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LECTURE ONE

I Joint project with Chang-Shou Lin.

I The Green function G(z, w) on a flat torus E = EΛ = C/Λ,
Λ = Zω1 + Zω2 is the unique function on E× E which satisfies

−4zG(z, w) = δw(z)−
1
|E|

and
∫

E G(z, w) dA = 0, where δw is the Dirac measure with
singularity at z = w.

I Because of the translation invariance of4z, we have
G(z, w) = G(z−w, 0) and it is enough to consider the Green
function G(z) := G(z, 0). Asymptotically

G(z) = − 1
2π

log |z|+ O(|z|2).

2 / 58



I G can be explicitly solved in terms of elliptic functions.

I Let z = x + iy, τ := ω2/ω1 = a + ib ∈H and q = eπiτ with
|q| = e−πb < 1. Then we denote E = Eτ and

ϑ1(z; τ) := −i
∞

∑
n=−∞

(−1)nq(n+
1
2 )

2
e(2n+1)πiz.

I (Neron): On Eτ (notice the τ dependence),

G(z; τ) = − 1
2π

log
∣∣∣∣ ϑ1(z; τ)

ϑ′1(0; τ)

∣∣∣∣+ 1
2b

y2 + C(τ).

I The structure of G, especially its critical points and critical
values, will be the fundamental objects that interest us.
∇G(z) = 0 on Eτ ⇐⇒

∂G
∂z
≡ −1

4π

(
(log ϑ1)z + 2πi

y
b

)
= 0.
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I Recall the Weierstrass elliptic functions wrt. Λ :

℘(z) =
1
z2 + ∑

ω∈Λ×

( 1
(z−ω)2 −

1
ω2

)
,

ζ(z) = −
∫ z

℘ =
1
z
+ · · · ,

σ(z) = exp
∫ z

ζ(w) dw = z + · · · .

I σ is entire, odd with a simple zero on lattice points and

σ(z + ωi) = −eηi(z+ 1
2 ωi)σ(z)

with ηi = ζ(z + ωi)− ζ(z) = 2ζ( 1
2 ωi) the quasi-periods.

I Indeed

σ(z) = eη1z2/2 ϑ1(z)
ϑ′1(0)

.

Hence ζ(z)− η1z = (log ϑ1(z))z.
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I We set ω1 = 1, ω2 = τ = a + bi, ω3 = ω1 + ω2, and E = Eτ .
z = tω1 + sω2 = (t + sa) + sbi = x + yi.

I By Legendre relation η1ω2 − η2ω1 = 2πi, we compute

(log ϑ1)z + 2πi
y
b
= ζ(z)− η1z + 2πis

= ζ(z)− η1t− η1sω2 + (η1ω2 − η2)s
= ζ(z)− tη1 − sη2.

I Hence ∇G(z) = 0 if and only if

Gz = −
1

4π

(
ζ(tω1 + sω2)− (tη1 + sη2)

)
= 0.

I Question: How many critical points can G have in E? What is
the dependence in τ ∈H?
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I The 3 half periods are trivial critical points. Indeed,

G(z) = G(−z)⇒ ∇G(z) = −∇G(−z).

Let p = 1
2 ωi then p = −p in E and so ∇G(p) = −∇G(p) = 0.

I Other critical points must appear in pair ±z ∈ E.

Example (Maximal principle)
For rectangular tori E: (ω1, ω2) = (1, τ = bi), 1

2 ωi, i = 1, 2, 3 are
precisely all the critical points.

Example (Z3 symmetry)
For the torus E with τ = ρ := eπi/3, there are at least 5 critical points:
3 half periods 1

2 ωi plus 1
3 ω3, 2

3 ω3.

I However, it is very difficult to study the critical points from the
“simple equation” ζ(tω1 + sω2) = tη1 + sη2 directly.
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I In PDE, the geometry of G(z, w) plays fundamental role in the
non-linear mean field equations (= Liouville equation with
singular RHS): On a flat torus E it takes the form (ρ ∈ R+)

4u + eu = ρδ0.

I Originated from the prescribed curvature problem (Nirenberg
problem, constant K = 1 with cone metrics etc.).

I The mean field limit of Euler flow in statistic physics. Related to
the self-dual condensation of abelian Chern-Simons-Higgs
model (Nolasco and Tarantello 1999).

I In Arithmetic Geometry, G(z, w) also appears in the Arakelov
geometry as the intersection number of two sections z and w of
the arithmetic surface E → Spec Z∪ {∞} at the ∞ fiber E∞ =
Riemann surface E.
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I When ρ 6∈ 8πN, it has been proved by C.-C. Chen and C.-S. Lin
that the Leray-Schauder degree is

dρ = n + 1 for ρ ∈ (8nπ, 8(n + 1)π),

so the equation has solutions, independent of the shape of E.

I The first interesting case is when ρ = 8π where the degree
theory fails completely.

Theorem (Existence criterion via ∇G for n = 1)
For ρ = 8π, the mean field equation on a flat torus E = C/Λ:

4u + eu = 8πδ0

has solutions if and only if the G has more than 3 critical points. Moreover,
each extra pair of critical points ±p corresponds to an one parameter family
of solutions uλ, where limλ→∞ uλ(z) blows up precisely at z ≡ ±p.
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I Structure of solutions.

I Liouville’s theorem says that any solution u of4u + eu = 0 in a
simply connected domain Ω ⊂ C must be of the form

u = log
8|f ′|2

(1 + |f |2)2 ,

where f , called a developing map of u, is meromorphic in Ω.

