Critical Points of Green Functions on Flat Tori

CHIN-LUNG WANG

Department of Mathematics
Taiwan University

NUS
January 12, 2011

- This is a joint project with Chang-Shou Lin.
- This is a joint project with Chang-Shou Lin.
- The Green function $G(z, w)$ on a flat torus $T=\mathbb{C} / \Lambda$, $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ is the unique function on $T \times T$ which satisfies

$$
-\triangle_{z} G(z, w)=\delta_{w}(z)-\frac{1}{|T|}
$$

and $\int_{T} G(z, w) d A=0$, where δ_{w} is the Dirac measure with singularity at $z=w$.

- This is a joint project with Chang-Shou Lin.
- The Green function $G(z, w)$ on a flat torus $T=\mathbb{C} / \Lambda$, $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ is the unique function on $T \times T$ which satisfies

$$
-\triangle_{z} G(z, w)=\delta_{w}(z)-\frac{1}{|T|}
$$

and $\int_{T} G(z, w) d A=0$, where δ_{w} is the Dirac measure with singularity at $z=w$.

- Because of the translation invariance of \triangle_{z}, we have $G(z, w)=G(z-w, 0)$ and it is enough to consider the Green function $G(z):=G(z, 0)$. Asymptotically

$$
G(z)=-\frac{1}{2 \pi} \log |z|+o\left(|z|^{2}\right)
$$

- Not surprisingly, G can be explicitly solved in terms of elliptic functions.
- Not surprisingly, G can be explicitly solved in terms of elliptic functions.
- Let $z=x+i y, \tau:=\omega_{2} / \omega_{1}=a+i b \in \mathbb{H}$ and $q=e^{\pi i \tau}$ with $|q|=e^{-\pi b}<1$. Then

$$
\vartheta_{1}(z ; \tau)=-i \sum_{n=-\infty}^{\infty}(-1)^{n} q^{\left(n+\frac{1}{2}\right)^{2}} e^{(2 n+1) \pi i z}
$$

- Not surprisingly, G can be explicitly solved in terms of elliptic functions.
- Let $z=x+i y, \tau:=\omega_{2} / \omega_{1}=a+i b \in \mathbb{H}$ and $q=e^{\pi i \tau}$ with $|q|=e^{-\pi b}<1$. Then

$$
\vartheta_{1}(z ; \tau)=-i \sum_{n=-\infty}^{\infty}(-1)^{n} q^{\left(n+\frac{1}{2}\right)^{2}} e^{(2 n+1) \pi i z}
$$

- (Neron):

$$
G(z)=-\frac{1}{2 \pi} \log \left|\frac{\vartheta_{1}(z)}{\vartheta_{1}^{\prime}(0)}\right|+\frac{1}{2 b} y^{2} .
$$

- Not surprisingly, G can be explicitly solved in terms of elliptic functions.
- Let $z=x+i y, \tau:=\omega_{2} / \omega_{1}=a+i b \in \mathbb{H}$ and $q=e^{\pi i \tau}$ with $|q|=e^{-\pi b}<1$. Then

$$
\vartheta_{1}(z ; \tau)=-i \sum_{n=-\infty}^{\infty}(-1)^{n} q^{\left(n+\frac{1}{2}\right)^{2}} e^{(2 n+1) \pi i z}
$$

- (Neron):

$$
G(z)=-\frac{1}{2 \pi} \log \left|\frac{\vartheta_{1}(z)}{\vartheta_{1}^{\prime}(0)}\right|+\frac{1}{2 b} y^{2} .
$$

- The structure of G, especially its critical points and critical values, will be the fundamental objects that interest us.
$\nabla G(z)=0 \Longleftrightarrow$

$$
\frac{\partial G}{\partial z} \equiv \frac{-1}{4 \pi}\left(\left(\log \vartheta_{1}\right)_{z}+2 \pi i \frac{y}{b}\right)=0 .
$$

- Recall $\wp(z)=1 / z^{2}+\cdots, \zeta(z)=-\int^{z} \wp=1 / z+\cdots$. and $\sigma(z)=\exp \int^{z} \zeta(w) d w=z+\cdots$ is entire, odd with a simple zero on lattice points and

$$
\sigma\left(z+\omega_{i}\right)=-e^{\eta_{i}\left(z+\frac{1}{2} \omega_{i}\right)} \sigma(z)
$$

with $\eta_{i}=\zeta\left(z+\omega_{i}\right)-\zeta(z)=2 \zeta\left(\frac{1}{2} \omega_{i}\right)$ the quasi-periods.

