Mean field equations, hyperelliptic curves, and modular forms I, II

Chin-Lung Wang
National Taiwan University

The 6th TIMS-OCAMI-WASEDA Workshop March 25-26, 2014

LECTURE ONE

- Joint project with Chang-Shou Lin.
- The Green function $G(z, w)$ on a flat torus $E=E_{\Lambda}=\mathbb{C} / \Lambda$, $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ is the unique function on $E \times E$ which satisfies

$$
-\triangle_{z} G(z, w)=\delta_{w}(z)-\frac{1}{|E|}
$$

and $\int_{E} G(z, w) d A=0$, where δ_{w} is the Dirac measure with singularity at $z=w$.

- Because of the translation invariance of \triangle_{z}, we have $G(z, w)=G(z-w, 0)$ and it is enough to consider the Green function $G(z):=G(z, 0)$. Asymptotically

$$
G(z)=-\frac{1}{2 \pi} \log |z|+O\left(|z|^{2}\right)
$$

- G can be explicitly solved in terms of elliptic functions.
- Let $z=x+i y, \tau:=\omega_{2} / \omega_{1}=a+i b \in \mathbb{H}$ and $q=e^{\pi i \tau}$ with $|q|=e^{-\pi b}<1$. Then we denote $E=E_{\tau}$ and

$$
\vartheta_{1}(z ; \tau):=-i \sum_{n=-\infty}^{\infty}(-1)^{n} q^{\left(n+\frac{1}{2}\right)^{2}} e^{(2 n+1) \pi i z}
$$

- (Neron): On E_{τ} (notice the τ dependence),

$$
G(z ; \tau)=-\frac{1}{2 \pi} \log \left|\frac{\vartheta_{1}(z ; \tau)}{\vartheta_{1}^{\prime}(0 ; \tau)}\right|+\frac{1}{2 b} y^{2}+C(\tau) .
$$

- The structure of G, especially its critical points and critical values, will be the fundamental objects that interest us. $\nabla G(z)=0$ on $E_{\tau} \Longleftrightarrow$

$$
\frac{\partial G}{\partial z} \equiv \frac{-1}{4 \pi}\left(\left(\log \vartheta_{1}\right)_{z}+2 \pi i \frac{y}{b}\right)=0 .
$$

- Recall the Weierstrass elliptic functions wrt. Λ :

$$
\begin{aligned}
& \wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda^{\times}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right), \\
& \zeta(z)=-\int^{z} \wp=\frac{1}{z}+\cdots, \\
& \sigma(z)=\exp \int^{z} \zeta(w) d w=z+\cdots .
\end{aligned}
$$

- σ is entire, odd with a simple zero on lattice points and

$$
\sigma\left(z+\omega_{i}\right)=-e^{\eta_{i}\left(z+\frac{1}{2} \omega_{i}\right)} \sigma(z)
$$

with $\eta_{i}=\zeta\left(z+\omega_{i}\right)-\zeta(z)=2 \zeta\left(\frac{1}{2} \omega_{i}\right)$ the quasi-periods.

- Indeed

$$
\sigma(z)=e^{\eta_{1} z^{2} / 2} \frac{\vartheta_{1}(z)}{\vartheta_{1}^{\prime}(0)} .
$$

Hence $\zeta(z)-\eta_{1} z=\left(\log \vartheta_{1}(z)\right)_{z}$.

- We set $\omega_{1}=1, \omega_{2}=\tau=a+b i, \omega_{3}=\omega_{1}+\omega_{2}$, and $E=E_{\tau}$. $z=t \omega_{1}+s \omega_{2}=(t+s a)+s b i=x+y i$.
- By Legendre relation $\eta_{1} \omega_{2}-\eta_{2} \omega_{1}=2 \pi i$, we compute

$$
\begin{aligned}
\left(\log \vartheta_{1}\right)_{z}+2 \pi i \frac{y}{b} & =\zeta(z)-\eta_{1} z+2 \pi i s \\
& =\zeta(z)-\eta_{1} t-\eta_{1} s \omega_{2}+\left(\eta_{1} \omega_{2}-\eta_{2}\right) s \\
& =\zeta(z)-t \eta_{1}-s \eta_{2} .
\end{aligned}
$$

- Hence $\nabla G(z)=0$ if and only if

$$
G_{z}=-\frac{1}{4 \pi}\left(\zeta\left(t \omega_{1}+s \omega_{2}\right)-\left(t \eta_{1}+s \eta_{2}\right)\right)=0 .
$$

- Question: How many critical points can G have in E ? What is the dependence in $\tau \in \mathbb{H}$?
- The 3 half periods are trivial critical points. Indeed,

$$
G(z)=G(-z) \Rightarrow \nabla G(z)=-\nabla G(-z) .
$$

Let $p=\frac{1}{2} \omega_{i}$ then $p=-p$ in E and so $\nabla G(p)=-\nabla G(p)=0$.

- Other critical points must appear in pair $\pm z \in E$.

Example (Maximal principle)
For rectangular tori $E:\left(\omega_{1}, \omega_{2}\right)=(1, \tau=b i), \frac{1}{2} \omega_{i}, i=1,2,3$ are precisely all the critical points.

Example $\left(\mathbb{Z}_{3}\right.$ symmetry)
For the torus E with $\tau=\rho:=e^{\pi i / 3}$, there are at least 5 critical points: 3 half periods $\frac{1}{2} \omega_{i}$ plus $\frac{1}{3} \omega_{3}, \frac{2}{3} \omega_{3}$.

- However, it is very difficult to study the critical points from the "simple equation" $\zeta\left(t \omega_{1}+s \omega_{2}\right)=t \eta_{1}+s \eta_{2}$ directly.
- In PDE, the geometry of $G(z, w)$ plays fundamental role in the non-linear mean field equations (= Liouville equation with singular RHS): On a flat torus E it takes the form $\left(\rho \in \mathbb{R}_{+}\right)$

$$
\triangle u+e^{u}=\rho \delta_{0}
$$

- Originated from the prescribed curvature problem (Nirenberg problem, constant $K=1$ with cone metrics etc.).
- The mean field limit of Euler flow in statistic physics. Related to the self-dual condensation of abelian Chern-Simons-Higgs model (Nolasco and Tarantello 1999).
- In Arithmetic Geometry, $G(z, w)$ also appears in the Arakelov geometry as the intersection number of two sections z and w of the arithmetic surface $\mathcal{E} \rightarrow \operatorname{Spec} \mathbb{Z} \cup\{\infty\}$ at the ∞ fiber $\mathcal{E}_{\infty}=$ Riemann surface E.
- When $\rho \notin 8 \pi \mathbb{N}$, it has been proved by C.-C. Chen and C.-S. Lin that the Leray-Schauder degree is

$$
d_{\rho}=n+1 \quad \text { for } \quad \rho \in(8 n \pi, 8(n+1) \pi)
$$

so the equation has solutions, independent of the shape of E.

- The first interesting case is when $\rho=8 \pi$ where the degree theory fails completely.

Theorem (Existence criterion via ∇G for $n=1$)

For $\rho=8 \pi$, the mean field equation on a flat torus $E=\mathbb{C} / \Lambda$:

$$
\triangle u+e^{u}=8 \pi \delta_{0}
$$

has solutions if and only if the G has more than 3 critical points. Moreover, each extra pair of critical points $\pm p$ corresponds to an one parameter family of solutions u_{λ}, where $\lim _{\lambda \rightarrow \infty} u_{\lambda}(z)$ blows up precisely at $z \equiv \pm p$.

- Structure of solutions.
- Liouville's theorem says that any solution u of $\triangle u+e^{u}=0$ in a simply connected domain $\Omega \subset \mathbb{C}$ must be of the form

$$
u=\log \frac{8\left|f^{\prime}\right|^{2}}{\left(1+|f|^{2}\right)^{2}},
$$

where f, called a developing map of u, is meromorphic in Ω.

- It is straightforward to show that for $\rho=8 \pi \eta \in \mathbb{R}$,

$$
S(f) \equiv \frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}=u_{z z}-\frac{1}{2} u_{z}^{2}=-2 \eta(\eta+1) \frac{1}{z^{2}}+O(1) .
$$

I.e., any developing map f of u has the same Schwartz derivative $S(f)$, which is elliptic on E. Hence $S(f)=-2(\eta(\eta+1) \wp(z)+B)$.