I It is straightforward to show that for ρ = 8πη ∈ R,

S(f ) ≡ f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

= uzz −
1
2

u2
z = −2η(η + 1)

1
z2 + O(1).

I.e., any developing map f of u has the same Schwartz derivative
S(f ), which is elliptic on E. Hence S(f ) = −2(η(η + 1)℘(z) + B).
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I By the theory of ODE, locally f = w1/w2 for two solutions wi of
the Lamé equation Lη,B y = 0:

y′′ +
1
2

S(f )y = y′′ − (η(η + 1)℘(z) + B)y = 0

for some B ∈ C.

I Furthermore, for any two developing maps f and f̃ of u, there

exists S =

(
p −q̄
q p̄

)
∈ PSU(2) such that f̃ = Sf :=

pf − q̄
qf + p̄

.

I So, solutions to the mean field equation correspond to Lamé
equations with unitary projective monodromy groups.
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I Geometrically the Liouville equation is simply the prescribing
Gauss curvature equation in the new metric g = ewg0 over D,
where w = u/2− log

√
2 and g0 is the Euclidean flat metric on C:

Kg = −e−u4u = 1. (1)

I It is then clear the inverse stereographic projection C→ S2

(X, Y, Z) =
( 2x

1 + x2 + y2 ,
2y

1 + x2 + y2 ,
−1 + x2 + y2

1 + x2 + y2

)
provides solutions to (1) with conformal factor

ew = e
1
2 u− 1

2 log 2 =
2

1 + |z|2 .
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I Starting from this special solution for D = ∆, the unit disk,
general solutions on simply connected domain D can be
obtained by using the Riemann mapping theorem via a
holomorphic map

f : D→ ∆.

I The conformal factor is then the one as expected:

eu =
8|f ′|2

(1 + |f |2)2 .

I The problem is to glue the local developing maps to a “global
one”. This is a monodromy problem on the once punctured
torus E× = E\{0}. Since it is homotopic to “8”, we have

π1(E×, x0) = Z ∗Z

being a free group of rank two.
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Lemma (Developing map for η = 1
2` ∈ 1

2Z)

Given Λ, for ρ = 4π`, ` ∈N, by analytic continuation across Λ, f is glued
into a meromorphic function on C. (Instead of on E = C/Λ.)

I First constraint from the double periodicity:

f (z + ω1) = S1f , f (z + ω2) = S2f

with S1S2 = ±S2S1 (abelian projective monodromy).

I Second constraint from the Dirac singularity:

(1) If f (z) has a zero/pole at z0 6∈ Λ then order r = 1.

(2) f (z) = a0 + a`+1(z− z0)
`+1 + · · · be regular at z0 ∈ Λ.
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I Type I (Topological) Solutions⇐⇒ ` = 2n + 1:

f (z + ω1) = −f (z), f (z + ω2) =
1

f (z)
.

Then g = (log f )′ = f ′/f takes the form

g(z) =
l

∑
i=1

(ζ(z− pi)− ζ(z− pi −ω2)) + c

which is elliptic on E′ = C/Λ′, Λ′ = Zω1 + Z2ω2 with the only
(highest order) zeros at z0 ≡ 0 (mod Λ) of order ` = 2n + 1.

I The equations 0 = g(0) = g′′(0) = g(4)(0) = · · · implies that f is
an even function (a non-trivial symmetric function argument).
So f has simple zeros at ±p1, . . . ,±pn and ω1/2.

I The remaining equations 0 = g′(0) = g′′′(0) = g(5)(0) = · · ·
leads to the polynomial system for ℘(pi)’s:
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Theorem (Type I integrability, ρ = 4π(2n + 1))

(1) For ρ = 4π`, ` = 2n + 1. All solutions are of type I and even. f has
simple zeros at ω1/2 and ±pi for i = 1, . . . , n, and poles qi = pi + ω2.

(2) For xi := ℘(pi), x̃i := ℘(qi), and m = 1, . . . , n,

∑n
i=1 xm

i −∑n
i=1 x̃m

i = cm, (xm − e2)(x̃m − e2) = µ,

for some constants cm and µ = (e2 − e1)(e2 − e3). This is a 2n affine
polynomial system in C2n of degree 2nn!.

(3) The corresponding Lamé equation Lη=n+1/2,B y = 0 has finite
monodromy group M (in fact PM = V4) hence there is a polynomial
pn of degree n + 1 such that pn(B) = 0. (Brioschi-Halphen 1894.)

This is a far more precise than the degree counting formula.
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Example (ρ = 4π, n = 0, unique solution)
The developing map is given by f (z) = f (0) exp

∫ z
0 g(w) dw with

g(z) = A
σE′(z)σE′(z−ω2)

σE′(z + 1
2 ω1)σE′(z− 1

2 ω1 −ω2)
,

where the residue at z = 1
2 ω1 is fiexed to be 1 by choosing

A =
σE′(ω1 + ω2)

σE′(
1
2 ω1)σE′(

1
2 ω1 + ω2)

.

Here all elliptic functions are with respect to Λ′ = Zω1 + Z2ω2.

Example (ρ = 12π, n = 1, two solutions)
Let p1 = a. p2 = −a and p3 = 1

2 ω1. Then

(℘(a)− e2)
2 + 1

2 (e1 − e3)(℘(a)− e2)− µ = 0.

The two solutions coincide precisely when τ = eπi/3.
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I Type II (Scaling Family) Solutions⇐⇒ η = n (` = 2n):

f (z + ω1) = e2iθ1 f (z), f (z + ω2) = e2iθ2 f (z).