- Recall $\wp(z)=1 / z^{2}+\cdots, \zeta(z)=-\int^{z} \wp=1 / z+\cdots$. and $\sigma(z)=\exp \int^{z} \zeta(w) d w=z+\cdots$ is entire, odd with a simple zero on lattice points and

$$
\sigma\left(z+\omega_{i}\right)=-e^{\eta_{i}\left(z+\frac{1}{2} \omega_{i}\right)} \sigma(z)
$$

with $\eta_{i}=\zeta\left(z+\omega_{i}\right)-\zeta(z)=2 \zeta\left(\frac{1}{2} \omega_{i}\right)$ the quasi-periods.

- Indeed

$$
\sigma(z)=e^{\eta_{1} z^{2} / 2} \frac{\vartheta_{1}(z)}{\vartheta_{1}^{\prime}(0)}
$$

Hence $\zeta(z)-\eta_{1} z=\left(\log \vartheta_{1}(z)\right)_{z}$.

- Recall $\wp(z)=1 / z^{2}+\cdots, \zeta(z)=-\int^{z} \wp=1 / z+\cdots$. and $\sigma(z)=\exp \int^{z} \zeta(w) d w=z+\cdots$ is entire, odd with a simple zero on lattice points and

$$
\sigma\left(z+\omega_{i}\right)=-e^{\eta_{i}\left(z+\frac{1}{2} \omega_{i}\right)} \sigma(z)
$$

with $\eta_{i}=\zeta\left(z+\omega_{i}\right)-\zeta(z)=2 \zeta\left(\frac{1}{2} \omega_{i}\right)$ the quasi-periods.

- Indeed

$$
\sigma(z)=e^{\eta_{1} z^{2} / 2} \frac{\vartheta_{1}(z)}{\vartheta_{1}^{\prime}(0)} .
$$

Hence $\zeta(z)-\eta_{1} z=\left(\log \vartheta_{1}(z)\right)_{z}$.

- Let $z=t \omega_{1}+s \omega_{2}$. By Legendre relation $\eta_{1} \omega_{2}-\eta_{2} \omega_{1}=2 \pi i$, $\nabla G(z)=0$ if and only if

$$
G_{z}=-\frac{1}{4 \pi}\left(\zeta\left(t \omega_{1}+s \omega_{2}\right)-\left(t \eta_{1}+s \eta_{2}\right)\right)=0 .
$$

- Recall $\wp(z)=1 / z^{2}+\cdots, \zeta(z)=-\int^{z} \wp=1 / z+\cdots$. and $\sigma(z)=\exp \int^{z} \zeta(w) d w=z+\cdots$ is entire, odd with a simple zero on lattice points and

$$
\sigma\left(z+\omega_{i}\right)=-e^{\eta_{i}\left(z+\frac{1}{2} \omega_{i}\right)} \sigma(z)
$$

with $\eta_{i}=\zeta\left(z+\omega_{i}\right)-\zeta(z)=2 \zeta\left(\frac{1}{2} \omega_{i}\right)$ the quasi-periods.

- Indeed

$$
\sigma(z)=e^{\eta_{1} z^{2} / 2} \frac{\vartheta_{1}(z)}{\vartheta_{1}^{\prime}(0)}
$$

Hence $\zeta(z)-\eta_{1} z=\left(\log \vartheta_{1}(z)\right)_{z}$.

- Let $z=t \omega_{1}+s \omega_{2}$. By Legendre relation $\eta_{1} \omega_{2}-\eta_{2} \omega_{1}=2 \pi i$, $\nabla G(z)=0$ if and only if

$$
G_{z}=-\frac{1}{4 \pi}\left(\zeta\left(t \omega_{1}+s \omega_{2}\right)-\left(t \eta_{1}+s \eta_{2}\right)\right)=0 .
$$

- Question: How many critical points can G have in T ?
- The 3 half periods are trivial critical points. Indeed,

$$
G(z)=G(-z) \Rightarrow \nabla G(z)=-\nabla G(-z) .
$$

Let $p=\frac{1}{2} \omega_{i}$ then $p=-p$ in T and so $\nabla G(p)=-\nabla G(p)=0$.

- The 3 half periods are trivial critical points. Indeed,

$$
G(z)=G(-z) \Rightarrow \nabla G(z)=-\nabla G(-z) .
$$

Let $p=\frac{1}{2} \omega_{i}$ then $p=-p$ in T and so $\nabla G(p)=-\nabla G(p)=0$.