- By the theory of ODE, locally $f=w_{1} / w_{2}$ for two solutions w_{i} of the Lamé equation $L_{\eta, B} y=0$:

$$
y^{\prime \prime}+\frac{1}{2} S(f) y=y^{\prime \prime}-(\eta(\eta+1) \wp(z)+B) y=0
$$

for some $B \in \mathbb{C}$.

- Furthermore, for any two developing maps f and \tilde{f} of u, there exists $S=\left(\begin{array}{cc}p & -\bar{q} \\ q & \bar{p}\end{array}\right) \in \operatorname{PSU(2)}$ such that $\tilde{f}=S f:=\frac{p f-\bar{q}}{q f+\bar{p}}$.
- So, solutions to the mean field equation correspond to Lamé equations with unitary projective monodromy groups.
- Geometrically the Liouville equation is simply the prescribing Gauss curvature equation in the new metric $g=e^{w} g_{0}$ over D, where $w=u / 2-\log \sqrt{2}$ and g_{0} is the Euclidean flat metric on \mathbb{C} :

$$
\begin{equation*}
K_{g}=-e^{-u} \triangle u=1 \tag{1}
\end{equation*}
$$

- It is then clear the inverse stereographic projection $\mathbb{C} \rightarrow S^{2}$

$$
(X, Y, Z)=\left(\frac{2 x}{1+x^{2}+y^{2}}, \frac{2 y}{1+x^{2}+y^{2}}, \frac{-1+x^{2}+y^{2}}{1+x^{2}+y^{2}}\right)
$$

provides solutions to (1) with conformal factor

$$
e^{w}=e^{\frac{1}{2} u-\frac{1}{2} \log 2}=\frac{2}{1+|z|^{2}}
$$

- Starting from this special solution for $D=\Delta$, the unit disk, general solutions on simply connected domain D can be obtained by using the Riemann mapping theorem via a holomorphic map

$$
f: D \rightarrow \Delta
$$

- The conformal factor is then the one as expected:

$$
e^{u}=\frac{8\left|f^{\prime}\right|^{2}}{\left(1+|f|^{2}\right)^{2}}
$$

- The problem is to glue the local developing maps to a "global one". This is a monodromy problem on the once punctured torus $E^{\times}=E \backslash\{0\}$. Since it is homotopic to " 8 ", we have

$$
\pi_{1}\left(E^{\times}, x_{0}\right)=\mathbb{Z} * \mathbb{Z}
$$

being a free group of rank two.

Lemma (Developing map for $\eta=\frac{1}{2} \ell \in \frac{1}{2} \mathbb{Z}$)
Given Λ, for $\rho=4 \pi \ell, \ell \in \mathbb{N}$, by analytic continuation across Λ, f is glued into a meromorphic function on \mathbf{C}. (Instead of on $E=\mathbf{C} / \Lambda$.)

- First constraint from the double periodicity:

$$
f\left(z+\omega_{1}\right)=S_{1} f, \quad f\left(z+\omega_{2}\right)=S_{2} f
$$

with $S_{1} S_{2}= \pm S_{2} S_{1}$ (abelian projective monodromy).

- Second constraint from the Dirac singularity:
(1) If $f(z)$ has a zero/pole at $z_{0} \notin \Lambda$ then order $r=1$.
(2) $f(z)=a_{0}+a_{\ell+1}\left(z-z_{0}\right)^{\ell+1}+\cdots$ be regular at $z_{0} \in \Lambda$.
- Type I (Topological) Solutions $\Longleftrightarrow \ell=2 n+1$:

$$
f\left(z+\omega_{1}\right)=-f(z), \quad f\left(z+\omega_{2}\right)=\frac{1}{f(z)}
$$

Then $g=(\log f)^{\prime}=f^{\prime} / f$ takes the form

$$
g(z)=\sum_{i=1}^{l}\left(\zeta\left(z-p_{i}\right)-\zeta\left(z-p_{i}-\omega_{2}\right)\right)+c
$$

which is elliptic on $E^{\prime}=\mathbb{C} / \Lambda^{\prime}, \Lambda^{\prime}=\mathbb{Z} \omega_{1}+\mathbb{Z} 2 \omega_{2}$ with the only (highest order) zeros at $z_{0} \equiv 0(\bmod \Lambda)$ of order $\ell=2 n+1$.

- The equations $0=g(0)=g^{\prime \prime}(0)=g^{(4)}(0)=\cdots$ implies that f is an even function (a non-trivial symmetric function argument). So f has simple zeros at $\pm p_{1}, \ldots, \pm p_{n}$ and $\omega_{1} / 2$.
- The remaining equations $0=g^{\prime}(0)=g^{\prime \prime \prime}(0)=g^{(5)}(0)=\cdots$ leads to the polynomial system for $\wp\left(p_{i}\right)$'s:

Theorem (Type I integrability, $\rho=4 \pi(2 n+1)$)

(1) For $\rho=4 \pi \ell, \ell=2 n+1$. All solutions are of type I and even. f has simple zeros at $\omega_{1} / 2$ and $\pm p_{i}$ for $i=1, \ldots, n$, and poles $q_{i}=p_{i}+\omega_{2}$.
(2) For $x_{i}:=\wp\left(p_{i}\right), \tilde{x}_{i}:=\wp\left(q_{i}\right)$, and $m=1, \ldots, n$,

$$
\sum_{i=1}^{n} x_{i}^{m}-\sum_{i=1}^{n} \tilde{x}_{i}^{m}=c_{m}, \quad\left(x_{m}-e_{2}\right)\left(\tilde{x}_{m}-e_{2}\right)=\mu,
$$

for some constants c_{m} and $\mu=\left(e_{2}-e_{1}\right)\left(e_{2}-e_{3}\right)$. This is a $2 n$ affine polynomial system in $\mathbb{C}^{2 n}$ of degree $2^{n} n$!.
(3) The corresponding Lamé equation $L_{\eta=n+1 / 2, B} y=0$ has finite monodromy group M (in fact $P M=V_{4}$) hence there is a polynomial p_{n} of degree $n+1$ such that $p_{n}(B)=0$. (Brioschi-Halphen 1894.)

This is a far more precise than the degree counting formula.

Example ($\rho=4 \pi, n=0$, unique solution)
The developing map is given by $f(z)=f(0) \exp \int_{0}^{z} g(w) d w$ with

$$
g(z)=A \frac{\sigma_{E^{\prime}}(z) \sigma_{E^{\prime}}\left(z-\omega_{2}\right)}{\sigma_{E^{\prime}}\left(z+\frac{1}{2} \omega_{1}\right) \sigma_{E^{\prime}}\left(z-\frac{1}{2} \omega_{1}-\omega_{2}\right)},
$$

where the residue at $z=\frac{1}{2} \omega_{1}$ is fiexed to be 1 by choosing

$$
A=\frac{\sigma_{E^{\prime}}\left(\omega_{1}+\omega_{2}\right)}{\sigma_{E^{\prime}}\left(\frac{1}{2} \omega_{1}\right) \sigma_{E^{\prime}}\left(\frac{1}{2} \omega_{1}+\omega_{2}\right)} .
$$

Here all elliptic functions are with respect to $\Lambda^{\prime}=\mathbb{Z} \omega_{1}+\mathbb{Z} 2 \omega_{2}$.
Example ($\rho=12 \pi, n=1$, two solutions)
Let $p_{1}=a$. $p_{2}=-a$ and $p_{3}=\frac{1}{2} \omega_{1}$. Then

$$
\left(\wp(a)-e_{2}\right)^{2}+\frac{1}{2}\left(e_{1}-e_{3}\right)\left(\wp(a)-e_{2}\right)-\mu=0 .
$$

The two solutions coincide precisely when $\tau=e^{\pi i / 3}$.

- Type II (Scaling Family) Solutions $\Longleftrightarrow \eta=n(\ell=2 n)$:

$$
f\left(z+\omega_{1}\right)=e^{2 i \theta_{1}} f(z), \quad f\left(z+\omega_{2}\right)=e^{2 i \theta_{2}} f(z)
$$

- If f satisfies this, $e^{\lambda} f$ also satisfies this for any $\lambda \in \mathbb{R}$. Thus

$$
u_{\lambda}(z)=\log \frac{8 e^{2 \lambda}\left|f^{\prime}(z)\right|^{2}}{\left(1+e^{2 \lambda}|f(z)|^{2}\right)^{2}}
$$

is a scaling family of solutions with developing maps $\left\{e^{\lambda} f\right\}$.

