GLUEING QUANTUM D MODULES OVER FLOPS

CHIN-LUNG WANG

ABSTRACT. In this note I summarize my talk at Sanya on December 19, 2011. The main theme is a glueing theorem of two quantum D modules QH(X) and QH(X') via analytic continuations over the Kähler moduli, where X and X' are local projective models related by an ordinary flop. This is a joint work with Yuan-Pin Lee and Hui-Wen Lin.

1. BF/GMT FOR TORIC BUNDLES

A general framework to determine g = 0 GW invariants is to go from certain localization data *I* to the generating function of one descendent: Let $\tau = \sum_{\mu} \tau^{\mu} T_{\mu} \in$ $H(X), g_{\mu\nu} = (T_{\mu}, T_{\nu}), T^{\mu} = \sum_{\nu} g^{\mu\nu} T_{\nu}.$

$$J^{X}(\tau,z^{-1}) = 1 + \frac{\tau}{z} + \sum_{\beta \in NE(X),n,\mu} \frac{q^{\beta}}{n!} T_{\mu} \left\langle \frac{T^{\mu}}{z(z-\psi)}, \tau, \cdots, \tau \right\rangle_{0,n+1,\beta}.$$

Witten's *dilaton, string, and topological recursion relation* in 2D gravity had been reformulated by Givental into a symplectic space theory. Let H := H(X), $\mathcal{H} :=$ $H[z, z^{-1}]$, $\mathcal{H}_+ := H[z]$ and $\mathcal{H}_- := z^{-1}H[z^{-1}]$. $\mathcal{H} \cong T^*\mathcal{H}_+$. Let $F_0(\mathbf{t})$ be the generating function of all descendent invariants. The one form dF_0 gives a section of $\pi : \mathcal{H} \to \mathcal{H}_+$. Givental's *Lagrangian cone* \mathcal{L} is the graph of dF_0 . Let $R = \mathbb{C}[\widehat{NE}(X)]$. Denote $a = \sum q^\beta a_\beta(z) \in R\{z\}$ if $a_\beta(z) \in \mathbb{C}[z]$.

Lemma 1.1. $z\nabla J = (z\partial_{\mu}J^{\nu})$ forms a matrix whose column vectors $z\partial_{\mu}J(\tau)$ generates the tangent space L_{τ} of the Lagrangian cone \mathcal{L} as an $R\{z\}$ -module.

By TRR, $z\nabla J$ is the fundamental solution matrix of the Dubrovin connection

$$abla^z = d - rac{1}{z} d au^\mu \otimes \sum_\mu T_\mu *_ au$$

on $TH = H \times H$. Namely we have the quantum differential equation (QDE)

$$z\partial_{\mu}z\partial_{\nu}J=\sum \tilde{C}^{\kappa}_{\mu
u}(\tau,q)z\partial_{\kappa}J.$$

Let $\bar{p}: X \to S$ be a smooth toric bundle with fiber divisor $D = \sum t^i D_i$. H(X) is a free over H(S) with finite generators $\{D^e := \prod_i D_i^{e_i}\}_{e \in \Lambda}$. Let $\bar{t} := \sum_s \bar{t}^s \bar{T}_s \in H(S)$. H(X) has basis $\{T_e = T_{(s,e)} = \bar{T}_s D^e\}_{e \in \Lambda^+}$. Denote by $\partial_{\bar{T}_s} \equiv \partial_{\bar{t}^s}$ the \bar{T}_s directional derivative on H(S), $\partial^e = \partial^{(s,e)} := \partial_{\bar{t}^s} \prod_i \partial_{t^i}^{e_i}$ and the *naive quantization*

$$\hat{T}_e \equiv \partial^{z\mathbf{e}} \equiv \partial^{z(s,e)} := z \partial_{\bar{t}^s} \prod_i z \partial_{t^i}^{e_i} = z^{|e|+1} \partial^{(s,e)}.$$

The $T_{\mathbf{e}}$ directional derivative is $\partial_{\mathbf{e}} = \partial_{T_{\mathbf{e}}}$. $\partial^{z\mathbf{e}}$ and $z\partial_{\mathbf{e}}$ are closely related.