- Other critical points must appear in pair $\pm z \in T$.
- The 3 half periods are trivial critical points. Indeed,

$$
G(z)=G(-z) \Rightarrow \nabla G(z)=-\nabla G(-z)
$$

Let $p=\frac{1}{2} \omega_{i}$ then $p=-p$ in T and so $\nabla G(p)=-\nabla G(p)=0$.

- Other critical points must appear in pair $\pm z \in T$.
- Example

For rectangular tori $T:\left(\omega_{1}, \omega_{2}\right)=(1, \tau=b i), \frac{1}{2} \omega_{i}, i=1,2,3$ are precisely all the critical points.

- The 3 half periods are trivial critical points. Indeed,

$$
G(z)=G(-z) \Rightarrow \nabla G(z)=-\nabla G(-z) .
$$

Let $p=\frac{1}{2} \omega_{i}$ then $p=-p$ in T and so $\nabla G(p)=-\nabla G(p)=0$.

- Other critical points must appear in pair $\pm z \in T$.
- Example

For rectangular tori $T:\left(\omega_{1}, \omega_{2}\right)=(1, \tau=b i), \frac{1}{2} \omega_{i}, i=1,2,3$ are precisely all the critical points.

- Example

For the torus T with $\tau=e^{\pi i / 3}$, there are at least 5 critical points: 3 half periods $\frac{1}{2} \omega_{i}$ plus $\frac{1}{3} \omega_{3}, \frac{2}{3} \omega_{3}$.

- The 3 half periods are trivial critical points. Indeed,

$$
G(z)=G(-z) \Rightarrow \nabla G(z)=-\nabla G(-z) .
$$

Let $p=\frac{1}{2} \omega_{i}$ then $p=-p$ in T and so $\nabla G(p)=-\nabla G(p)=0$.

- Other critical points must appear in pair $\pm z \in T$.
- Example

For rectangular tori $T:\left(\omega_{1}, \omega_{2}\right)=(1, \tau=b i), \frac{1}{2} \omega_{i}, i=1,2,3$ are precisely all the critical points.

- Example

For the torus T with $\tau=e^{\pi i / 3}$, there are at least 5 critical points: 3 half periods $\frac{1}{2} \omega_{i}$ plus $\frac{1}{3} \omega_{3}, \frac{2}{3} \omega_{3}$.

- However, it is very difficult to study the critical points from the "simple equation" $\zeta\left(t \omega_{1}+s \omega_{2}\right)=t \eta_{1}+s \eta_{2}$ directly.
- In PDE, the geometry of $G(z, w)$ plays fundamental role in the non-linear mean field equations (= Liouville equation with singular RHS): On a flat torus T it takes the form $\left(\rho \in \mathbb{R}_{+}\right)$

$$
\Delta u+\rho e^{u}=\rho \delta_{0} .
$$

- In PDE, the geometry of $G(z, w)$ plays fundamental role in the non-linear mean field equations (= Liouville equation with singular RHS): On a flat torus T it takes the form ($\rho \in \mathbb{R}_{+}$)

$$
\Delta u+\rho e^{u}=\rho \delta_{0} .
$$

- It is originated from the prescribed curvature problem (Nirenberg problem, constant K with cone metrics etc.).
- In PDE, the geometry of $G(z, w)$ plays fundamental role in the non-linear mean field equations (= Liouville equation with singular RHS): On a flat torus T it takes the form ($\rho \in \mathbb{R}_{+}$)

$$
\Delta u+\rho e^{u}=\rho \delta_{0} .
$$

- It is originated from the prescribed curvature problem (Nirenberg problem, constant K with cone metrics etc.).
- It is the mean field limit of Euler flow in statistic physics.
- In PDE, the geometry of $G(z, w)$ plays fundamental role in the non-linear mean field equations (= Liouville equation with singular RHS): On a flat torus T it takes the form ($\rho \in \mathbb{R}_{+}$)

$$
\Delta u+\rho e^{u}=\rho \delta_{0} .
$$

- It is originated from the prescribed curvature problem (Nirenberg problem, constant K with cone metrics etc.).
- It is the mean field limit of Euler flow in statistic physics.
- It is related to the self-dual condensation of abelian Chern-Simons-Higgs model (Nolasco and Tarantello 1999).
- In PDE, the geometry of $G(z, w)$ plays fundamental role in the non-linear mean field equations (= Liouville equation with singular RHS): On a flat torus T it takes the form $\left(\rho \in \mathbb{R}_{+}\right)$

