> We were unable to prove it from the critical point equation.

20/58



» Our proof on uniqueness is based on the method of
symmetrization applied to the linearized equation at the unique
even solution in 1, (choose A = —log |f(0)| to get f(0) = 1).

> In fact we prove uniqueness of the one parameter family
Au+e" =pdy, p € [4m,8m]
on E within even solutions, by the continuity method.

» Theorem

For p € [47t,87), Let u be a solution of Au + e = pdy, u(—z) = u(z) in E
(so [pe" = p.) Then the linearized equation at u:

U —
{Aqo—l—ecp—O on E

¢(z) = ¢(-2)

is non-degenerate, i.e. it has only trivial solution ¢ = 0.



Sketch of the main idea:

Use x = p(z) as two-fold covering map E — S?> = C U {co} and
require p being an isometry:

Bdzf? = @ dx? = @ |/ (2) |z,
Namely we set
o(x) == u(z) —log [¢'(z)]* and y(x) == ¢(2).

There are four branch points on C U {0}, po (O) = oo and
pi = ¢ := p(w;/2) for j = 1,2,3. Since ¢/ (z)? = 4]_[] 1(x —¢j), then

3
Av+e’ = ijl(—ZTL')(Sp/. in R2
APp+elp=0



At infinity let y = 1/x. The isometry reads as

/ 2
eu(z)|dz|2 — ew(y)|dy|2 — ew(y) ||i((§))||4 |dZ|2

7

/(% 2

Thus p > 47 implies that py is a singularity with non-negative «y.

The total measure on E and IR? are then given by
/e”dz:p§87r and / e”dnggzm.
E R? 2

The proof is then reduced to:



Theorem (Symmetrization lemma)
Let Q C R? be a simply-connected domain and let v be a solution of

Av+eé = Z]Iil 27ta0p,

in Q). Suppose that Ay = 0 for A + e” on Q with ¢ the first eigenfunction.
(i) If the isoperimetric inequality with respect to ds*> = °|dx|*:

212 (0w) > m(w) (4 — m(w))
holds for all level domains w = {¢ > t} with t > 0, then

/ e’dx > 2m.
Q

(ii) Moreover, the isoperimetric inequality holds if there is only one negative
ajand aj = —1.



e It remains to study the geometry of critical points over M,
which relies on methods of deformations and the degeneracy
analysis of half periods.

Theorem (Moduli dependence, Lin-W 2013)

(1) Let Q3 C My U {co} 22 S? (resp. Q) be the set of tori with 3 (resp.
5) critical points, then Q3 U {oo} is closed containing iR, Qs is open
containing the vertical line [¢™/3,ic0).

(2) Both Q3 and Qs are simply connected with C := dQ3 = Qs
homeomorphic to S* containing co.

(3) Moreover, the extra critical points are split out from some half period
point when the tori move from Q3 to Qs across C.

(4) (Strong uniqueness) The map Qs — [0,1]2 by T +— (t,s) for
p(T) = twy + swy is a bijection onto A = [(3,3), (L, 5,0, D]

a1



L4 by

0 ! 1
Figure : Q5 contains a neighborhood of ¢7/3.

e On the line Re T = 1/2 which are equivalent to the rhombuses
tori, the proof relies on functional equations of ¢;.

e The general case uses modular forms of weight one.

26 /58



> Idea of proof:
¥(N) == #{ (k1, k) | (N, k1, k2) =1,0 <k; <N —11}.
Consider the weight one modular function for I'(N):

kw1 + kow kim +k
INju (T) = g(%ﬁ) _ %

= —ZN,N—ky N—k, (T)
(first studied by Hecke (1926));
» and the weight ¥(N) one for full modular group:

Zn(t) = 1 Znki (1) € My (SL(2,Z)).
(N,kllkz)il

» Each T € H with Zy(7) = 0is (at least) a double zero.