- u_{λ} is a blow-up sequence. The blow-up points for $\lambda \rightarrow \infty$ (resp. $-\infty$) are precisely zeros (resp. poles) of $f(z)$.
- $g=(\log f)^{\prime}$ is elliptic on $E=\mathbb{C} / \Lambda$, with highest order zero at $z=0$ of order $\ell=2 n$.
- $0=g^{\prime}(0)=g^{\prime \prime \prime}(0)=\cdots=g^{(2 n-1)}(0)$ implies that g is even.
- Suppose that $g(z)$ has zeros $\pm p_{1}, \cdots, \pm p_{n}$. We may write

$$
g(z)=\frac{\wp^{\prime}\left(p_{1}\right)}{\wp(z)-\wp\left(p_{1}\right)}+\cdots+\frac{\wp^{\prime}\left(p_{n}\right)}{\wp(z)-\wp\left(p_{n}\right)}
$$

constraint by $0=g^{\prime \prime}(0)=\cdots=g^{(2 n-2)}(0)$. These give rise to the first $n-1$ equations on $p_{1}, \ldots, p_{n} .(g(0)=0$ is automatic.)

- To be written down and discussed in the next lecture.
- And then

$$
f(z)=f(0) \exp \int_{0}^{z} g(\xi) d \xi
$$

which should satisfies (the n-th equation)

$$
\int_{L_{i}} g \in \sqrt{-1} \mathbb{R}, \quad i=1,2
$$

- Periods integrals. Let L_{1}, L_{2} be the fundamental 1-cycles. Set

$$
F_{i}(p):=\int_{L_{i}} \Omega(\xi, p) d \xi,
$$

where $p \not \equiv \frac{1}{2} \omega_{i}(\bmod \Lambda)$ and

$$
\Omega(\xi, p)=\frac{\wp^{\prime}(p)}{\wp(\xi)-\wp(p)}=2 \zeta(p)-\zeta(p+\xi)-\zeta(p-\xi) .
$$

Lemma (Periods integrals and critical points)
Let $p=t \omega_{1}+s \omega_{2}$, then (up to $4 \pi i \mathbb{N}$)

$$
\begin{aligned}
& F_{1}(p)=2\left(\omega_{1} \zeta(p)-\eta_{1} p\right)=2\left(\zeta(p)-t \eta_{1}-s \eta_{2}\right) \omega_{1}-4 \pi i s, \\
& F_{2}(p)=2\left(\omega_{2} \zeta(p)-\eta_{2} p\right)=2\left(\zeta(p)-t \eta_{1}-s \eta_{2}\right) \omega_{2}+4 \pi i t .
\end{aligned}
$$

- Hence solution $\left\{u_{\lambda}\right\}$ corresponds to $\pm p \notin E[2]$ with $\nabla G(p)=0$.
- When $\rho=8 \pi(\ell=2), p_{1}=p, p_{2}=-p, g(z)=\Omega(z, p)$ and

$$
f(z)=f(0) \exp \int_{0}^{z} g(\xi) d \xi
$$

gives rise to a solution \Longleftrightarrow

$$
F_{i}(p) \in \sqrt{-1} \mathbb{R}, i=1,2 \Longleftrightarrow \Longleftrightarrow \nabla G(p)=0 .
$$

- Theorem (Uniqueness, Lin-W 2006, 2010)

For $\rho=8 \pi$, the mean field equation $\triangle u+e^{u}=\rho \delta_{0}$ on a flat torus has at most one solution up to scaling.

- Theorem (Number of critical points)

The Green function has either 3 or 5 critical points.

- We were unable to prove it from the critical point equation.
- Our proof on uniqueness is based on the method of symmetrization applied to the linearized equation at the unique even solution in u_{λ} (choose $\lambda=-\log |f(0)|$ to get $f(0)=1$).
- In fact we prove uniqueness of the one parameter family

$$
\triangle u+e^{u}=\rho \delta_{0}, \quad \rho \in[4 \pi, 8 \pi]
$$

on E within even solutions, by the continuity method.

- Theorem

For $\rho \in[4 \pi, 8 \pi]$, Let u be a solution of $\triangle u+e^{u}=\rho \delta_{0}, u(-z)=u(z)$ in E (so $\int_{E} e^{u}=\rho$.) Then the linearized equation at u :

$$
\left\{\begin{array}{l}
\triangle \varphi+e^{u} \varphi=0 \\
\varphi(z)=\varphi(-z)
\end{array} \quad \text { on } E\right.
$$

is non-degenerate, i.e. it has only trivial solution $\varphi \equiv 0$.

Sketch of the main idea:

Use $x=\wp(z)$ as two-fold covering map $E \rightarrow S^{2}=\mathbb{C} \cup\{\infty\}$ and require \wp being an isometry:

$$
e^{u(z)}|d z|^{2}=e^{v(x)}|d x|^{2}=e^{v(x)}\left|\wp^{\prime}(z)\right|^{2}|d z|^{2} .
$$

Namely we set

$$
v(x):=u(z)-\log \left|\wp^{\prime}(z)\right|^{2} \quad \text { and } \quad \psi(x):=\varphi(z) .
$$

There are four branch points on $\mathbb{C} \cup\{\infty\}, p_{0}=\wp(0)=\infty$ and $p_{j}=e_{j}:=\wp\left(\omega_{j} / 2\right)$ for $j=1,2,3$. Since $\wp^{\prime}(z)^{2}=4 \prod_{j=1}^{3}\left(x-e_{j}\right)$, then

$$
\left\{\begin{array}{l}
\triangle v+e^{v}=\sum_{j=1}^{3}(-2 \pi) \delta_{p_{j}} \quad \text { in } \mathbb{R}^{2} \\
\triangle \psi+e^{v} \psi=0
\end{array}\right.
$$

At infinity let $y=1 / x$. The isometry reads as

$$
\begin{gathered}
e^{u(z)}|d z|^{2}=e^{w(y)}|d y|^{2}=e^{w(y)} \frac{\left|\wp^{\prime}(z)\right|^{2}}{|\wp(z)|^{4}}|d z|^{2}, \\
w(y)=u(z)-\log \frac{\left|\wp^{\prime}(z)\right|^{2}}{|\wp(z)|^{4}} \sim\left(\frac{\rho}{2 \pi}-2\right) \frac{1}{2} \log |y| .
\end{gathered}
$$

Thus $\rho \geq 4 \pi$ implies that p_{0} is a singularity with non-negative α_{0}. The total measure on E and \mathbb{R}^{2} are then given by

$$
\int_{E} e^{u} d z=\rho \leq 8 \pi \quad \text { and } \quad \int_{\mathbb{R}^{2}} e^{v} d x=\frac{\rho}{2} \leq 4 \pi .
$$

The proof is then reduced to:

Theorem (Symmetrization lemma)

Let $\Omega \subset \mathbb{R}^{2}$ be a simply-connected domain and let v be a solution of

$$
\triangle v+e^{v}=\sum_{j=1}^{N} 2 \pi \alpha_{j} \delta_{p_{j}}
$$

in Ω. Suppose that $\lambda_{1}=0$ for $\triangle+e^{v}$ on Ω with φ the first eigenfunction.
(i) If the isoperimetric inequality with respect to $d s^{2}=e^{v}|d x|^{2}$:

$$
2 l^{2}(\partial \omega) \geq m(\omega)(4 \pi-m(\omega))
$$

holds for all level domains $\omega=\{\varphi \geq t\}$ with $t \geq 0$, then

$$
\int_{\Omega} e^{v} d x \geq 2 \pi
$$

(ii) Moreover, the isoperimetric inequality holds if there is only one negative α_{j} and $\alpha_{j}=-1$.

- It remains to study the geometry of critical points over \mathcal{M}_{1}, which relies on methods of deformations and the degeneracy analysis of half periods.