I If f satisfies this, eλf also satisfies this for any λ ∈ R. Thus

uλ(z) = log
8e2λ|f ′(z)|2

(1 + e2λ|f (z)|2)2

is a scaling family of solutions with developing maps {eλf}.
I uλ is a blow-up sequence. The blow-up points for λ→ ∞

(resp. −∞) are precisely zeros (resp. poles) of f (z).

I g = (log f )′ is elliptic on E = C/Λ, with highest order zero at
z = 0 of order ` = 2n.
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I 0 = g′(0) = g′′′(0) = · · · = g(2n−1)(0) implies that g is even.

I Suppose that g(z) has zeros ±p1, · · · ,±pn. We may write

g(z) =
℘′(p1)

℘(z)− ℘(p1)
+ · · ·+ ℘′(pn)

℘(z)− ℘(pn)

constraint by 0 = g′′(0) = · · · = g(2n−2)(0). These give rise to
the first n− 1 equations on p1, . . . , pn. (g(0) = 0 is automatic.)

I To be written down and discussed in the next lecture.

I And then
f (z) = f (0) exp

∫ z

0
g(ξ) dξ

which should satisfies (the n-th equation)∫
Li

g ∈
√
−1R, i = 1, 2.
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I Periods integrals. Let L1, L2 be the fundamental 1-cycles. Set

Fi(p) :=
∫

Li

Ω(ξ, p) dξ,

where p 6≡ 1
2 ωi (mod Λ) and

Ω(ξ, p) =
℘′(p)

℘(ξ)− ℘(p)
= 2ζ(p)− ζ(p + ξ)− ζ(p− ξ).

Lemma (Periods integrals and critical points)
Let p = tω1 + sω2, then (up to 4πiN)

F1(p) = 2(ω1ζ(p)− η1p) = 2(ζ(p)− tη1 − sη2)ω1 − 4πis,
F2(p) = 2(ω2ζ(p)− η2p) = 2(ζ(p)− tη1 − sη2)ω2 + 4πit.

I Hence solution {uλ} corresponds to ±p 6∈ E[2] with ∇G(p) = 0.
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I When ρ = 8π (` = 2), p1 = p, p2 = −p, g(z) = Ω(z, p) and

f (z) = f (0) exp
∫ z

0
g(ξ) dξ

gives rise to a solution⇐⇒
Fi(p) ∈

√
−1 R, i = 1, 2,⇐⇒ ∇G(p) = 0.

I Theorem (Uniqueness, Lin–W 2006, 2010)
For ρ = 8π, the mean field equation4u + eu = ρδ0 on a flat torus has at
most one solution up to scaling.

I Theorem (Number of critical points)
The Green function has either 3 or 5 critical points.

I We were unable to prove it from the critical point equation.
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I Our proof on uniqueness is based on the method of
symmetrization applied to the linearized equation at the unique
even solution in uλ (choose λ = − log |f (0)| to get f (0) = 1).

I In fact we prove uniqueness of the one parameter family

4u + eu = ρδ0, ρ ∈ [4π, 8π]

on E within even solutions, by the continuity method.

I Theorem
For ρ ∈ [4π, 8π], Let u be a solution of4u + eu = ρδ0, u(−z) = u(z) in E
(so
∫

E eu = ρ.) Then the linearized equation at u:{ 4ϕ + eu ϕ = 0
ϕ(z) = ϕ(−z) on E

is non-degenerate, i.e. it has only trivial solution ϕ ≡ 0.
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Sketch of the main idea:

Use x = ℘(z) as two-fold covering map E→ S2 = C∪ {∞} and
require ℘ being an isometry:

eu(z)|dz|2 = ev(x)|dx|2 = ev(x)|℘′(z)|2|dz|2.

Namely we set

v(x) := u(z)− log |℘′(z)|2 and ψ(x) := ϕ(z).

There are four branch points on C∪ {∞}, p0 = ℘(0) = ∞ and
pj = ej := ℘(ωj/2) for j = 1, 2, 3. Since ℘′(z)2 = 4 ∏3

j=1(x− ej), then{
4v + ev = ∑3

j=1(−2π)δpj

4ψ + evψ = 0
in R2
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At infinity let y = 1/x. The isometry reads as

eu(z)|dz|2 = ew(y)|dy|2 = ew(y) |℘′(z)|2
|℘(z)|4 |dz|2,

w(y) = u(z)− log
|℘′(z)|2
|℘(z)|4 ∼

( ρ

2π
− 2
) 1

2
log |y|.

Thus ρ ≥ 4π implies that p0 is a singularity with non-negative α0.

The total measure on E and R2 are then given by∫
E

eu dz = ρ ≤ 8π and
∫

R2
ev dx =

ρ

2
≤ 4π.

The proof is then reduced to:
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Theorem (Symmetrization lemma)
Let Ω ⊂ R2 be a simply-connected domain and let v be a solution of

4v + ev = ∑N
j=1 2παjδpj

in Ω. Suppose that λ1 = 0 for4+ ev on Ω with ϕ the first eigenfunction.
(i) If the isoperimetric inequality with respect to ds2 = ev|dx|2:

2l2(∂ω) ≥ m(ω)(4π −m(ω))

holds for all level domains ω = {ϕ ≥ t} with t ≥ 0, then∫
Ω

ev dx ≥ 2π.

(ii) Moreover, the isoperimetric inequality holds if there is only one negative
αj and αj = −1.
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• It remains to study the geometry of critical points overM1,
which relies on methods of deformations and the degeneracy
analysis of half periods.