Forodd N > 5, v;(Zn) = v,(Zn) =0,

At co, Hecke calculated the asymptotic expansion:
Veo(ZN) = ¢(N/2) =0,

Then the degree formula for modular forms (Riemann-Roch):

L 1 ¥(N)
(ZN)red = EdegZN = E;VP(ZN) =~

Take N prime, this suggests a 1-1 correspondence between ()5
and

A=[(33) (22, 07)
under the map Qs — [0,1] x [0, 1]:

T+ (t,5), where p(T) = twy+ swy.



The actual proof: Deformations in f,s ¢ %Z.

Let F C H be the fundamental domain for I'y(2) defined by
F:={teH|0<Ret <1, |t—3%>1}

We analyze solutions T € F for Z;s(7) = 0 by varying (¢,s).

For T € dF, E is a rectangle and the only critical points of G are
half periods. So Z;s(t) # 0 for T € JF.

Based on this, we use of the argument principle along the curve
OF to analyze the number of zeros of Z; ¢ in F.

We deduce from the Jacobi triple product formula that

2 eZm’z

Zmz —27Tiz 41
e
— 27 E 5 7 — q ,
—e mz 1— e—Zmzqn

where z = t + sT.

29 /58



» Lemma (Asymptotic behavior of Z; s on cusps)
We have Zys(—1/7) = TZ_54(7), and for t € (0,1),

Zis(v) = 2 Zosp(-1/0) = (L1 40(1))

as T — 0. Similarly, Z;s(T + 1) = Zi154(7), and for t +s € (0,1),

27 (1

Zis(T) = Zigss(t—1) = - (t+s) +0(1)).

» Lemma (Non-Vanishing)

For any T € H, the addition law implies that

(i) C(3w1+ 3w2)) # 3 + 172
(i) Z(wr+ twn)) # tm + i1

30/5



» For (ii), we choose z = %(wl +wy) = %wg, and u = %wg,. Then

O . Loy tw
0# o) — o) = {(3w3) + {(—ws) — 20 (ws)
= —3((kwr + twn) — L — L)

» Suppose that (t,s) € [0,1] x [0, 1]\{(0,0), (1,0),(0,3), (1, )}
Then Z;s(7) = 0 has a solution T € H if and only if that

(ts) e A={(t,s) |0<ts<i t+s>1}

Moreover, the solution T € F is unique for any (t,5) € A.

> Proof: The cases (t,5) ¢ A are excluded by the Lammas. From

1 1 8
Voo(Z3) + 5Vi(Z3) + zvo(Z3) + Y vp(Z3) = —,
2 3 ) 12
p#oo,ip
Z1 1(p) Z%%(p)ZOZM/p( 3)) = 2 and other terms = 0.
Thus T = p is a simple root to Z% %( ) =0. QED



LECTURE TWO

Theorem (Periods integrals and type II solutions)
Consider the mean field equation Au + e = pdy on E = C/A.

> If solutions exist for p = 8nrt, then there is a unique even solution
within each type I scaling family. ({ = 2n, a,,; = —a;.)

> The solution u is determined by the zeros ay, . .. ,a, of f. In fact
- o'(a) :
6= camoay fE =fOee [s@d

» ord,—(g(z) = 2n leads to n — 1 equations fora = {ay, ..., a,}.

> The n-th equation is given by [, ¢ € \/—1R, which is equivalent to

32 /58



> The n — 1 algebraic equations:

» Under the notations (w, x]-,yj) = (p(2), p(p]-), o (p]-)),

vl 0y
wl—xj/w

X n y-x(
Yi%j . I7j
72 + Z; w1 +

8\‘
M:

> Since ¢(z) has a zero at z = 0 of order 2n and 1/w has a zero at
z = 0 of order two, we get



Theorem (Green/polynomial system)
For p = 8nm, n € IN, the n equations for a = {ay,...,a,} are precisely

@' (a1)p"(a1) + -+ + ' (an) 9" (an) = 0,
wherer =0,...,n—2,and VG(ay) + - - - + VG(ay) = 0.

Theorem (Hyperelliptic geometry/Lamé curve)
For x; := p(a;), y; :== ¢ (a;), the first n — 1 algebraic equations

Y yixi=0, r=0,...,n-2,
defines an affine hyperelliptic curve under the 2 to 1 map a — Y p(a;):

Xn = {(x,y)} € Sym"E — (x1+ - +x4) € PL.