Theorem (Moduli dependence, Lin-W 2013)

(1) Let $\Omega_{3} \subset \mathcal{M}_{1} \cup\{\infty\} \cong S^{2}\left(\right.$ resp. $\left.\Omega_{5}\right)$ be the set of tori with 3 (resp. 5) critical points, then $\Omega_{3} \cup\{\infty\}$ is closed containing $i \mathbb{R}, \Omega_{5}$ is open containing the vertical line $\left[e^{\pi i / 3}, i \infty\right)$.
(2) Both Ω_{3} and Ω_{5} are simply connected with $C:=\partial \Omega_{3}=\partial \Omega_{5}$ homeomorphic to S^{1} containing ∞.
(3) Moreover, the extra critical points are split out from some half period point when the tori move from Ω_{3} to Ω_{5} across C.
(4) (Strong uniqueness) The map $\Omega_{5} \rightarrow[0,1]^{2}$ by $\tau \mapsto(t, s)$ for $p(\tau)=t \omega_{1}+s \omega_{2}$ is a bijection onto $\triangle=\left[\left(\frac{1}{3}, \frac{1}{3}\right),\left(\frac{1}{2}, \frac{1}{2}\right),\left(0, \frac{1}{2}\right)\right]$.

Figure : Ω_{5} contains a neighborhood of $e^{\pi i / 3}$.

- On the line $\operatorname{Re} \tau=1 / 2$ which are equivalent to the rhombuses tori, the proof relies on functional equations of ϑ_{1}.
- The general case uses modular forms of weight one.
- Idea of proof:

$$
\Psi(N):=\#\left\{\left(k_{1}, k_{2}\right) \mid\left(N, k_{1}, k_{2}\right)=1,0 \leq k_{i} \leq N-1\right\} .
$$

Consider the weight one modular function for $\Gamma(N)$:

$$
\begin{aligned}
\mathrm{Z}_{N, k_{1}, k_{2}}(\tau) & :=\zeta\left(\frac{k_{1} \omega_{1}+k_{2} \omega_{2}}{N} ; \tau\right)-\frac{k_{1} \eta_{1}+k_{2} \eta_{2}}{N} \\
& =-\mathrm{Z}_{N, N-k_{1}, N-k_{2}}(\tau)
\end{aligned}
$$

(first studied by Hecke (1926));

- and the weight $\Psi(N)$ one for full modular group:

$$
Z_{N}(\tau):=\prod_{\left(N, k_{1}, k_{2}\right)=1} Z_{N, k_{1}, k_{2}}(\tau) \in M_{\Psi(N)}(\mathrm{SL}(2, \mathbb{Z}))
$$

- Each $\tau \in \mathbb{H}$ with $Z_{N}(\tau)=0$ is (at least) a double zero.
- For odd $N \geq 5, v_{i}\left(Z_{N}\right)=v_{\rho}\left(Z_{N}\right)=0$,
- At ∞, Hecke calculated the asymptotic expansion: $v_{\infty}\left(Z_{N}\right)=\phi(N / 2)=0$,
- Then the degree formula for modular forms (Riemann-Roch):

$$
\left(Z_{N}\right)_{\text {red }}=\frac{1}{2} \operatorname{deg} Z_{N}=\frac{1}{2} \sum_{p} v_{p}\left(Z_{N}\right)=\frac{\Psi(N)}{24} .
$$

- Take N prime, this suggests a 1-1 correspondence between Ω_{5} and

$$
\triangle=\left[\left(\frac{1}{3}, \frac{1}{3}\right),\left(\frac{1}{2}, \frac{1}{2}\right),\left(0, \frac{1}{2}\right)\right]
$$

under the map $\Omega_{5} \rightarrow[0,1] \times\left[0, \frac{1}{2}\right]:$

$$
\tau \mapsto(t, s), \quad \text { where } \quad p(\tau)=t \omega_{1}+s \omega_{2} .
$$

- The actual proof: Deformations in $t, s \notin \frac{1}{2} \mathbb{Z}$.
- Let $F \subset \mathbb{H}$ be the fundamental domain for $\Gamma_{0}(2)$ defined by

$$
F:=\left\{\tau \in \mathbb{H}\left|0 \leq \operatorname{Re} \tau \leq 1,\left|\tau-\frac{1}{2}\right| \geq \frac{1}{2}\right\} .\right.
$$

We analyze solutions $\tau \in F$ for $Z_{t, s}(\tau)=0$ by varying (t, s).

- For $\tau \in \partial F, E$ is a rectangle and the only critical points of G are half periods. So $Z_{t, s}(\tau) \neq 0$ for $\tau \in \partial F$.
- Based on this, we use of the argument principle along the curve ∂F to analyze the number of zeros of $Z_{t, s}$ in F.
- We deduce from the Jacobi triple product formula that

$$
\begin{aligned}
Z_{t, s}(\tau)= & 2 \pi i\left(s-\frac{1}{2}\right)-\pi i \frac{2 e^{2 \pi i z}}{1-e^{2 \pi i z}} \\
& -2 \pi i \sum_{n=1}^{\infty}\left(\frac{e^{2 \pi i z} q^{n}}{1-e^{2 \pi i z} q^{n}}-\frac{e^{-2 \pi i z} q^{n}}{1-e^{-2 \pi i z} q^{n}}\right)
\end{aligned}
$$

where $z=t+s \tau$.

- Lemma (Asymptotic behavior of $Z_{t, s}$ on cusps)

We have $Z_{t, s}(-1 / \tau)=\tau Z_{-s, t}(\tau)$, and for $t \in(0,1)$,

$$
Z_{t, s}(\tau)=\frac{-1}{\tau} Z_{-s, t}(-1 / \tau)=\frac{2 \pi i}{\tau}\left(\frac{1}{2}-t+o(1)\right)
$$

as $\tau \rightarrow 0$. Similarly, $Z_{t, s}(\tau+1)=Z_{t+s, t}(\tau)$, and for $t+s \in(0,1)$,

$$
Z_{t, s}(\tau)=Z_{t+s, s}(\tau-1)=\frac{2 \pi i}{\tau-1}\left(\frac{1}{2}-(t+s)+o(1)\right)
$$

- Lemma (Non-Vanishing)

For any $\tau \in \mathbb{H}$, the addition law implies that
(i) $\left.\zeta\left(\frac{3}{4} \omega_{1}+\frac{1}{4} \omega_{2}\right)\right) \neq \frac{3}{4} \eta_{1}+\frac{1}{4} \eta_{2}$.
(ii) $\left.\zeta\left(\frac{1}{6} \omega_{1}+\frac{1}{6} \omega_{2}\right)\right) \neq \frac{1}{6} \eta_{1}+\frac{1}{6} \eta_{2}$.

- For (ii), we choose $z=\frac{1}{6}\left(\omega_{1}+\omega_{2}\right)=\frac{1}{6} \omega_{3}$ and $u=\frac{1}{3} \omega_{3}$. Then

$$
\begin{aligned}
0 & \neq \frac{\wp^{\prime}(z)}{\wp(z)-\wp(u)}=\zeta\left(\frac{1}{2} \omega_{3}\right)+\zeta\left(-\frac{1}{6} \omega_{3}\right)-2 \zeta\left(\frac{1}{6} \omega_{3}\right) \\
& =-3\left(\zeta\left(\frac{1}{6} \omega_{1}+\frac{1}{6} \omega_{2}\right)-\frac{1}{6} \eta_{1}-\frac{1}{6} \eta_{2}\right) .
\end{aligned}
$$

- Suppose that $(t, s) \in[0,1] \times\left[0, \frac{1}{2}\right] \backslash\left\{(0,0),\left(\frac{1}{2}, 0\right),\left(0, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}\right)\right\}$. Then $Z_{t, s}(\tau)=0$ has a solution $\tau \in \mathbb{H}$ if and only if that

$$
(t, s) \in \triangle:=\left\{(t, s) \mid 0<t, s<\frac{1}{2}, t+s>\frac{1}{2}\right\} .
$$

Moreover, the solution $\tau \in F$ is unique for any $(t, s) \in \triangle$.

- Proof: The cases $(t, s) \notin \triangle$ are excluded by the Lammas. From

$$
v_{\infty}\left(Z_{3}\right)+\frac{1}{2} v_{i}\left(Z_{3}\right)+\frac{1}{3} v_{\rho}\left(Z_{3}\right)+\sum_{p \neq \infty, i, \rho} v_{p}\left(Z_{3}\right)=\frac{8}{12}
$$

$Z_{\frac{1}{3}, \frac{1}{3}}(\rho)=Z_{\frac{2}{3}, \frac{3}{3}}(\rho)=0 \Longrightarrow v_{\rho}\left(Z_{(3)}\right)=2$ and other terms $=0$.
Thus $\tau=\rho$ is a simple root to $Z_{\frac{1}{3}, \frac{1}{3}}(\tau)=0$.
QED

LECTURE TWO

Theorem (Periods integrals and type II solutions)

Consider the mean field equation $\triangle u+e^{u}=\rho \delta_{0}$ on $E=\mathbb{C} / \Lambda$.