Let $\bar{p} : X \to S$ be a split toric bundle quotient from $\bigoplus \mathscr{L}_{\rho} \to S$. The hypergeometric modification of J^S by the \bar{p} -fibration takes the form

$$I^{X}(\bar{t}, D, z, z^{-1}) := \sum_{\beta \in NE(X)} q^{\beta} e^{\frac{D}{z} + (D.\beta)} I^{X/S}_{\beta}(z, z^{-1}) J^{S}_{\beta_{S}}(\bar{t}, z^{-1}),$$

where $I_{\beta}^{X/S} = \prod_{\rho \in \Delta_1} 1 / \prod_{m=1}^{(D_{\rho} + \mathscr{L}_{\rho}) \cdot \beta} (D_{\rho} + \mathscr{L}_{\rho} + mz)$ comes from fiber localization, and the product is *directed* when $(D_{\rho} + \mathscr{L}_{\rho}) \cdot \beta \leq -1$.

In general positive z powers may occur in I^X . I is defined only on the subspace

$$\hat{t} := \bar{t} + D \in H(S) \oplus \bigoplus_i \mathbb{C}D_i \subset H(X).$$

Theorem 1.2 (J. Brown 2009). $(-z)I^X(\hat{t}, -z)$ lies in the Lagrangian cone \mathcal{L} .

Definition 1.3 (GMT). For each \hat{t} , say $zI(\hat{t})$ lies in L_{τ} of \mathcal{L} . The correspondence

$$\hat{t} \mapsto \tau(\hat{t}) \in H(X) \otimes R$$

is called the *generalized mirror transformation*.

Proposition 1.4 (BF). (1) *The GMT:* $\tau = \tau(\hat{t})$ *satisfies* $\tau(\hat{t}, q = 0) = \hat{t}$.

(2) Under the basis $\{T_{\mathbf{e}}\}_{\mathbf{e}\in\Lambda^+}$, there exists an invertible $N \times N$ matrix-valued formal series $B(\tau, z)$, the Birkhoff factorization, such that

$$\left(\partial^{z\mathbf{e}}I(\hat{t},z,z^{-1})\right) = \left(z\nabla J(\tau,z^{-1})\right)B(\tau,z),$$

where $(\partial^{ze} I)$ is the N × N matrix with $\partial^{ze} I$ as column vectors. The first column vectors are I and J respectively (string equation).

2. QUANTUM LERAY-HIRSCH WITH NATURALITY

Consider the *local model* of a split P^r flop $f : X \rightarrow X'$ with data (S, F, F'), where

$$F = \bigoplus_{i=0}^{r} L_i$$
 and $F' = \bigoplus_{i=0}^{r} L'_i$.

The contraction $\psi : X \to \overline{X}$ has exceptional loci $\overline{\psi} : Z = P_S(F) \to S$ with $N = N_{Z/X} = \overline{\psi}^* F' \otimes \mathscr{O}_Z(-1)$. Similarly $Z' \subset X', N'$. $\overline{p} : X = P_Z(N \oplus \mathscr{O}) \xrightarrow{p} Z \xrightarrow{\overline{\psi}} S$ is a *double projective bundle*. For h, ξ being the *relative hyperplane classes*,

$$H(X) = H(S)[h,\xi]/(f_F, f_{N\oplus \mathscr{O}}),$$

$$f_F = \prod_{i=0}^r a_i := \prod(h+L_i), \qquad f_{N\oplus \mathscr{O}} = b_{r+1} \prod_{i=0}^r b_i := \xi \prod(\xi - h + L'_i).$$

The graph correspondence $\mathscr{F} = [\overline{\Gamma}_f] \in A(X \times X')$ induces an isomorphism $\mathscr{F} : H(X) \cong H(X')$ as groups: $\mathscr{F}\overline{t}h^i\xi^j = \overline{t}(\mathscr{F}h)^i(\mathscr{F}\xi)^j = \overline{t}(\xi' - h')^i\xi'^j$ if $i \leq r$. \mathscr{F} also preserves the Poincaré pairing, but not the ring structure.

Theorem 2.1 (LLW 2010). \mathscr{F} induces an isomorphism of quantum rings $QH(X) \cong QH(X')$ under analytic continuations in the Kähler moduli formally defined by

$$\mathscr{F}q^{\beta} = q^{\mathscr{F}\beta}, \qquad \beta \in NE(X).$$

Let γ , ℓ be the fiber line class in $X \to Z \to S$. Then $\mathscr{F}\gamma = \gamma' + \ell'$, but $\mathscr{F}\ell = -\ell' \notin NE(X')$. So analytic continuations are necessary. Any $\beta \in A_1(X)$ is of the form $\beta = \beta_S + d\ell + d_2\gamma$ where $\beta_S \in A_1(S)$ is identified with its *canonical lift* in $A_1(Z)$ with $(\beta_S.h) = 0 = (\beta_S.\xi)$. h, ξ are dual to ℓ, γ hence $\beta.h = d, \beta.\xi = d_2$.