34/5



> The proof relies on its relation to Lamé equations:

= ex dz = ex ; D) —C(a; —z) — {(a d
f=ew [giz=exp [ Y000w) =) - i+ 2) bz

Pz T IE) gy @

sro(z4a) W_g

n — .
where w,(z) := L@ T oz —a) is the basic element.
i1 0(z)o(a;)

» Theorem (Explicit map a — B, = (2n —1) Y} p(a;))
a € X, if and only if w, and w_, are two solutions of the Lamé equation
dzw n o
I (n(n +Dp(z)+(2n—1) Zi:l p(a,»))w =0.

» This is a long calculation via the polynomial system (omitted).



> Idea of proof on the hyperelliptic structure on X;,.

» Consider y? = p(x) = 4x® — gox — g3, where
(,y) = (p(2),9'(2)), and we set (x;, i) = (p(ai), 9" (a;))-
Consider a basis of solutions to the Lamé equation

w" = (n(n+1)p(z) + B)w
(for some B) given by w,(z) and w_,(z).

> Let X(z) = wa(z)w—a(z). By the addition theorem,

x(a) = (1 [T 7T — (T T(0le) - o).

i=1 i=1

Thatis, X(x) = (=1)"ITL; (x — x;) is a polynomial in x.



> Key: X(z) satisfies the second symmetric power of the Lamé
equation:

a3X

i 4+ 1)p+B) X Zonn+ 1)/ =0,

dz
» Hence X(x) is a polynomial solution, in variable x, to
p(x)X" 4+ 3p'(x) X" — 4((n* +n —3)x + B)X' —2n(n+1)X = 0.

» X is determined by B and certain initial conditions.



Write X(x) = (—1)"(x" — 12" 1 + - - + (—1)"s,), this translates
to a linear recursive relation for y =0,--- ,n —1:
0=2n—p)2u+1)(n+p+1)s,y
- 4(V + 1)Bsn—y—1
+ %gZ(V +1)(p+2)(2u + 3)511—]4—2
— g+ (p+2)(p+ 3)5117;473-
We set sy = 1.
For t = n—1we get B= (2n — 1)s as expected.
Thus all sp, - - - , sy, X(z), are determined by sy, i.e. by B, alone.

In fact, a slightly more work shows that the seta = {a;} is also
determined by B up to sign. Hencea — B, is 2 to 1. QED



Theorem (Chai-Lin-W 2012)

> There is a natural projective compactification X, C Sym"E as a,
possibly singular, hyperelliptic curve defined by

C* = £4(B,§2,83) = 4Bs;, + 48351251 — §25n—15n — 83551/
in affine coordinates (B, C), where

sy = sk(B,§2,83) = 1xB* + -+ - € Q[B, 2, 3]

is an universal polynomial of homogeneous degree k with deg g, = 2,
deggs = 3,and B = (2n —1)s;.

> Thus deg l, = 2n + 1 and X, has arithmetic genus ¢ = n.

> The curve Xy is smooth except for a finite number of T, namely the

discriminant loci of £, (B, §2,83), so that £,,(B) has multiple roots. In
particular X, is smooth for rectangular tori.



(Continued.)

>

>

>

The 2n + 2 branch points a € Xy, \ X, are characterized by —a =a.

{=ai}n{a;} #0= —a=a.
Also 0 € {a;} =a=(0,0,---,0).
By setting (x;, ;) = (,2t2), the limiting system at a = 0":

2’7_ 2l =0, r=1,...,.n—1,
i=1"1

has a unique solution with t; # 0 and t; # —t; in P! up to
permutations.