$$
\triangle u+\rho e^{u}=\rho \delta_{0}
$$

- It is originated from the prescribed curvature problem (Nirenberg problem, constant K with cone metrics etc.).
- It is the mean field limit of Euler flow in statistic physics.
- It is related to the self-dual condensation of abelian Chern-Simons-Higgs model (Nolasco and Tarantello 1999).
- In Arithmetic Geometry, $G(z, w)$ also appears in the Arakelov geometry as the intersection number of two sections z and w of the arithmetic surface $\mathcal{T} \rightarrow \operatorname{Spec} \mathbb{Z} \cup\{\infty\}$ at the ∞ fiber $\mathcal{T}_{\infty}=$ Riemann surface T.
- When $\rho \notin 8 \pi \mathbb{N}$, it has been proved by C.-C. Chen and C.-S. Lin that the Leray-Schauder degree is

$$
d_{\rho}=k+1 \quad \text { for } \quad \rho \in(8 k \pi, 8(k+1) \pi),
$$

so the equation has solutions, regardless on the shape of T.

- When $\rho \notin 8 \pi \mathbb{N}$, it has been proved by C.-C. Chen and C.-S. Lin that the Leray-Schauder degree is

$$
d_{\rho}=k+1 \quad \text { for } \quad \rho \in(8 k \pi, 8(k+1) \pi),
$$

so the equation has solutions, regardless on the shape of T.

- The first interesting case remained is when $\rho=8 \pi$ where the degree theory fails completely.
- When $\rho \notin 8 \pi \mathbb{N}$, it has been proved by C.-C. Chen and C.-S. Lin that the Leray-Schauder degree is

$$
d_{\rho}=k+1 \quad \text { for } \quad \rho \in(8 k \pi, 8(k+1) \pi),
$$

so the equation has solutions, regardless on the shape of T.

- The first interesting case remained is when $\rho=8 \pi$ where the degree theory fails completely.
- Theorem (Existence Criterion)

For $\rho=8 \pi$, the mean field equation on a flat torus $T=\mathbb{C} / \Lambda$:

$$
\triangle u+\rho e^{u}=\rho \delta_{0}
$$

has solutions if and only if the G has more than 3 critical points. Moreover, each extra pair of critical points $\pm p$ corresponds to an one parameter family of solutions u_{λ}, where $\lim _{\lambda \rightarrow \infty} u_{\lambda}(z)$ blows up precisely at $z \equiv \pm p$.

- Structure of solutions and relation to extra critical points.
- Structure of solutions and relation to extra critical points.
- Liouville's theorem says that any solution u of $\triangle u+e^{u}=0$ in a simply connected domain $\Omega \subset \mathbb{C}$ must be of the form

$$
u=c_{1}+\log \frac{\left|f^{\prime}\right|^{2}}{\left(1+|f|^{2}\right)^{2}},
$$

where f, called a developing map of u, is meromorphic in Ω.

- Structure of solutions and relation to extra critical points.
- Liouville's theorem says that any solution u of $\triangle u+e^{u}=0$ in a simply connected domain $\Omega \subset \mathbb{C}$ must be of the form

$$
u=c_{1}+\log \frac{\left|f^{\prime}\right|^{2}}{\left(1+|f|^{2}\right)^{2}},
$$

where f, called a developing map of u, is meromorphic in Ω.

- It is straightforward to show that

$$
\mathcal{S}(f) \equiv \frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}=u_{z z}-\frac{1}{2} u_{z}^{2}
$$

I.e., any developing map f of u has the same Schwartz derivative.

- Thus for any two developing maps f and \tilde{f} of u, there exists

$$
S=\left(\begin{array}{cc}
p & -\bar{q} \\
q & \bar{p}
\end{array}\right) \in \operatorname{PSU}(2) \text { such that } \tilde{f}=S f:=\frac{p f-\bar{q}}{q f+\bar{p}} .
$$

- Thus for any two developing maps f and \tilde{f} of u, there exists

$$
S=\left(\begin{array}{cc}
p & -\bar{q} \\
q & \bar{p}
\end{array}\right) \in \operatorname{PSU}(2) \text { such that } \tilde{f}=S f:=\frac{p f-\bar{q}}{q f+\bar{p}} .
$$