Theorem (Moduli dependence, Lin–W 2013)

(1) Let Ω3 ⊂M1 ∪ {∞} ∼= S2 (resp. Ω5) be the set of tori with 3 (resp.
5) critical points, then Ω3 ∪ {∞} is closed containing iR, Ω5 is open
containing the vertical line [eπi/3, i∞).

(2) Both Ω3 and Ω5 are simply connected with C := ∂Ω3 = ∂Ω5
homeomorphic to S1 containing ∞.

(3) Moreover, the extra critical points are split out from some half period
point when the tori move from Ω3 to Ω5 across C.

(4) (Strong uniqueness) The map Ω5 → [0, 1]2 by τ 7→ (t, s) for
p(τ) = tω1 + sω2 is a bijection onto4 = [( 1

3 , 1
3 ), (

1
2 , 1

2 ), (0, 1
2 )].
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M1

0 1
2 1

i

1
2 (1 + i)

1
2 + b1i

Figure: Ω5 contains a neighborhood of eπi/3.

• On the line Re τ = 1/2 which are equivalent to the rhombuses
tori, the proof relies on functional equations of ϑ1.

• The general case uses modular forms of weight one.

Figure : Ω5 contains a neighborhood of eπi/3.

• On the line Re τ = 1/2 which are equivalent to the rhombuses
tori, the proof relies on functional equations of ϑ1.

• The general case uses modular forms of weight one.
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I Idea of proof:

Ψ(N) := #{ (k1, k2) | (N, k1, k2) = 1, 0 ≤ ki ≤ N− 1 }.

Consider the weight one modular function for Γ(N):

ZN,k1,k2(τ) := ζ
(k1ω1 + k2ω2

N
; τ
)
− k1η1 + k2η2

N
= −ZN,N−k1,N−k2(τ)

(first studied by Hecke (1926));

I and the weight Ψ(N) one for full modular group:

ZN(τ) := ∏
(N,k1,k2)=1

ZN,k1,k2(τ) ∈ MΨ(N)(SL(2, Z)).

I Each τ ∈H with ZN(τ) = 0 is (at least) a double zero.
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I For odd N ≥ 5, νi(ZN) = νρ(ZN) = 0,

I At ∞, Hecke calculated the asymptotic expansion:
ν∞(ZN) = φ(N/2) = 0,

I Then the degree formula for modular forms (Riemann–Roch):

(ZN)red =
1
2

deg ZN =
1
2 ∑

p
νp(ZN) =

Ψ(N)

24
.

I Take N prime, this suggests a 1-1 correspondence between Ω5
and

4 = [( 1
3 , 1

3 ), (
1
2 , 1

2 ), (0, 1
2 )]

under the map Ω5 → [0, 1]× [0, 1
2 ]:

τ 7→ (t, s), where p(τ) = tω1 + sω2.
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I The actual proof: Deformations in t, s 6∈ 1
2 Z.

I Let F ⊂H be the fundamental domain for Γ0(2) defined by

F := {τ ∈H | 0 ≤ Re τ ≤ 1, |τ − 1
2 | ≥ 1

2}.

We analyze solutions τ ∈ F for Zt,s(τ) = 0 by varying (t, s).

I For τ ∈ ∂F, E is a rectangle and the only critical points of G are
half periods. So Zt,s(τ) 6= 0 for τ ∈ ∂F.

I Based on this, we use of the argument principle along the curve
∂F to analyze the number of zeros of Zt,s in F.

I We deduce from the Jacobi triple product formula that

Zt,s(τ) = 2πi(s− 1
2 )− πi

2e2πiz

1− e2πiz

− 2πi
∞

∑
n=1

(
e2πizqn

1− e2πizqn −
e−2πizqn

1− e−2πizqn

)
,

where z = t + sτ.

29 / 58



I Lemma (Asymptotic behavior of Zt,s on cusps)
We have Zt,s(−1/τ) = τZ−s,t(τ), and for t ∈ (0, 1),

Zt,s(τ) =
−1
τ

Z−s,t(−1/τ) =
2πi
τ

( 1
2 − t + o(1)

)
as τ → 0. Similarly, Zt,s(τ + 1) = Zt+s,t(τ), and for t + s ∈ (0, 1),

Zt,s(τ) = Zt+s,s(τ − 1) =
2πi

τ − 1
( 1

2 − (t + s) + o(1)
)
.

I Lemma (Non-Vanishing)
For any τ ∈H, the addition law implies that

(i) ζ( 3
4 ω1 +

1
4 ω2)) 6= 3

4 η1 +
1
4 η2.

(ii) ζ( 1
6 ω1 +

1
6 ω2)) 6= 1

6 η1 +
1
6 η2.
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I For (ii), we choose z = 1
6 (ω1 + ω2) =

1
6 ω3 and u = 1

3 ω3. Then

0 6= ℘′(z)
℘(z)− ℘(u)

= ζ( 1
2 ω3) + ζ(− 1

6 ω3)− 2ζ( 1
6 ω3)

= −3(ζ( 1
6 ω1 +

1
6 ω2)− 1

6 η1 − 1
6 η2).

I Suppose that (t, s) ∈ [0, 1]× [0, 1
2 ]\{(0, 0), ( 1

2 , 0), (0, 1
2 ), (

1
2 , 1

2 )}.
Then Zt,s(τ) = 0 has a solution τ ∈H if and only if that

(t, s) ∈ 4 := {(t, s) | 0 < t, s < 1
2 , t + s > 1

2}.

Moreover, the solution τ ∈ F is unique for any (t, s) ∈ 4.