- If solutions exist for $\rho=8 n \pi$, then there is a unique even solution within each type II scaling family. $\left(\ell=2 n, a_{n+i}=-a_{i}\right.$.)
- The solution u is determined by the zeros a_{1}, \ldots, a_{n} of f. In fact

$$
g(z)=\sum_{i=1}^{n} \frac{\wp^{\prime}\left(a_{i}\right)}{\wp(z)-\wp\left(a_{i}\right)}, \quad f(z)=f(0) \exp \int^{z} g(\xi) d \xi .
$$

- $\operatorname{ord}_{z=0} g(z)=2 n$ leads to $n-1$ equations for $a=\left\{a_{1}, \ldots, a_{n}\right\}$.
- The n-th equation is given by $\int_{L_{i}} g \in \sqrt{-1} \mathbb{R}$, which is equivalent to

$$
\sum_{i=1}^{n} \nabla G\left(a_{i}\right)=0 .
$$

- The $n-1$ algebraic equations:
- Under the notations $\left(w, x_{j}, y_{j}\right)=\left(\wp(z), \wp\left(p_{j}\right), \wp^{\prime}\left(p_{j}\right)\right)$,

$$
\begin{aligned}
g(z) & =\sum_{j=1}^{n} \frac{1}{w} \frac{y_{j}}{1-x_{j} / w} \\
& =\sum_{j=1}^{n} \frac{y_{j}}{w}+\sum_{j=1}^{n} \frac{y_{j} x_{j}}{w^{2}}+\cdots+\sum_{j=1}^{n} \frac{y_{j} x_{j}^{r}}{w^{r+1}}+\cdots .
\end{aligned}
$$

- Since $g(z)$ has a zero at $z=0$ of order $2 n$ and $1 / w$ has a zero at $z=0$ of order two, we get

$$
\sum_{j=1}^{n} y_{j} x_{j}^{r}=\sum_{j=1}^{n} \wp^{\prime}\left(a_{j}\right) \wp\left(a_{j}\right)^{r}=0, \quad 0 \leq r \leq n-2
$$

Theorem (Green/polynomial system)

For $\rho=8 n \pi, n \in \mathbb{N}$, the n equations for $a=\left\{a_{1}, \ldots, a_{n}\right\}$ are precisely

$$
\wp^{\prime}\left(a_{1}\right) \wp^{r}\left(a_{1}\right)+\cdots+\wp^{\prime}\left(a_{n}\right) \wp^{r}\left(a_{n}\right)=0,
$$

where $r=0, \ldots, n-2$, and $\nabla G\left(a_{1}\right)+\cdots+\nabla G\left(a_{n}\right)=0$.
Theorem (Hyperelliptic geometry/Lamé curve)
For $x_{i}:=\wp\left(a_{i}\right), y_{i}:=\wp^{\prime}\left(a_{i}\right)$, the first $n-1$ algebraic equations

$$
\sum y_{i} x_{i}^{r}=0, \quad r=0, \ldots, n-2
$$

defines an affine hyperelliptic curve under the 2 to 1 map $a \mapsto \sum \wp\left(a_{i}\right)$:

$$
X_{n}:=\left\{\left(x_{i}, y_{i}\right)\right\} \subset \operatorname{Sym}^{n} E \longrightarrow\left(x_{1}+\cdots+x_{n}\right) \in \mathbb{P}^{1}
$$

- The proof relies on its relation to Lamé equations:

$$
\begin{aligned}
& f=\exp \int g d z=\exp \int \sum_{i=1}^{n}\left(2 \zeta\left(a_{i}\right)-\zeta\left(a_{i}-z\right)-\zeta\left(a_{i}+z\right)\right) d z \\
& =e^{2 \sum_{i=1}^{n} \zeta\left(a_{i}\right) z} \prod_{i=1}^{n} \frac{\sigma\left(z-a_{i}\right)}{\sigma\left(z+a_{i}\right)}=(-1)^{n} \frac{w_{a}}{w_{-a}}, \\
& \text { where } w_{a}(z):=e^{z \sum \zeta\left(a_{i}\right)} \prod_{i=1}^{n} \frac{\sigma\left(z-a_{i}\right)}{\sigma(z) \sigma\left(a_{i}\right)} \text { is the basic element. }
\end{aligned}
$$

- Theorem (Explicit map $\left.a \mapsto B_{a}=(2 n-1) \sum \wp\left(a_{i}\right)\right)$ $a \in X_{n}$ if and only if w_{a} and w_{-a} are two solutions of the Lamé equation

$$
\frac{d^{2} w}{d z^{2}}-\left(n(n+1) \wp(z)+(2 n-1) \sum_{i=1}^{n} \wp\left(a_{i}\right)\right) w=0 .
$$

- This is a long calculation via the polynomial system (omitted).
- Idea of proof on the hyperelliptic structure on X_{n}.
- Consider $y^{2}=p(x)=4 x^{3}-g_{2} x-g_{3}$, where $(x, y)=\left(\wp(z), \wp^{\prime}(z)\right)$, and we set $\left(x_{i}, y_{i}\right)=\left(\wp\left(a_{i}\right), \wp^{\prime}\left(a_{i}\right)\right)$. Consider a basis of solutions to the Lamé equation

$$
w^{\prime \prime}=(n(n+1) \wp(z)+B) w
$$

(for some B) given by $w_{a}(z)$ and $w_{-a}(z)$.

- Let $X(z)=w_{a}(z) w_{-a}(z)$. By the addition theorem,

$$
X(z)=(-1)^{n} \prod_{i=1}^{n} \frac{\sigma\left(z+a_{i}\right) \sigma\left(z-a_{i}\right)}{\sigma(z)^{2} \sigma\left(a_{i}\right)^{2}}=(-1)^{n} \prod_{i=1}^{n}\left(\wp(z)-\wp\left(a_{i}\right)\right) .
$$

That is, $X(x)=(-1)^{n} \prod_{i=1}^{n}\left(x-x_{i}\right)$ is a polynomial in x.

- Key: $X(z)$ satisfies the second symmetric power of the Lamé equation:

$$
\frac{d^{3} X}{d z^{3}}-4(n(n+1) \wp+B) \frac{d X}{d z}-2 n(n+1) \wp^{\prime} X=0 .
$$

- Hence $X(x)$ is a polynomial solution, in variable x, to

$$
p(x) X^{\prime \prime \prime}+\frac{3}{2} p^{\prime}(x) X^{\prime \prime}-4\left(\left(n^{2}+n-3\right) x+B\right) X^{\prime}-2 n(n+1) X=0 .
$$

- X is determined by B and certain initial conditions.
- Write $X(x)=(-1)^{n}\left(x^{n}-s_{1} x^{n-1}+\cdots+(-1)^{n} s_{n}\right)$, this translates to a linear recursive relation for $\mu=0, \cdots, n-1$:

$$
\begin{aligned}
0= & 2(n-\mu)(2 \mu+1)(n+\mu+1) s_{n-\mu} \\
- & 4(\mu+1) B s_{n-\mu-1} \\
& +\frac{1}{2} g_{2}(\mu+1)(\mu+2)(2 \mu+3) s_{n-\mu-2} \\
& -g_{3}(\mu+1)(\mu+2)(\mu+3) s_{n-\mu-3} .
\end{aligned}
$$

- We set $s_{0}=1$.
- For $\mu=n-1$ we get $B=(2 n-1) s_{1}$ as expected.
- Thus all $s_{2}, \cdots, s_{n}, X(z)$, are determined by s_{1}, i.e. by B, alone.
- In fact, a slightly more work shows that the set $a=\left\{a_{i}\right\}$ is also determined by B up to sign. Hence $a \mapsto B_{a}$ is 2 to 1 .

QED

Theorem (Chai-Lin-W 2012)

- There is a natural projective compactification $\bar{X}_{n} \subset \operatorname{Sym}^{n} E$ as a, possibly singular, hyperelliptic curve defined by

$$
C^{2}=\ell_{n}\left(B, g_{2}, g_{3}\right)=4 B s_{n}^{2}+4 g_{3} s_{n-2} s_{n}-g_{2} s_{n-1} s_{n}-g_{3} s_{n-1}^{2}
$$

in affine coordinates (B, C), where

$$
s_{k}=s_{k}\left(B, g_{2}, g_{3}\right)=r_{k} B^{k}+\cdots \in \mathbb{Q}\left[B, g_{2}, g_{3}\right]
$$

is an universal polynomial of homogeneous degree k with $\operatorname{deg} g_{2}=2$, $\operatorname{deg} g_{3}=3$, and $B=(2 n-1) s_{1}$.