Meaning of C (I): Applying Cramer’s rule to the n — 1 linear
equations )" xifyi = 0iny;’s, there is a constant C € C* such

that
C

==, i=1,...,n
vi [Tjsi(xi — %))

40 /58



» Meaning of C (I): Let wy, w; be two ind. solutions of w” = [w.

w1 Wy

C:= = Wwiwh — WHw
wll wé 1Wo 207

is a (non-zero) constant since C' = 0.
> If X = wyw, is known, we may solve wi, w, from C and X:
! / / / /
X_u_ w C_wm_m
X  w  w X w, w’

w), X -C wy, X +C

wy 2X ws 2X

> In particular

wq :Xl/zexp(—C/%), wszl/zexp (C/%Z()

41/ 58



From

, , 17 / / 2
(o) = G = - (- 5

we conclude easily that
C? = X" —2X"X + 41X,

The constant terms give the hyperelliptic equation in (B, C).

In particular, C = 0 if and only if w, = w_,, i.e. a = —a. These
are the branch points of Xj,.

Definition: Denote by Y, = X,,\{0"} the affine hyperelliptic
curve defined by

C2 = gn(BngIg?))'



» Now we study the last equation on X;;:
n
0=—4r 2 VG(a;) = ZZ(al-). ()
i=1 i=1
» Consider the rational function on E":
n
zo(ay,...,00) = C(ay+ - +an) — Y T(a;).
i=1
(It is periodic in each variable.)
> Leta; = tjwq + s;wy, then
—4m) VG(a) =) Z(a;)) =) (G(a:) — tip —sita)
=Y a) — (Y tdm — (Y si)m2 — za(a)
=Z()_a;) — zn(a).

Hence (2) is equivalent to

zu(a) = Z(})_a). 3)



» It is thus crucial to study the branched covering map

n
c: Xy —>E,  a—o(a):=)a.
i=1

Theorem (Lin—-W 2013, new pre-modular functions)

(1) The map o has degree equals Sn(n + 1).
(2) There is a universal (weighted homogeneous) polynomial
Wi (x) € Clg2,83, (), ¢ (0)][x] of degree 1n(n + 1) such
that
Wy(z,) = 0.

In fact, z,, € K(Xy,) is a primitive generator for the field
extension K(Xy,) over K(E).

(3) The function Z,(c; T) := Wy (Z) is pre-modular of weight
In(n+1). That is, it is modular wrt. T(N) if o € E<[N].
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Idea of proof for (1): Apply Theorem of the Cube: For any three
morphisms f,g,h: V, — Eand L € PicE,

F+g+h)' L2 (f+9)L®(g+h)* Lo (h+f)*L
f L gL ton L

Apply to the case V;; C E" which is the ordered n-tuples so that
Vu/Sn = Xy, and deg L = 1. We prove inductively that the map

fe(a) :==ar+ -+

has degree %k(k + 1)n!. It is not hard to check for k = 1,2.
Fromktok+1,weletf = f_1,g(a) = ar, and h(a) = ag4.

Then f;, 1 has degree n! times

Tk(k+1)+3+ 2k(k+1) = J(k—Dk—1-1=J(k+1)(k+2).



Idea of proof of (2): Major tool: tensor product of two Lamé
equations w" = [yw and w’ = Lw, where [ = n(n+1)p(z),
11 =I+B, al’ldlz :I+Bb

For X, (7) smooth, and a general point 0y € E, we need to show
that the %n(n + 1) points on the fiber of X, — E above oy has
distinct z,, values. It is enough to show that for o (a) = o(b) = oy,
the condition }_ ¢ (a;) = Y_{(b;) implies B, = By, (and then a = b).

If w] = [jw; and wy = Dw,, then the product g = wyw, satisfies
q//// —2( JrIz)q// B 61/67/ + ((By — Bb)z _ 2[”)q =0.

If a # b, by addition law we find that Q = w,w_; + w_swy is an
even elliptic function solution, namely a polynomial in x = p(z).
This leads to strong constraints on the corresponding 4-th order
ODE in variable x, and eventually leads to a contradiction for
generic choices of 0y.
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)2 —2(2(n? + 1 — 12)x + By + By)p(x))d
— ((2(n* + 1= 3)x+ By + By)p(x) + 6(n* + n — 2)p(x))§
+ ((Bo — Bp)* — n(n+1)p(x))q = 0.