I Proof: The cases (t, s) 6∈ 4 are excluded by the Lammas. From

ν∞(Z3) +
1
2

νi(Z3) +
1
3

νρ(Z3) + ∑
p 6=∞,i,ρ

νp(Z3) =
8

12
,

Z 1
3 , 1

3
(ρ) = Z 2

3 , 2
3
(ρ) = 0 =⇒ νρ(Z(3)) = 2 and other terms = 0.

Thus τ = ρ is a simple root to Z 1
3 , 1

3
(τ) = 0. QED
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LECTURE TWO

Theorem (Periods integrals and type II solutions)
Consider the mean field equation4u + eu = ρδ0 on E = C/Λ.

I If solutions exist for ρ = 8nπ, then there is a unique even solution
within each type II scaling family. (` = 2n, an+i = −ai.)

I The solution u is determined by the zeros a1, . . . , an of f . In fact

g(z) =
n

∑
i=1

℘′(ai)

℘(z)− ℘(ai)
, f (z) = f (0) exp

∫ z
g(ξ) dξ.

I ordz=0 g(z) = 2n leads to n− 1 equations for a = {a1, . . . , an}.
I The n-th equation is given by

∫
Li

g ∈
√
−1R, which is equivalent to

n

∑
i=1
∇G(ai) = 0.
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I The n− 1 algebraic equations:

I Under the notations (w, xj, yj) = (℘(z),℘(pj),℘′(pj)),

g(z) =
n

∑
j=1

1
w

yj

1− xj/w

=
n

∑
j=1

yj

w
+

n

∑
j=1

yjxj

w2 + · · ·+
n

∑
j=1

yjxr
j

wr+1 + · · · .

I Since g(z) has a zero at z = 0 of order 2n and 1/w has a zero at
z = 0 of order two, we get

n

∑
j=1

yjxr
j =

n

∑
j=1

℘′(aj)℘(aj)
r = 0, 0 ≤ r ≤ n− 2.
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Theorem (Green/polynomial system)
For ρ = 8nπ, n ∈N, the n equations for a = {a1, . . . , an} are precisely

℘′(a1)℘
r(a1) + · · ·+ ℘′(an)℘

r(an) = 0,

where r = 0, . . . , n− 2, and ∇G(a1) + · · ·+∇G(an) = 0.

Theorem (Hyperelliptic geometry/Lamé curve)
For xi := ℘(ai), yi := ℘′(ai), the first n− 1 algebraic equations

∑ yixr
i = 0, r = 0, . . . , n− 2,

defines an affine hyperelliptic curve under the 2 to 1 map a 7→ ∑℘(ai):

Xn := {(xi, yi)} ⊂ SymnE −→ (x1 + · · ·+ xn) ∈ P1.
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I The proof relies on its relation to Lamé equations:

f = exp
∫

g dz = exp
∫ n

∑
i=1

(2ζ(ai)− ζ(ai − z)− ζ(ai + z)) dz

= e2 ∑n
i=1 ζ(ai)z

n

∏
i=1

σ(z− ai)

σ(z + ai)
= (−1)n wa

w−a
,

where wa(z) := ez ∑ ζ(ai)
n

∏
i=1

σ(z− ai)

σ(z)σ(ai)
is the basic element.

I Theorem (Explicit map a 7→ Ba = (2n− 1)∑℘(ai))
a ∈ Xn if and only if wa and w−a are two solutions of the Lamé equation

d2w
dz2 −

(
n(n + 1)℘(z) + (2n− 1)∑n

i=1 ℘(ai)
)

w = 0.

I This is a long calculation via the polynomial system (omitted).
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I Idea of proof on the hyperelliptic structure on Xn.

I Consider y2 = p(x) = 4x3 − g2x− g3, where
(x, y) = (℘(z),℘′(z)), and we set (xi, yi) = (℘(ai),℘′(ai)).
Consider a basis of solutions to the Lamé equation

w′′ = (n(n + 1)℘(z) + B)w

(for some B) given by wa(z) and w−a(z).

I Let X(z) = wa(z)w−a(z). By the addition theorem,

X(z) = (−1)n
n

∏
i=1

σ(z + ai)σ(z− ai)

σ(z)2σ(ai)2 = (−1)n
n

∏
i=1

(℘(z)− ℘(ai)).

That is, X(x) = (−1)n ∏n
i=1(x− xi) is a polynomial in x.
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I Key: X(z) satisfies the second symmetric power of the Lamé
equation:

d3X
dz3 − 4(n(n + 1)℘+ B)

dX
dz
− 2n(n + 1)℘′X = 0.

I Hence X(x) is a polynomial solution, in variable x, to

p(x)X′′′ + 3
2 p′(x)X′′ − 4((n2 + n− 3)x + B)X′ − 2n(n + 1)X = 0.

I X is determined by B and certain initial conditions.
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I Write X(x) = (−1)n(xn − s1xn−1 + · · ·+ (−1)nsn), this translates
to a linear recursive relation for µ = 0, · · · , n− 1:

0 = 2(n− µ)(2µ + 1)(n + µ + 1)sn−µ

− 4(µ + 1)Bsn−µ−1

+ 1
2 g2(µ + 1)(µ + 2)(2µ + 3)sn−µ−2

− g3(µ + 1)(µ + 2)(µ + 3)sn−µ−3.

I We set s0 = 1.

I For µ = n− 1 we get B = (2n− 1)s1 as expected.

I Thus all s2, · · · , sn, X(z), are determined by s1, i.e. by B, alone.