- Thus $\operatorname{deg} \ell_{n}=2 n+1$ and \bar{X}_{n} has arithmetic genus $g=n$.
- The curve \bar{X}_{n} is smooth except for a finite number of τ, namely the discriminant loci of $\ell_{n}\left(B, g_{2}, g_{3}\right)$, so that $\ell_{n}(B)$ has multiple roots. In particular \bar{X}_{n} is smooth for rectangular tori.
(Continued.)
- The $2 n+2$ branch points $a \in \bar{X}_{n} \backslash X_{n}$ are characterized by $-a=a$.
- $\left\{-a_{i}\right\} \cap\left\{a_{i}\right\} \neq \varnothing \Rightarrow-a=a$.
- Also $0 \in\left\{a_{i}\right\} \Rightarrow a=(0,0, \cdots, 0)$.
- By setting $\left(x_{i}, y_{i}\right)=\left(t_{i}^{3}, 2 t_{i}^{2}\right)$, the limiting system at $a=0^{n}$:

$$
\sum_{i=1}^{n} t_{i}^{2 r+1}=0, \quad r=1, \ldots, n-1
$$

has a unique solution with $t_{i} \neq 0$ and $t_{i} \neq-t_{j}$ in \mathbb{P}^{n-1} up to permutations.

- Meaning of C (I): Applying Cramer's rule to the $n-1$ linear equations $\sum_{i=1}^{n} x_{i}^{k} y_{i}=0$ in $y_{i}^{\prime} \mathrm{s}$, there is a constant $C \in \mathbb{C}^{\times}$such that

$$
y_{i}=\frac{C}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}, \quad i=1, \ldots, n .
$$

- Meaning of C (II): Let w_{1}, w_{2} be two ind. solutions of $w^{\prime \prime}=I w$.

$$
C:=\left|\begin{array}{cc}
w_{1} & w_{2} \\
w_{1}^{\prime} & w_{2}^{\prime}
\end{array}\right|=w_{1} w_{2}^{\prime}-w_{2} w_{1}^{\prime}
$$

is a (non-zero) constant since $C^{\prime}=0$.

- If $X=w_{1} w_{2}$ is known, we may solve w_{1}, w_{2} from C and X :

$$
\begin{array}{ll}
\frac{X^{\prime}}{X}=\frac{w_{1}^{\prime}}{w_{1}}+\frac{w_{2}^{\prime}}{w_{2}}, & \frac{C}{X}=\frac{w_{2}^{\prime}}{w_{2}}-\frac{w_{1}^{\prime}}{w_{1}} \\
\frac{w_{1}^{\prime}}{w_{1}}=\frac{X^{\prime}-C}{2 X}, & \frac{w_{2}^{\prime}}{w_{2}}=\frac{X^{\prime}+C}{2 X}
\end{array}
$$

- In particular

$$
w_{1}=X^{1 / 2} \exp \left(-C \int \frac{d z}{2 X}\right), \quad w_{2}=X^{1 / 2} \exp \left(C \int \frac{d z}{2 X}\right)
$$

- From

$$
\left(\frac{X^{\prime}+C}{2 X}\right)^{\prime}=\left(\frac{w_{2}^{\prime}}{w_{2}}\right)^{\prime}=\frac{w_{2}^{\prime \prime}}{w_{2}}-\left(\frac{w_{2}^{\prime}}{w_{2}}\right)^{2}=I-\frac{\left(X^{\prime}+C\right)^{2}}{4 X^{2}}
$$

we conclude easily that

$$
C^{2}=X^{\prime 2}-2 X^{\prime \prime} X+4 I X^{2}
$$

- The constant terms give the hyperelliptic equation in (B, C).
- In particular, $C=0$ if and only if $w_{a}=w_{-a}$, i.e. $a=-a$. These are the branch points of \bar{X}_{n}.
- Definition: Denote by $Y_{n}=\bar{X}_{n} \backslash\left\{0^{n}\right\}$ the affine hyperelliptic curve defined by

$$
C^{2}=\ell_{n}\left(B, g_{2}, g_{3}\right)
$$

- Now we study the last equation on \bar{X}_{n} :

$$
\begin{equation*}
0=-4 \pi \sum_{i=1}^{n} \nabla G\left(a_{i}\right)=\sum_{i=1}^{n} Z\left(a_{i}\right) . \tag{2}
\end{equation*}
$$

- Consider the rational function on E^{n} :

$$
\mathbf{z}_{n}\left(a_{1}, \ldots, a_{n}\right):=\zeta\left(a_{1}+\cdots+a_{n}\right)-\sum_{i=1}^{n} \zeta\left(a_{i}\right)
$$

(It is periodic in each variable.)

- Let $a_{i}=t_{i} \omega_{1}+s_{i} \omega_{2}$, then

$$
\begin{aligned}
-4 \pi \sum \nabla G\left(a_{i}\right) & =\sum \mathrm{Z}\left(a_{i}\right)=\sum\left(\zeta\left(a_{i}\right)-t_{i} \eta_{1}-s_{i} \eta_{2}\right) \\
& =\zeta\left(\sum a_{i}\right)-\left(\sum t_{i}\right) \eta_{1}-\left(\sum s_{i}\right) \eta_{2}-\mathbf{z}_{n}(a) \\
& =Z\left(\sum a_{i}\right)-\mathbf{z}_{n}(a) .
\end{aligned}
$$

Hence (2) is equivalent to

$$
\begin{equation*}
\mathbf{z}_{n}(a)=Z\left(\sum a_{i}\right) \tag{3}
\end{equation*}
$$

- It is thus crucial to study the branched covering map

$$
\sigma: \bar{X}_{n} \rightarrow E, \quad a \mapsto \sigma(a):=\sum_{i=1}^{n} a_{i} .
$$

Theorem (Lin-W 2013, new pre-modular functions)
(1) The map σ has degree equals $\frac{1}{2} n(n+1)$.
(2) There is a universal (weighted homogeneous) polynomial $W_{n}(x) \in \mathbb{C}\left[g_{2}, g_{3}, \wp(\sigma), \wp^{\prime}(\sigma)\right][x]$ of degree $\frac{1}{2} n(n+1)$ such that

$$
W_{n}\left(\mathbf{z}_{n}\right)=0 .
$$

In fact, $\mathbf{z}_{n} \in K\left(\bar{X}_{n}\right)$ is a primitive generator for the field extension $K\left(\bar{X}_{n}\right)$ over $K(E)$.
(3) The function $Z_{n}(\sigma ; \tau):=W_{n}(Z)$ is pre-modular of weight $\frac{1}{2} n(n+1)$. That is, it is modular wrt. $\Gamma(N)$ if $\sigma \in E_{\tau}[N]$.

- Idea of proof for (1): Apply Theorem of the Cube: For any three morphisms $f, g, h: V_{n} \longrightarrow E$ and $L \in \operatorname{Pic} E$,

$$
\begin{gathered}
(f+g+h)^{*} L \cong(f+g)^{*} L \otimes(g+h)^{*} L \otimes(h+f)^{*} L \\
\otimes f^{*} L^{-1} \otimes g^{*} L^{-1} \otimes h^{*} L^{-1}
\end{gathered}
$$

- Apply to the case $V_{n} \subset E^{n}$ which is the ordered n-tuples so that $V_{n} / S_{n}=\bar{X}_{n}$, and $\operatorname{deg} L=1$. We prove inductively that the map

$$
f_{k}(a):=a_{1}+\cdots+a_{k}
$$

has degree $\frac{1}{2} k(k+1) n!$. It is not hard to check for $k=1,2$.