- Geometrically the Liouville equation is simply the prescribing Gauss curvature equation in the new metric $g=e^{u} g_{0}$ over D, where g_{0} is the Euclidean flat metric on \mathbb{C} :

$$
\begin{equation*}
K_{g}=-e^{-u} \triangle u=\rho . \tag{1}
\end{equation*}
$$

- Thus for any two developing maps f and \tilde{f} of u, there exists

$$
S=\left(\begin{array}{cc}
p & -\bar{q} \\
q & \bar{p}
\end{array}\right) \in \operatorname{PSU(2)} \text { such that } \tilde{f}=S f:=\frac{p f-\bar{q}}{q f+\bar{p}} .
$$

- Geometrically the Liouville equation is simply the prescribing Gauss curvature equation in the new metric $g=e^{u} g_{0}$ over D, where g_{0} is the Euclidean flat metric on \mathbb{C} :

$$
\begin{equation*}
K_{g}=-e^{-u} \triangle u=\rho . \tag{1}
\end{equation*}
$$

- It is then clear the inverse stereographic projection $\mathrm{C} \rightarrow S_{1 / \sqrt{\rho}}^{2} \backslash N$

$$
(X, Y, Z)=\frac{1}{\sqrt{\rho}}\left(\frac{2 x}{1+x^{2}+y^{2}}, \frac{2 y}{1+x^{2}+y^{2}}, \frac{-1+x^{2}+y^{2}}{1+x^{2}+y^{2}}\right)
$$

provides solutions to (1).

- In this case the conformal factor is

$$
e^{u}=\left(\frac{2}{\sqrt{\rho}\left(1+|z|^{2}\right)}\right)^{2}
$$

- In this case the conformal factor is

$$
e^{u}=\left(\frac{2}{\sqrt{\rho}\left(1+|z|^{2}\right)}\right)^{2} .
$$

- Starting from this special solution for $D=\Delta$, the unit disk, general solutions on simply connected domain D can be obtained by using the Riemann mapping theorem via a holomorphic map

$$
f: D \rightarrow \Delta .
$$

- In this case the conformal factor is

$$
e^{u}=\left(\frac{2}{\sqrt{\rho}\left(1+|z|^{2}\right)}\right)^{2}
$$

- Starting from this special solution for $D=\Delta$, the unit disk, general solutions on simply connected domain D can be obtained by using the Riemann mapping theorem via a holomorphic map

$$
f: D \rightarrow \Delta .
$$

- The conformal factor is then the one as expected:

$$
e^{u}=\frac{4\left|f^{\prime}\right|^{2}}{\rho\left(1+|f|^{2}\right)^{2}}
$$

- Given Λ, for $\rho=4 \pi l, l \in \mathbb{N}$, by analytic continuing the f^{\prime} s among simply connected domains via $\operatorname{PSU}(2), f$ is glued into a meromorphic function on \mathbb{C}. (Not yet on $T=\mathbb{C} / \Lambda$.)
- Given Λ, for $\rho=4 \pi l, l \in \mathbb{N}$, by analytic continuing the f^{\prime} s among simply connected domains via $\operatorname{PSU}(2), f$ is glued into a meromorphic function on \mathbb{C}. (Not yet on $T=\mathbb{C} / \Lambda$.)
- Let $z=e^{2 \pi i w}: \mathbb{H} \rightarrow \Delta^{\times}$and let $F(w)=f(z)=f\left(e^{2 \pi i w}\right)$. Then

$$
F(w+1)=S F(w)
$$

for some $S \in \operatorname{PSU}(2)$. Up to a conjugation, we may start with another f so that

$$
F(w+1)=e^{-2 i \theta} F(w)
$$

for some $\theta \in[0, \pi)$.

- Given Λ, for $\rho=4 \pi l, l \in \mathbb{N}$, by analytic continuing the f^{\prime} s among simply connected domains via $\operatorname{PSU(2),f\text {isgluedintoa}}$ meromorphic function on \mathbb{C}. (Not yet on $T=\mathbb{C} / \Lambda$.)
- Let $z=e^{2 \pi i w}: \mathbb{H} \rightarrow \Delta^{\times}$and let $F(w)=f(z)=f\left(e^{2 \pi i w}\right)$. Then

$$
F(w+1)=S F(w)
$$

for some $S \in \operatorname{PSU}(2)$. Up to a conjugation, we may start with another f so that

$$
F(w+1)=e^{-2 i \theta} F(w)
$$

for some $\theta \in[0, \pi)$.