(4)

As an even elliptic function, Q takes the form

- cljwm ~ola)) = c@x )
=C(x" — s s 2 — 4 (—1)sy),

The x"*2 terms agree automatically. The x"*! degree gives

B, +B
Z@Q: :1a_b %Z@az‘i‘zp




Inductively the X2~ coefficient in (4) gives recursive relations
to solve s; interns of B, + By, (B; — B,)? and g,g3fori=1,...,n.

Indeed
s; = 5i(By + By, (Bs — Bb)2,gz,g3) = C;(Bs + Bb)i + -

is homogeneous of degree i if we assign deg B, = deg B, = 1
and deg g, = 2, deggs = 3.

There are two remaining consistency equations F; = 0, Fp = 0
coming from the x! and x° coefficients in (4).

In fact (B, — By)? is a factor of both equations and we may write
Fy(By,By) = (Bs — By)*1Gy(By, By) and
Fo(Ba, By) = (Ba — By)**Go(Bs, By).-

If B, # By, (ie Lp(a;) # L p(bi)), then
Gl (Bll/ Bb) =0, GO(BIZI Bb) =0,

which has only a finite number of solutions (B,, By)’s, i.e. E¢’s.



Example (of compatibility equations for n = 2)
For n = 2 we have s; = # (B, + B}) and

52 %(Ba + Bb) + 7 (B Bb)2 - %82-

The first compatibility equation from x! is (after substituting s;)

t(By — By)*(Bs + By) = 0.

The second compatibility equation from x° is
(Ba — Bb) (36 (Ba + Bb) 72 (B Bb)z - %82> =
If B, # By, then B, = —B, and then we can solve B, By:
B; =3¢, = p(m) + p(a2) = £/82/3.

Such a € X, indeed lies at the branch loci of the Lamé curve.
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Example (of new pre-modular forms for n = 2)
For Zz(ﬂl,az) e C(al + az) — g(al) — Z;(le), on Xj:

z3(a) = 3p(a1 + a2)z2(a) — ' (a1 +az) = 0.
On E? it has one more term — 1 (o' (a1) + ¢/ (a2)). Thus,

Zo(0;7) = Wa(Z) = 28 — 3p(0)Z — ¢ (o).

Example (n = 3)
Forz = z3(a) = {(a1 + a2 + a3) — {(a1) — {(az2) — {(a3), on X:

28 — 15pz* — 200'2% + (¥ gy — 459%)2* — 129/ pz — 39> = 0.

Thus, Z3((7',’ ”L') = W3(Z).



> Key point: Zy = Z = —41tVG is the Hecke modular function.
The critical point equation (<= type II solutions of MFE) is
transformed into zero of pre-modular forms.

» For general n > 1, we have the equivalences:

e Solution u to MFE for p = 87n.
Periods integral / g € V—1R (= wj coordinates of Yy a;.)
L

n
Green equation Y VG(4;) = 0 on X,
i=1

zy(a) = Z(0(a)).
e Non-trivial zero of Z,,(c; T) := Wy (Z).

> Need to prove the last one. Notice that the branch point
a € Yy\Xy (a # —a) satisfies the Green equation trivially.



> The second technique used in p = 87t is to use the method of
continuity to connect to the known case p = 47 by establishing
the non-degeneracy of linearized equations.

» For general p, such a non-degeneracy statement is out of reach.
However, since solutions u,, always exist for p = 87, 17 ¢ IN, it
is natural to study the limiting behavior of u, as 7 — n. If the
limit does not blow up, it converges to a solution u for p = 87mn.

» For the blow-up case, we have the connection between the
blow-up set and the hyperelliptic geometry of Y,, — P':

» Theorem
Suppose that S = {p1,- - - ,pn} is the blow-up set of a sequence of solutions
uy to with pp — 8mtnas k — oo, then S € Yy, Moreover,

(1) If px # 87tn then S is a branch point (a = —a) of Yy,.
(2) If px = 87tn for all k, then S is not a branch point of Y.



> To go deeper, need to know the converse statement: for which
p € Y, \ X, can we construct a blow-up sequence with blow-up
set p? The Morse type of p is fundamental.