- From k to $k+1$, we let $f=f_{k-1}, g(a)=a_{k}$, and $h(a)=a_{k+1}$.
- Then f_{k+1} has degree n ! times

$$
\frac{1}{2} k(k+1)+3+\frac{1}{2} k(k+1)-\frac{1}{2}(k-1) k-1-1=\frac{1}{2}(k+1)(k+2) .
$$

- Idea of proof of (2): Major tool: tensor product of two Lamé equations $w^{\prime \prime}=I_{1} w$ and $w^{\prime}=I_{2} w$, where $I=n(n+1) \wp(z)$, $I_{1}=I+B_{a}$ and $I_{2}=I+B_{b}$.
- For $\bar{X}_{n}(\tau)$ smooth, and a general point $\sigma_{0} \in E$, we need to show that the $\frac{1}{2} n(n+1)$ points on the fiber of $\bar{X}_{n} \rightarrow E$ above σ_{0} has distinct \mathbf{z}_{n} values. It is enough to show that for $\sigma(a)=\sigma(b)=\sigma_{0}$, the condition $\sum \zeta\left(a_{i}\right)=\sum \zeta\left(b_{i}\right)$ implies $B_{a}=B_{b}$ (and then $a=b$).
- If $w_{1}^{\prime \prime}=I_{1} w_{1}$ and $w_{2}^{\prime \prime}=I_{2} w_{2}$, then the product $q=w_{1} w_{2}$ satisfies

$$
q^{\prime \prime \prime \prime}-2\left(I_{1}+I_{2}\right) q^{\prime \prime}-6 I^{\prime} q^{\prime}+\left(\left(B_{a}-B_{b}\right)^{2}-2 I^{\prime \prime}\right) q=0 .
$$

- If $a \neq b$, by addition law we find that $Q=w_{a} w_{-b}+w_{-a} w_{b}$ is an even elliptic function solution, namely a polynomial in $x=\wp(z)$. This leads to strong constraints on the corresponding 4-th order ODE in variable x, and eventually leads to a contradiction for generic choices of σ_{0}.

Indeed,

$$
\begin{align*}
& p(x)^{2} \dddot{q}+3 p(x) \dot{p}(x) \dddot{q} \\
& +\left(\frac{3}{4} \dot{p}(x)^{2}-2\left(2\left(n^{2}+n-12\right) x+B_{a}+B_{b}\right) p(x)\right) \ddot{q} \tag{4}\\
& \quad-\left(\left(2\left(n^{2}+n-3\right) x+B_{a}+B_{b}\right) \dot{p}(x)+6\left(n^{2}+n-2\right) p(x)\right) \dot{q} \\
& \quad+\left(\left(B_{a}-B_{b}\right)^{2}-n(n+1) \dot{p}(x)\right) q=0 .
\end{align*}
$$

As an even elliptic function, Q takes the form

$$
\begin{aligned}
Q(x) & =C \prod_{i=1}^{n}\left(\wp(z)-\wp\left(c_{i}\right)\right)=: C \prod_{i=1}^{n}\left(x-x_{i}\right) \\
& =C\left(x^{n}-s_{1} x^{n-1}+s_{2} x^{n-2}-\cdots+(-1)^{n} s_{n}\right),
\end{aligned}
$$

The x^{n+2} terms agree automatically. The x^{n+1} degree gives

$$
\sum \wp\left(c_{i}\right)=s_{1}=\frac{1}{2} \frac{B_{a}+B_{b}}{2 n-1}=\frac{1}{2}\left(\sum \wp\left(a_{i}\right)+\sum \wp\left(b_{i}\right)\right) .
$$

- Inductively the x^{n+2-i} coefficient in (4) gives recursive relations to solve s_{i} interns of $B_{a}+B_{b},\left(B_{a}-B_{b}\right)^{2}$ and g_{2}, g_{3} for $i=1, \ldots, n$.
- Indeed

$$
s_{i}=s_{i}\left(B_{a}+B_{b},\left(B_{a}-B_{b}\right)^{2}, g_{2}, g_{3}\right)=C_{i}\left(B_{a}+B_{b}\right)^{i}+\cdots
$$

is homogeneous of degree i if we assign $\operatorname{deg} B_{a}=\operatorname{deg} B_{b}=1$ and $\operatorname{deg} g_{2}=2, \operatorname{deg} g_{3}=3$.

- There are two remaining consistency equations $F_{1}=0, F_{0}=0$ coming from the x^{1} and x^{0} coefficients in (4).
- In fact $\left(B_{a}-B_{b}\right)^{2}$ is a factor of both equations and we may write $F_{1}\left(B_{a}, B_{b}\right)=\left(B_{a}-B_{b}\right)^{2 d_{1}} G_{1}\left(B_{a}, B_{b}\right)$ and $F_{0}\left(B_{a}, B_{b}\right)=\left(B_{a}-B_{b}\right)^{2 d_{0}} G_{0}\left(B_{a}, B_{b}\right)$.
- If $B_{a} \neq B_{b}$ (i.e $\sum \wp\left(a_{i}\right) \neq \sum \wp\left(b_{i}\right)$), then

$$
G_{1}\left(B_{a}, B_{b}\right)=0, \quad G_{0}\left(B_{a}, B_{b}\right)=0
$$

which has only a finite number of solutions $\left(B_{a}, B_{b}\right)$'s, i.e. E_{τ} 's.

Example (of compatibility equations for $n=2$)

For $n=2$ we have $s_{1}=\frac{1}{6}\left(B_{a}+B_{b}\right)$ and

$$
s_{2}=\frac{1}{36}\left(B_{a}+B_{b}\right)^{2}+\frac{1}{72}\left(B_{a}-B_{b}\right)^{2}-\frac{1}{4} g_{2} .
$$

The first compatibility equation from x^{1} is (after substituting s_{1})

$$
\frac{1}{6}\left(B_{a}-B_{b}\right)^{2}\left(B_{a}+B_{b}\right)=0
$$

The second compatibility equation from x^{0} is

$$
\left(B_{a}-B_{b}\right)^{2}\left(\frac{1}{36}\left(B_{a}+B_{b}\right)^{2}+\frac{1}{72}\left(B_{a}-B_{b}\right)^{2}-\frac{1}{6} g_{2}\right)=0 .
$$

If $B_{a} \neq B_{b}$ then $B_{b}=-B_{a}$ and then we can solve B_{a}, B_{b} :

$$
B_{a}^{2}=3 g_{2} \Longrightarrow \wp\left(a_{1}\right)+\wp\left(a_{2}\right)= \pm \sqrt{g_{2} / 3} .
$$

Such $a \in \bar{X}_{2}$ indeed lies at the branch loci of the Lamé curve.

Example (of new pre-modular forms for $n=2$)
For $\mathbf{z}_{2}\left(a_{1}, a_{2}\right)=\zeta\left(a_{1}+a_{2}\right)-\zeta\left(a_{1}\right)-\zeta\left(a_{2}\right)$, on X_{2} :

$$
\mathbf{z}_{2}^{3}(a)-3 \zeta_{\wp}\left(a_{1}+a_{2}\right) \mathbf{z}_{2}(a)-\wp^{\prime}\left(a_{1}+a_{2}\right)=0 .
$$

On E^{2} it has one more term $-\frac{1}{2}\left(\wp^{\prime}\left(a_{1}\right)+\wp^{\prime}\left(a_{2}\right)\right)$. Thus,

$$
Z_{2}(\sigma ; \tau)=W_{2}(Z)=Z^{3}-3 \wp(\sigma) Z-\wp^{\prime}(\sigma) .
$$

Example ($n=3$)
For $\mathbf{z}=\mathbf{z}_{3}(a)=\zeta\left(a_{1}+a_{2}+a_{3}\right)-\zeta\left(a_{1}\right)-\zeta\left(a_{2}\right)-\zeta\left(a_{3}\right)$, on $X_{3}:$

$$
\mathbf{z}^{6}-15 \wp \mathbf{z}^{4}-20 \wp^{\prime} \mathbf{z}^{3}+\left(\frac{27}{4} g_{2}-45 \wp^{2}\right) \mathbf{z}^{2}-12 \wp^{\prime} \wp \mathbf{z}-\frac{5}{4} \wp^{\prime 2}=0 .
$$

Thus, $Z_{3}(\sigma ; \tau)=W_{3}(Z)$.