Lemma 2.2 (Minimal lift). *Given a primitive* $\beta_S \in NE(S)$, $\beta \in NE(X)$ *if and only if*

$$d \geq -\mu$$
 and $d_2 \geq -\nu$,

where $\mu = \max_i \{ (\beta_S.L_i) \}, \mu' = \max_i \{ (\beta_S.L'_i) \}, and \nu = \max \{ \mu + \mu', 0 \}.$

For general β_S , the above numerical condition defines $NE^I(X)$. The minimal one β_S^I is called the *I*-minimal lift. Back to $\bar{p} : X \to S$ where $D = t^1h + t^2\xi$ and $\bar{t} \in H(S)$. $I_{\beta}^{X/S} = I_{\beta}^{Z/S}I_{\beta}^{X/Z}$ is given by

$$\prod_{i=0}^{r} \frac{1}{\prod\limits_{m=1}^{\beta.a_i} (a_i + mz)} \prod_{i=0}^{r} \frac{1}{\prod\limits_{m=1}^{\beta.b_i} (b_i + mz)} \frac{1}{\prod\limits_{m=1}^{\beta.\xi} (\xi + mz)}$$

Although $I_{\beta}^{X/S}$ makes sense for any $\beta \in N_1(X)$, it is non-trivial only if $\beta \in NE^I(X)$.

Proposition 2.3 (Picard–Fuchs system on *X*/*S*). $\Box_{\ell}I^{X} = 0$ and $\Box_{\gamma}I^{X} = 0$, where

$$\Box_{\ell} = \prod_{j=0}^{r} z \partial_{a_j} - q^{\ell} e^{t^1} \prod_{j=0}^{r} z \partial_{b_j}, \qquad \Box_{\gamma} = z \partial_{\xi} \prod_{j=0}^{r} z \partial_{b_j} - q^{\gamma} e^{t^2}.$$

Proposition 2.4 (*F*-invariance of PF ideal).

$$\mathscr{F}\langle \Box^{X}_{\ell}, \Box^{X}_{\gamma} \rangle \cong \langle \Box^{X'}_{\ell'}, \Box^{X'}_{\gamma'} \rangle$$

Theorem 2.5 (Quantum Leray–Hirsch). (1) (*I-Lifting*) The QDE on QH(S) can be lifted to H(X) as

$$z\partial_i z\partial_j I = \sum_{k,\bar{\beta}} q^{\bar{\beta}^I} e^{(D.\bar{\beta}^I)} \bar{C}^k_{ij,\bar{\beta}}(\bar{t}) \, z\partial_k D_{\bar{\beta}^I}(z) I,$$

where $D_{\bar{\beta}^{I}}(z)$ is an operator depending only on $\bar{\beta}^{I}$. Any other lifting is related to it modulo the Picard–Fuchs system.

(2) Together with the Picard–Fuchs \Box_{ℓ} and \Box_{γ} , they determine a first order matrix system under the naive quantization basis:

$$z\partial_a(\partial^{z\mathbf{e}}I) = (\partial^{z\mathbf{e}}I)C_a(z,q), \quad \text{where } t^a = t^1, t^2 \text{ or } \overline{t}^i$$

(3) For β ∈ NE(S), its coefficients in C_a are polynomial in q^γe^{t²}, q^ℓe^{t¹} and f(q^ℓe^{t¹}), and formal in ī. Here f(q) := q/(1 - (-1)^{r+1}q) is the "origin of analytic continuation" satisfying f(q) + f(q⁻¹) = (-1)^r.

(4) The system is \mathscr{F} -invariant, though in general $\mathscr{F}\overline{\beta}^{I} \neq \overline{\beta}^{I'}$.

Finally we construct a gauge transformation *B* to eliminate all the *z* dependence of C_a in the \mathscr{F} -invariant system $z\partial_a(\partial^{ze}I) = (\partial^{ze}I)C_a$. *B* is nothing more than the Birkhoff factorization matrix in $\partial^{ze}I(\hat{t}) = (z\nabla J)(\tau)B(\tau)$ valid at the generalized mirror point $\tau = \tau(\hat{t})$. The above \mathscr{F} -invariance leads to $\mathscr{F}\tau = \tau'$ and $\mathscr{F}B(\tau) = B'(\tau')$, hence the glueing of Dubrovin connections under analytic continuations.

C.-L. WANG: TAIDA INSTITUTE OF MATHEMATICAL SCIENCES (TIMS), NATIONAL TAIWAN UNI-VERSITY, TAIPEI 10617, TAIWAN

E-mail address: dragon@math.ntu.edu.tw