I In fact, a slightly more work shows that the set a = {ai} is also
determined by B up to sign. Hence a 7→ Ba is 2 to 1. QED
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Theorem (Chai-Lin-W 2012)

I There is a natural projective compactification X̄n ⊂ SymnE as a,
possibly singular, hyperelliptic curve defined by

C2 = `n(B, g2, g3) = 4Bs2
n + 4g3sn−2sn − g2sn−1sn − g3s2

n−1,

in affine coordinates (B, C), where

sk = sk(B, g2, g3) = rkBk + · · · ∈ Q[B, g2, g3]

is an universal polynomial of homogeneous degree k with deg g2 = 2,
deg g3 = 3, and B = (2n− 1)s1.

I Thus deg `n = 2n + 1 and X̄n has arithmetic genus g = n.

I The curve X̄n is smooth except for a finite number of τ, namely the
discriminant loci of `n(B, g2, g3), so that `n(B) has multiple roots. In
particular X̄n is smooth for rectangular tori.
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(Continued.)

I The 2n+ 2 branch points a ∈ X̄n\Xn are characterized by −a = a.

I {−ai} ∩ {ai} 6= ∅⇒ −a = a.

I Also 0 ∈ {ai} ⇒ a = (0, 0, · · · , 0).

I By setting (xi, yi) = (t3
i , 2t2

i ), the limiting system at a = 0n:

∑n
i=1 t2r+1

i = 0, r = 1, . . . , n− 1,

has a unique solution with ti 6= 0 and ti 6= −tj in Pn−1 up to
permutations.

I Meaning of C (I): Applying Cramer’s rule to the n− 1 linear
equations ∑n

i=1 xk
i yi = 0 in yi’s, there is a constant C ∈ C× such

that
yi =

C
∏j 6=i(xi − xj)

, i = 1, . . . , n.

40 / 58



I Meaning of C (II): Let w1, w2 be two ind. solutions of w′′ = Iw.

C :=
∣∣∣∣w1 w2
w′1 w′2

∣∣∣∣ = w1w′2 −w2w′1

is a (non-zero) constant since C′ = 0.

I If X = w1w2 is known, we may solve w1, w2 from C and X:

X′

X
=

w′1
w1

+
w′2
w2

,
C
X

=
w′2
w2
− w′1

w1
,

w′1
w1

=
X′ − C

2X
,

w′2
w2

=
X′ + C

2X
.

I In particular

w1 = X1/2 exp
(
− C

∫ dz
2X

)
, w2 = X1/2 exp

(
C
∫ dz

2X

)
.
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I From(X′ + C
2X

)′
=
(w′2

w2

)′
=

w′′2
w2
−
(w′2

w2

)2
= I− (X′ + C)2

4X2 ,

we conclude easily that

C2 = X′2 − 2X′′X + 4IX2.

I The constant terms give the hyperelliptic equation in (B, C).

I In particular, C = 0 if and only if wa = w−a, i.e. a = −a. These
are the branch points of X̄n.

I Definition: Denote by Yn = X̄n\{0n} the affine hyperelliptic
curve defined by

C2 = `n(B, g2, g3).
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I Now we study the last equation on X̄n:

0 = −4π
n

∑
i=1
∇G(ai) =

n

∑
i=1

Z(ai). (2)

I Consider the rational function on En:

zn(a1, . . . , an) := ζ(a1 + · · ·+ an)−
n

∑
i=1

ζ(ai).

(It is periodic in each variable.)

I Let ai = tiω1 + siω2, then

−4π ∑∇G(ai) = ∑ Z(ai) = ∑(ζ(ai)− tiη1 − siη2)

= ζ(∑ ai)− (∑ ti)η1 − (∑ si)η2 − zn(a)

= Z(∑ ai)− zn(a).

Hence (2) is equivalent to

zn(a) = Z(∑ ai). (3)
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I It is thus crucial to study the branched covering map

σ : X̄n → E, a 7→ σ(a) :=
n

∑
i=1

ai.

Theorem (Lin–W 2013, new pre-modular functions)

(1) The map σ has degree equals 1
2 n(n + 1).

(2) There is a universal (weighted homogeneous) polynomial
Wn(x) ∈ C[g2, g3,℘(σ),℘′(σ)][x] of degree 1

2 n(n + 1) such
that

Wn(zn) = 0.

In fact, zn ∈ K(X̄n) is a primitive generator for the field
extension K(X̄n) over K(E).

(3) The function Zn(σ; τ) := Wn(Z) is pre-modular of weight
1
2 n(n + 1). That is, it is modular wrt. Γ(N) if σ ∈ Eτ [N].
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I Idea of proof for (1): Apply Theorem of the Cube: For any three
morphisms f , g, h : Vn −→ E and L ∈ Pic E,

(f + g + h)∗L ∼= (f + g)∗L⊗ (g + h)∗L⊗ (h + f )∗L

⊗ f ∗L−1 ⊗ g∗L−1 ⊗ h∗L−1.

I Apply to the case Vn ⊂ En which is the ordered n-tuples so that
Vn/Sn = X̄n, and deg L = 1. We prove inductively that the map

fk(a) := a1 + · · ·+ ak

has degree 1
2 k(k + 1)n!. It is not hard to check for k = 1, 2.

I From k to k + 1, we let f = fk−1, g(a) = ak, and h(a) = ak+1.

I Then fk+1 has degree n! times

1
2 k(k + 1) + 3 + 1

2 k(k + 1)− 1
2 (k− 1)k− 1− 1 = 1

2 (k + 1)(k + 2).
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I Idea of proof of (2): Major tool: tensor product of two Lamé
equations w′′ = I1w and w′ = I2w, where I = n(n + 1)℘(z),
I1 = I + Ba and I2 = I + Bb.