Theorem

Suppose that the pair of non half-period critical points {£p} of G exists, the
*+p are the minimal points of G.

» In fact our proof shows that any solution for p = 87 must be a
minimizer of the non-linear functional

1
_ - \V/ 2_8 1 /787'[G+u
Jonw) = 5 [ [V ~8log [ o
onu € HY(E)N{u| [pu=0}.

Corollary
For T € Q)s, all the three half periods are (non-degenerate) saddle points.



> If uy is a blow-up sequence with p = p — 871 (as k — ),
ok # 8t for large k, then the blow-up point g is a half period.

> Asymptotically
px — 870 = (D(g) +o(1))e ™ ®)

where Ay = maxg_ u; and

bl = [ MO ) o)

- |z —ql* £z —q*
Here hi(z) = e~ 87C(2), ?(z, q) is the regular part of the Green
function, and ¢(q) = G(gq,9).

» The sign of D(g) determines the direction where the bubbling
may take place, namely p; < 871 or oy > 8.



Theorem (Lin—-W)
For any half period q € E¢, T = a + bi, we have

D(q) = —4m%be 8761 det D>G(q). (6)

» Hence D(q) > 0if q is a saddle point. In particular if T € Q5
then D(g) > 0 for all half-periods since they are all saddle.

» Since the extra critical point p (reps. —p) is a discrete minimal
point, the index of VG at p (reps. —p) is 1. By the Hopf-Poincaré
index theorem,

3
—1=x(E-\{0}) =2+ ;ind%w,_vc.

1

Since %wi is non-degenerate, VG has index %1 at it. Hence the
index must be —1 for all i = 1,2, 3. This implies that %wi isa
saddle point for all i.



» Combining with a recent technique in analyzing uniqueness of
blow-up solutions by Lin—Yan, we may classify all solutions to
the mean field equation for p € (0,87 + €p) for some ¢y > 0:

Theorem (Lin—-W)

(i) If T € Q3 then the MFE has only one solution for p < 87, no
solution for p = 87t, and two solutions for 8t < p < 871 + €.
(ii) If T € Qs then the MFE has only one solution for p < 87,
infinitely many solutions for p = 8, and four solutions for
87 < p < 87+ €.
» MFE with p = 1277 has exactly two solutions on E; for T # e™/3,
Hence when T € )5 the bifurcation diagram is complicate for
p € (8m,12m). It is a natural question whether MFE has exactly
two solutions for p € (87,1677) when T € Q3.

» The Theorem also reflects the difficulty in the study the
corresponding Lamé equation for the case 7 ¢ %]N.



The hyperelliptic curve Y, is parametrized by (B, C) with
C? = £,,(B). In particular, near a branch point p we can use C as
the coordinate of Y;,.

Let (da;/0C|c—g)}_, be the tangent vector at p and set
n

n
; S= ZCi/ o= — Z p(pi)ci.
=0 i=1

i=1

alll'
= 2£

Ci

As in the case n = 1, these two invariants are related to a
geometric quantity D(p) derived from the blow-up analysis of
solutions 1y with oy — 87tn. Letp = (p1,-- -, pn) with

{p1,- - ,pn} being the blow-up set of uy. Then

ox — 8mn = (D(p) +o0(1))e ™, Ag = max i

The analytic expression of D(p) is rather complicate. However,
its geometric meaning is reflected in the following



Theorem
For any branch point p € Yy, there is a constant C(p) > 0 such that

D(p) = CEs(|2 | + 2 Re (2 1)),
Let Gy (z1, - - Z G(z —n Z G(z;). It can be shown that
i<j i=1

a=(ay,--- ,ay) is a solution to the algebraic/Green system if and
only if z = a is a critical point of G, (z).

Conjecture
Forn € Nandp = (p1,--+ ,pn) € Yn\Xu, thereis a c, > 0 such that
det D?Gy(p) = (—1)"¢,D(p).

Moreover, c, > 0 except for a finite set of tori.
(This has been verified forn = 1,2.)