- Now let $\Psi(w)=e^{-2 i \theta w} F(w)$. Then

$$
\Psi(w+1)=e^{-2 i \theta(w+1)} F(w+1)=e^{-2 i \theta w} F(w)=\Psi(w) .
$$

Hence $\Psi(w)$ comes from a meromorphic function $\psi(z)$ on Δ^{\times}.

- If ψ has essential singularity at $z=0$ then $f=z^{\theta / \pi} \psi$ takes almost all values in \mathbb{C} infinitely many times.
- If ψ has essential singularity at $z=0$ then $f=z^{\theta / \pi} \psi$ takes almost all values in \mathbb{C} infinitely many times.
- But

$$
\int_{\Delta^{\times}} \frac{4\left|f^{\prime}\right|^{2}}{\left(1+|f|^{2}\right)^{2}} d A=\rho \int_{\Delta^{\times}} e^{u} d A<\infty
$$

with the LHS being the spherical area under the inverse stereographic projections, covered by $f\left(\Delta^{\times}\right)$.

- If ψ has essential singularity at $z=0$ then $f=z^{\theta / \pi} \psi$ takes almost all values in \mathbb{C} infinitely many times.
- But

$$
\int_{\Delta^{\times}} \frac{4\left|f^{\prime}\right|^{2}}{\left(1+|f|^{2}\right)^{2}} d A=\rho \int_{\Delta^{\times}} e^{u} d A<\infty
$$

with the LHS being the spherical area under the inverse stereographic projections, covered by $f\left(\Delta^{\times}\right)$.

- This implies that ψ is meromorphic on the whole Δ.
- If ψ has essential singularity at $z=0$ then $f=z^{\theta / \pi} \psi$ takes almost all values in \mathbb{C} infinitely many times.
- But

$$
\int_{\Delta^{\times}} \frac{4\left|f^{\prime}\right|^{2}}{\left(1+|f|^{2}\right)^{2}} d A=\rho \int_{\Delta^{\times}} e^{u} d A<\infty
$$

with the LHS being the spherical area under the inverse stereographic projections, covered by $f\left(\Delta^{\times}\right)$.

- This implies that ψ is meromorphic on the whole Δ.
- For $\rho=4 \pi l$ with $l \in \mathbb{N}$, the asymptotic of u at $z=0$ is given by

$$
u(z) \sim 2 l \log |z|
$$

since $\rho / 2 \pi=2 l$.

- Let $n=\operatorname{ord}_{z=0} \psi \in \mathbb{Z}$ and $\psi=z^{n} g$. Then $f=z^{a} g$ with $a=n+\theta / \pi$ and

$$
u=c_{1}+2 \log \frac{|z|^{a-1}\left|a g+z g^{\prime}\right|}{1+\left|z^{a} g\right|^{2}} .
$$

- Let $n=\operatorname{ord}_{z=0} \psi \in \mathbb{Z}$ and $\psi=z^{n} g$. Then $f=z^{a} g$ with $a=n+\theta / \pi$ and

$$
u=c_{1}+2 \log \frac{|z|^{a-1}\left|a g+z g^{\prime}\right|}{1+\left|z^{a} g\right|^{2}} .
$$

- If $a=0$ then $n=0$ and $\theta=0$ (since $0 \leq \theta<\pi$). In this case $f=g=\psi$ is holomorphic at 0 . So we may assume that $a \neq 0$.
- Let $n=\operatorname{ord}_{z=0} \psi \in \mathbb{Z}$ and $\psi=z^{n} g$. Then $f=z^{a} g$ with $a=n+\theta / \pi$ and

$$
u=c_{1}+2 \log \frac{|z|^{a-1}\left|a g+z g^{\prime}\right|}{1+\left|z^{a} g\right|^{2}} .
$$

- If $a=0$ then $n=0$ and $\theta=0$ (since $0 \leq \theta<\pi$). In this case $f=g=\psi$ is holomorphic at 0 . So we may assume that $a \neq 0$.
- The asymptotic is then given by

$$
u(z) \sim 2(|a|-1) \log |z| .
$$

In particular, $|a|=l+1 \in \mathbb{N}$, which forces $\theta=0$ because $0 \leq \theta<\pi$. Moreover $f=z^{ \pm(l+1)} g$ is meromorphic at $z=0$.

- First constraint from the double periodicity:

$$
f\left(z+\omega_{1}\right)=S_{1} f, \quad f\left(z+\omega_{2}\right)=S_{2} f
$$

with $S_{1} S_{2}= \pm S_{2} S_{1}$.