- Key point: $Z_{1} \equiv Z=-4 \pi \nabla G$ is the Hecke modular function. The critical point equation (\Longleftrightarrow type II solutions of MFE) is transformed into zero of pre-modular forms.
- For general $n \geq 1$, we have the equivalences:
- Solution u to MFE for $\rho=8 \pi n$.
- Periods integral $\int_{L_{j}} g \in \sqrt{-1} \mathbb{R}\left(=\omega_{j}\right.$ coordinates of $\sum a_{i}$.)
- Green equation $\sum_{i=1}^{n} \nabla G\left(a_{i}\right)=0$ on X_{n}.
- $\mathbf{z}_{n}(a)=Z(\sigma(a))$.
- Non-trivial zero of $Z_{n}(\sigma ; \tau):=W_{n}(Z)$.
- Need to prove the last one. Notice that the branch point $a \in Y_{n} \backslash X_{n}(a \neq-a)$ satisfies the Green equation trivially.
- The second technique used in $\rho=8 \pi$ is to use the method of continuity to connect to the known case $\rho=4 \pi$ by establishing the non-degeneracy of linearized equations.
- For general ρ, such a non-degeneracy statement is out of reach. However, since solutions u_{η} always exist for $\rho=8 \pi \eta, \eta \notin \mathbb{N}$, it is natural to study the limiting behavior of u_{η} as $\eta \rightarrow n$. If the limit does not blow up, it converges to a solution u for $\rho=8 \pi n$.
- For the blow-up case, we have the connection between the blow-up set and the hyperelliptic geometry of $Y_{n} \rightarrow \mathbb{P}^{1}$:
- Theorem

Suppose that $S=\left\{p_{1}, \cdots, p_{n}\right\}$ is the blow-up set of a sequence of solutions u_{k} to with $\rho_{k} \rightarrow 8 \pi n$ as $k \rightarrow \infty$, then $S \in Y_{n}$. Moreover,
(1) If $\rho_{k} \neq 8 \pi n$ then S is a branch point $(a=-a)$ of Y_{n}.
(2) If $\rho_{k}=8 \pi n$ for all k, then S is not a branch point of Y_{n}.

- To go deeper, need to know the converse statement: for which $p \in Y_{n} \backslash X_{n}$ can we construct a blow-up sequence with blow-up set p ? The Morse type of p is fundamental.

Theorem

Suppose that the pair of non half-period critical points $\{ \pm p\}$ of G exists, the $\pm p$ are the minimal points of G.

- In fact our proof shows that any solution for $\rho=8 \pi$ must be a minimizer of the non-linear functional

$$
J_{8 \pi}(u)=\frac{1}{2} \int_{E}|\nabla u|^{2}-8 \pi \log \int_{E} e^{-8 \pi G+u}
$$

$$
\text { on } u \in H^{1}(E) \cap\left\{u \mid \int_{E} u=0\right\} .
$$

Corollary

For $\tau \in \Omega_{5}$, all the three half periods are (non-degenerate) saddle points.

- If u_{k} is a blow-up sequence with $\rho=\rho_{k} \rightarrow 8 \pi$ (as $\left.k \rightarrow \infty\right)$, $\rho_{k} \neq 8 \pi$ for large k, then the blow-up point q is a half period.
- Asymptotically

$$
\begin{equation*}
\rho_{k}-8 \pi=(D(q)+o(1)) e^{-\lambda_{k}} \tag{5}
\end{equation*}
$$

where $\lambda_{k}=\max _{E_{\tau}} u_{k}$ and

$$
D(q):=\int_{E_{\tau}} \frac{h(z) e^{8 \pi(\tilde{G}(z, q)-\phi(q))}-h(q)}{|z-q|^{4}}-\int_{E_{\tau}^{c}} \frac{h(q)}{|z-q|^{4}}
$$

Here $h(z)=e^{-8 \pi G(z)}, \tilde{G}(z, q)$ is the regular part of the Green function, and $\phi(q)=\tilde{G}(q, q)$.

- The sign of $D(q)$ determines the direction where the bubbling may take place, namely $\rho_{k}<8 \pi$ or $\rho_{k}>8 \pi$.

Theorem (Lin-W)

For any half period $q \in E_{\tau}, \tau=a+b i$, we have

$$
\begin{equation*}
D(q)=-4 \pi^{2} b e^{-8 \pi G(q)} \operatorname{det} D^{2} G(q) . \tag{6}
\end{equation*}
$$

- Hence $D(q)>0$ if q is a saddle point. In particular if $\tau \in \Omega_{5}$ then $D(q)>0$ for all half-periods since they are all saddle.
- Since the extra critical point p (reps. $-p$) is a discrete minimal point, the index of ∇G at p (reps. $-p$) is 1. By the Hopf-Poincaré index theorem,

$$
-1=\chi\left(E_{\tau} \backslash\{0\}\right)=2+\sum_{i=1}^{3} \operatorname{ind}_{\frac{1}{2} \omega_{i}} \nabla G .
$$

Since $\frac{1}{2} \omega_{i}$ is non-degenerate, ∇G has index ± 1 at it. Hence the index must be -1 for all $i=1,2,3$. This implies that $\frac{1}{2} \omega_{i}$ is a saddle point for all i.

- Combining with a recent technique in analyzing uniqueness of blow-up solutions by Lin-Yan, we may classify all solutions to the mean field equation for $\rho \in\left(0,8 \pi+\epsilon_{0}\right)$ for some $\epsilon_{0}>0$:

Theorem (Lin-W)

(i) If $\tau \in \Omega_{3}$ then the MFE has only one solution for $\rho<8 \pi$, no solution for $\rho=8 \pi$, and two solutions for $8 \pi<\rho<8 \pi+\epsilon_{0}$.
(ii) If $\tau \in \Omega_{5}$ then the MFE has only one solution for $\rho<8 \pi$, infinitely many solutions for $\rho=8 \pi$, and four solutions for $8 \pi<\rho<8 \pi+\epsilon_{0}$.

- MFE with $\rho=12 \pi$ has exactly two solutions on E_{τ} for $\tau \neq e^{\pi i / 3}$. Hence when $\tau \in \Omega_{5}$ the bifurcation diagram is complicate for $\rho \in(8 \pi, 12 \pi)$. It is a natural question whether MFE has exactly two solutions for $\rho \in(8 \pi, 16 \pi)$ when $\tau \in \Omega_{3}$.
- The Theorem also reflects the difficulty in the study the corresponding Lamé equation for the case $\eta \notin \frac{1}{2} \mathbb{N}$.
- The hyperelliptic curve Y_{n} is parametrized by (B, C) with $C^{2}=\ell_{n}(B)$. In particular, near a branch point p we can use C as the coordinate of Y_{n}.
- Let $\left(\partial a_{i} /\left.\partial C\right|_{C=0}\right)_{i=1}^{n}$ be the tangent vector at p and set

$$
c_{i}=\left.2 \frac{\partial a_{i}}{\partial C}\right|_{C=0^{\prime}} \quad s=\sum_{i=1}^{n} c_{i}, \quad c_{0}=-\sum_{i=1}^{n} \wp\left(p_{i}\right) c_{i} .
$$

- As in the case $n=1$, these two invariants are related to a geometric quantity $D(p)$ derived from the blow-up analysis of solutions u_{k} with $\rho_{k} \rightarrow 8 \pi n$. Let $p=\left(p_{1}, \cdots, p_{n}\right)$ with $\left\{p_{1}, \cdots, p_{n}\right\}$ being the blow-up set of u_{k}. Then

$$
\rho_{k}-8 \pi n=(D(p)+o(1)) e^{-\lambda_{k}}, \quad \lambda_{k}:=\max _{E} u_{k} .
$$

- The analytic expression of $D(p)$ is rather complicate. However, its geometric meaning is reflected in the following

Theorem

For any branch point $p \in Y_{n}$, there is a constant $C(p)>0$ such that

$$
D(p)=C(p)|s|^{2}\left(\left|\frac{c_{0}}{s}-\eta_{1}\right|^{2}+\frac{2 \pi}{b} \operatorname{Re}\left(\frac{c_{0}}{s}-\eta_{1}\right)\right) .
$$

Let $G_{n}\left(z_{1}, \cdots, z_{n}\right):=\sum_{i<j} G\left(z_{i}-z_{j}\right)-n \sum_{i=1}^{n} G\left(z_{i}\right)$. It can be shown that $a=\left(a_{1}, \cdots, a_{n}\right)$ is a solution to the algebraic/Green system if and only if $z=a$ is a critical point of $G_{n}(z)$.
Conjecture
For $n \in \mathbb{N}$ and $p=\left(p_{1}, \cdots, p_{n}\right) \in Y_{n} \backslash X_{n}$, there is a $c_{p} \geq 0$ such that

$$
\operatorname{det} D^{2} G_{n}(p)=(-1)^{n} c_{p} D(p) .
$$

Moreover, $c_{p}>0$ except for a finite set of tori.
(This has been verified for $n=1,2$.)