I For X̄n(τ) smooth, and a general point σ0 ∈ E, we need to show
that the 1

2 n(n + 1) points on the fiber of X̄n → E above σ0 has
distinct zn values. It is enough to show that for σ(a) = σ(b) = σ0,
the condition ∑ ζ(ai) = ∑ ζ(bi) implies Ba = Bb (and then a = b).

I If w′′1 = I1w1 and w′′2 = I2w2, then the product q = w1w2 satisfies

q′′′′ − 2(I1 + I2)q′′ − 6I′q′ + ((Ba − Bb)
2 − 2I′′)q = 0.

I If a 6= b, by addition law we find that Q = waw−b + w−awb is an
even elliptic function solution, namely a polynomial in x = ℘(z).
This leads to strong constraints on the corresponding 4-th order
ODE in variable x, and eventually leads to a contradiction for
generic choices of σ0.
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Indeed,

p(x)2....
q + 3p(x)ṗ(x)

...
q

+
( 3

4 ṗ(x)2 − 2(2(n2 + n− 12)x + Ba + Bb)p(x)
)
q̈

−
(
(2(n2 + n− 3)x + Ba + Bb)ṗ(x) + 6(n2 + n− 2)p(x)

)
q̇

+
(
(Ba − Bb)

2 − n(n + 1)ṗ(x)
)
q = 0.

(4)

As an even elliptic function, Q takes the form

Q(x) = C
n

∏
i=1

(℘(z)− ℘(ci)) =: C
n

∏
i=1

(x− xi)

= C(xn − s1xn−1 + s2xn−2 − · · ·+ (−1)nsn),

The xn+2 terms agree automatically. The xn+1 degree gives

∑℘(ci) = s1 = 1
2

Ba + Bb
2n− 1

= 1
2 (∑℘(ai) + ∑℘(bi)).
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I Inductively the xn+2−i coefficient in (4) gives recursive relations
to solve si interns of Ba + Bb, (Ba − Bb)

2 and g2, g3 for i = 1, . . . , n.

I Indeed

si = si(Ba + Bb, (Ba − Bb)
2, g2, g3) = Ci(Ba + Bb)

i + · · ·

is homogeneous of degree i if we assign deg Ba = deg Bb = 1
and deg g2 = 2, deg g3 = 3.

I There are two remaining consistency equations F1 = 0, F0 = 0
coming from the x1 and x0 coefficients in (4).

I In fact (Ba − Bb)
2 is a factor of both equations and we may write

F1(Ba, Bb) = (Ba − Bb)
2d1G1(Ba, Bb) and

F0(Ba, Bb) = (Ba − Bb)
2d0G0(Ba, Bb).

I If Ba 6= Bb (i.e ∑℘(ai) 6= ∑℘(bi)), then

G1(Ba, Bb) = 0, G0(Ba, Bb) = 0,

which has only a finite number of solutions (Ba, Bb)’s, i.e. Eτ’s.
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Example (of compatibility equations for n = 2)
For n = 2 we have s1 = 1

6 (Ba + Bb) and

s2 = 1
36 (Ba + Bb)

2 + 1
72 (Ba − Bb)

2 − 1
4 g2.

The first compatibility equation from x1 is (after substituting s1)

1
6 (Ba − Bb)

2(Ba + Bb) = 0.

The second compatibility equation from x0 is

(Ba − Bb)
2( 1

36 (Ba + Bb)
2 + 1

72 (Ba − Bb)
2 − 1

6 g2) = 0.

If Ba 6= Bb then Bb = −Ba and then we can solve Ba, Bb:

B2
a = 3g2 =⇒ ℘(a1) + ℘(a2) = ±

√
g2/3.

Such a ∈ X̄2 indeed lies at the branch loci of the Lamé curve.
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Example (of new pre-modular forms for n = 2)
For z2(a1, a2) = ζ(a1 + a2)− ζ(a1)− ζ(a2), on X2:

z3
2(a)− 3℘(a1 + a2)z2(a)− ℘′(a1 + a2) = 0.

On E2 it has one more term − 1
2 (℘

′(a1) + ℘′(a2)). Thus,

Z2(σ; τ) = W2(Z) = Z3 − 3℘(σ)Z− ℘′(σ).

Example (n = 3)
For z = z3(a) = ζ(a1 + a2 + a3)− ζ(a1)− ζ(a2)− ζ(a3), on X3:

z6 − 15℘z4 − 20℘′z3 + ( 27
4 g2 − 45℘2)z2 − 12℘′℘z− 5

4℘
′2 = 0.

Thus, Z3(σ; τ) = W3(Z).
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I Key point: Z1 ≡ Z = −4π∇G is the Hecke modular function.
The critical point equation (⇐⇒ type II solutions of MFE) is
transformed into zero of pre-modular forms.

I For general n ≥ 1, we have the equivalences:

• Solution u to MFE for ρ = 8πn.

• Periods integral
∫

Lj

g ∈
√
−1R (= ωj coordinates of ∑ ai.)

• Green equation
n

∑
i=1
∇G(ai) = 0 on Xn.

• zn(a) = Z(σ(a)).
• Non-trivial zero of Zn(σ; τ) := Wn(Z).

I Need to prove the last one. Notice that the branch point
a ∈ Yn\Xn (a 6= −a) satisfies the Green equation trivially.
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I The second technique used in ρ = 8π is to use the method of
continuity to connect to the known case ρ = 4π by establishing
the non-degeneracy of linearized equations.