- First constraint from the double periodicity:

$$
f\left(z+\omega_{1}\right)=S_{1} f, \quad f\left(z+\omega_{2}\right)=S_{2} f
$$

with $S_{1} S_{2}= \pm S_{2} S_{1}$.

- Second constraint from the Dirac singularity:
- First constraint from the double periodicity:

$$
f\left(z+\omega_{1}\right)=S_{1} f, \quad f\left(z+\omega_{2}\right)=S_{2} f
$$

with $S_{1} S_{2}= \pm S_{2} S_{1}$.

- Second constraint from the Dirac singularity:
(1) Let $f(z)$ has a pole at z_{0}.

If $z_{0} \equiv 0(\bmod \Lambda)$ then the order $r=l+1$. If $z_{0} \not \equiv 0(\bmod \Lambda)$ then $r=1$.

- First constraint from the double periodicity:

$$
f\left(z+\omega_{1}\right)=S_{1} f, \quad f\left(z+\omega_{2}\right)=S_{2} f
$$

with $S_{1} S_{2}= \pm S_{2} S_{1}$.

- Second constraint from the Dirac singularity:
(1) Let $f(z)$ has a pole at z_{0}.

If $z_{0} \equiv 0(\bmod \Lambda)$ then the order $r=l+1$. If $z_{0} \not \equiv 0(\bmod \Lambda)$ then $r=1$.
(2) Let $f(z)=a_{0}+a_{r}\left(z-z_{0}\right)^{r}+\cdots$ be regular at z_{0}.

If $z_{0} \equiv 0(\bmod \Lambda)$ then $r=l+1$.
If $z_{0} \not \equiv 0(\bmod \Lambda)$ then $r=1$.

- May assume that $S_{1}=\left(\begin{array}{cc}e^{i \theta_{1}} & 0 \\ 0 & e^{-i \theta_{1}}\end{array}\right), S_{2}=\left(\begin{array}{cc}p & -\bar{q} \\ q & \bar{p}\end{array}\right)$, then

$$
f\left(z+\omega_{1}\right)=e^{2 i \theta_{1}} f(z), \quad f\left(z+\omega_{2}\right)=S_{2} f(z) .
$$

$S_{1} S_{2}= \pm S_{2} S_{1}$ leaves with essentially 2 possibilities:

- May assume that $S_{1}=\left(\begin{array}{cc}e^{i \theta_{1}} & 0 \\ 0 & e^{-i \theta_{1}}\end{array}\right), S_{2}=\left(\begin{array}{cc}p & -\bar{q} \\ q & \bar{p}\end{array}\right)$, then

$$
f\left(z+\omega_{1}\right)=e^{2 i \theta_{1}} f(z), \quad f\left(z+\omega_{2}\right)=S_{2} f(z) .
$$

$S_{1} S_{2}= \pm S_{2} S_{1}$ leaves with essentially 2 possibilities:
(1) $p=0$ and $e^{i \theta_{1}}= \pm i \quad$ (may further assume $q=1$).

- May assume that $S_{1}=\left(\begin{array}{cc}e^{i \theta_{1}} & 0 \\ 0 & e^{-i \theta_{1}}\end{array}\right), S_{2}=\left(\begin{array}{cc}p & -\bar{q} \\ q & \bar{p}\end{array}\right)$, then

$$
f\left(z+\omega_{1}\right)=e^{2 i \theta_{1}} f(z), \quad f\left(z+\omega_{2}\right)=S_{2} f(z) .
$$

$S_{1} S_{2}= \pm S_{2} S_{1}$ leaves with essentially 2 possibilities:
(1) $p=0$ and $e^{i \theta_{1}}= \pm i \quad$ (may further assume $q=1$).
(2) $q=0 \quad$ (and so $p=e^{i \theta_{2}}$).

- May assume that $S_{1}=\left(\begin{array}{cc}e^{i \theta_{1}} & 0 \\ 0 & e^{-i \theta_{1}}\end{array}\right), S_{2}=\left(\begin{array}{cc}p & -\bar{q} \\ q & \bar{p}\end{array}\right)$, then

$$
f\left(z+\omega_{1}\right)=e^{2 i \theta_{1}} f(z), \quad f\left(z+\omega_{2}\right)=S_{2} f(z) .
$$

$S_{1} S_{2}= \pm S_{2} S_{1}$ leaves with essentially 2 possibilities:
(1) $p=0$ and $e^{i \theta_{1}}= \pm i \quad$ (may further assume $q=1$).
(2) $q=0 \quad$ (and so $p=e^{i \theta_{2}}$).