I For general ρ, such a non-degeneracy statement is out of reach.
However, since solutions uη always exist for ρ = 8πη, η 6∈N, it
is natural to study the limiting behavior of uη as η → n. If the
limit does not blow up, it converges to a solution u for ρ = 8πn.

I For the blow-up case, we have the connection between the
blow-up set and the hyperelliptic geometry of Yn → P1:

I Theorem
Suppose that S = {p1, · · · , pn} is the blow-up set of a sequence of solutions
uk to with ρk → 8πn as k→ ∞, then S ∈ Yn. Moreover,

(1) If ρk 6= 8πn then S is a branch point (a = −a) of Yn.
(2) If ρk = 8πn for all k, then S is not a branch point of Yn.
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I To go deeper, need to know the converse statement: for which
p ∈ Yn\Xn can we construct a blow-up sequence with blow-up
set p? The Morse type of p is fundamental.

Theorem
Suppose that the pair of non half-period critical points {±p} of G exists, the
±p are the minimal points of G.

I In fact our proof shows that any solution for ρ = 8π must be a
minimizer of the non-linear functional

J8π(u) =
1
2

∫
E
|∇u|2 − 8π log

∫
E

e−8πG+u

on u ∈ H1(E) ∩ {u |
∫

E u = 0}.

Corollary
For τ ∈ Ω5, all the three half periods are (non-degenerate) saddle points.
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I If uk is a blow-up sequence with ρ = ρk → 8π (as k→ ∞),
ρk 6= 8π for large k, then the blow-up point q is a half period.

I Asymptotically

ρk − 8π = (D(q) + o(1))e−λk (5)

where λk = maxEτ uk and

D(q) :=
∫

Eτ

h(z)e8π(G̃(z,q)−φ(q)) − h(q)
|z− q|4 −

∫
Ec

τ

h(q)
|z− q|4 .

Here h(z) = e−8πG(z), G̃(z, q) is the regular part of the Green
function, and φ(q) = G̃(q, q).

I The sign of D(q) determines the direction where the bubbling
may take place, namely ρk < 8π or ρk > 8π.
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Theorem (Lin–W)
For any half period q ∈ Eτ , τ = a + bi, we have

D(q) = −4π2be−8πG(q) det D2G(q). (6)

I Hence D(q) > 0 if q is a saddle point. In particular if τ ∈ Ω5
then D(q) > 0 for all half-periods since they are all saddle.

I Since the extra critical point p (reps. −p) is a discrete minimal
point, the index of ∇G at p (reps. −p) is 1. By the Hopf–Poincaré
index theorem,

−1 = χ(Eτ\{0}) = 2 +
3

∑
i=1

ind 1
2 ωi
∇G.

Since 1
2 ωi is non-degenerate, ∇G has index ±1 at it. Hence the

index must be −1 for all i = 1, 2, 3. This implies that 1
2 ωi is a

saddle point for all i.
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I Combining with a recent technique in analyzing uniqueness of
blow-up solutions by Lin–Yan, we may classify all solutions to
the mean field equation for ρ ∈ (0, 8π + ε0) for some ε0 > 0:

Theorem (Lin–W)

(i) If τ ∈ Ω3 then the MFE has only one solution for ρ < 8π, no
solution for ρ = 8π, and two solutions for 8π < ρ < 8π + ε0.

(ii) If τ ∈ Ω5 then the MFE has only one solution for ρ < 8π,
infinitely many solutions for ρ = 8π, and four solutions for
8π < ρ < 8π + ε0.

I MFE with ρ = 12π has exactly two solutions on Eτ for τ 6= eπi/3.
Hence when τ ∈ Ω5 the bifurcation diagram is complicate for
ρ ∈ (8π, 12π). It is a natural question whether MFE has exactly
two solutions for ρ ∈ (8π, 16π) when τ ∈ Ω3.

I The Theorem also reflects the difficulty in the study the
corresponding Lamé equation for the case η 6∈ 1

2 N.
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I The hyperelliptic curve Yn is parametrized by (B, C) with
C2 = `n(B). In particular, near a branch point p we can use C as
the coordinate of Yn.

I Let (∂ai/∂C|C=0)
n
i=1 be the tangent vector at p and set

ci = 2
∂ai
∂C

∣∣∣
C=0

, s =
n

∑
i=1

ci, c0 = −
n

∑
i=1

℘(pi)ci.

I As in the case n = 1, these two invariants are related to a
geometric quantity D(p) derived from the blow-up analysis of
solutions uk with ρk → 8πn. Let p = (p1, · · · , pn) with
{p1, · · · , pn} being the blow-up set of uk. Then

ρk − 8πn = (D(p) + o(1))e−λk , λk := max
E

uk.

I The analytic expression of D(p) is rather complicate. However,
its geometric meaning is reflected in the following

57 / 58



Theorem
For any branch point p ∈ Yn, there is a constant C(p) > 0 such that

D(p) = C(p)|s|2
(∣∣∣ c0

s
− η1

∣∣∣2 + 2π

b
Re
( c0

s
− η1

))
.

Let Gn(z1, · · · , zn) := ∑
i<j

G(zi − zj)− n
n

∑
i=1

G(zi). It can be shown that

a = (a1, · · · , an) is a solution to the algebraic/Green system if and
only if z = a is a critical point of Gn(z).

Conjecture
For n ∈N and p = (p1, · · · , pn) ∈ Yn\Xn, there is a cp ≥ 0 such that

det D2Gn(p) = (−1)ncpD(p).

Moreover, cp > 0 except for a finite set of tori.
(This has been verified for n = 1, 2.)
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