- The essential object to consider is the logarithmic derivative

$$
g(z)=(\log f(z))^{\prime}=\frac{f^{\prime}(z)}{f(z)}
$$

Any zero/pole of f gives a simple pole of g. The residue is $+1 /-1$ outside Λ.

- Type I (Topological) Solutions:

$$
f\left(z+\omega_{1}\right)=-f(z), \quad f\left(z+\omega_{2}\right)=\frac{1}{f(z)} .
$$

Then $g=(\log f)^{\prime}$ is elliptic on $T^{\prime}=\mathbb{C} / \Lambda^{\prime}, \Lambda^{\prime}=\mathbb{Z} \omega_{1}+\mathbb{Z} 2 \omega_{2}$ with

$$
g\left(z+\omega_{2}\right)=-g(z)
$$

- Type I (Topological) Solutions:

$$
f\left(z+\omega_{1}\right)=-f(z), \quad f\left(z+\omega_{2}\right)=\frac{1}{f(z)} .
$$

Then $g=(\log f)^{\prime}$ is elliptic on $T^{\prime}=\mathbb{C} / \Lambda^{\prime}, \Lambda^{\prime}=\mathbb{Z} \omega_{1}+\mathbb{Z} 2 \omega_{2}$ with

$$
g\left(z+\omega_{2}\right)=-g(z)
$$

- For $\rho=4 \pi l$, since g must have zeros, we get $f(z)=f(0)+a_{l+1} z^{l+1}+\cdots$ with $f(0) \neq 0$ and g has its only zeros at $z=0, \omega_{2} \bmod \Lambda^{\prime}$, both of order l.
- Type I (Topological) Solutions:

$$
f\left(z+\omega_{1}\right)=-f(z), \quad f\left(z+\omega_{2}\right)=\frac{1}{f(z)} .
$$

Then $g=(\log f)^{\prime}$ is elliptic on $T^{\prime}=\mathbb{C} / \Lambda^{\prime}, \Lambda^{\prime}=\mathbb{Z} \omega_{1}+\mathbb{Z} 2 \omega_{2}$ with

$$
g\left(z+\omega_{2}\right)=-g(z)
$$

- For $\rho=4 \pi l$, since g must have zeros, we get $f(z)=f(0)+a_{l+1} z^{l+1}+\cdots$ with $f(0) \neq 0$ and g has its only zeros at $z=0, \omega_{2} \bmod \Lambda^{\prime}$, both of order l.
- So g has $2 l$ simple poles coming from p_{1}, \ldots, p_{l} (simple zeros of f) and q_{1}, \ldots, q_{l} (simple poles of f) on T^{\prime}. May set

$$
q_{i} \equiv p_{i}+\omega_{2}, \quad i=1, \ldots, l .
$$

The first condition forces that $\sum p_{i} \equiv \frac{1}{2} \omega_{1}(\bmod \Lambda)$.

- Using elliptic functions on T^{\prime} and the addition theorem,

$$
\begin{aligned}
g(z) & =\sum_{i=1}^{l}\left(\zeta\left(z-p_{i}\right)-\zeta\left(z-p_{i}-\omega_{2}\right)\right)+l \eta_{2} / 2 \\
& =-\frac{1}{2} \sum_{i=1}^{l} \frac{\wp^{\prime}\left(z-p_{i}\right)}{\wp\left(z-p_{i}\right)-e_{2}} \quad\left(e_{i}:=\wp\left(\frac{1}{2} \omega_{i}^{\prime}\right)\right) .
\end{aligned}
$$

- Using elliptic functions on T^{\prime} and the addition theorem,

$$
\begin{aligned}
g(z) & =\sum_{i=1}^{l}\left(\zeta\left(z-p_{i}\right)-\zeta\left(z-p_{i}-\omega_{2}\right)\right)+l \eta_{2} / 2 \\
& =-\frac{1}{2} \sum_{i=1}^{l} \frac{\wp^{\prime}\left(z-p_{i}\right)}{\wp\left(z-p_{i}\right)-e_{2}} \quad\left(e_{i}:=\wp\left(\frac{1}{2} \omega_{i}^{\prime}\right)\right) .
\end{aligned}
$$

- Lemma (ODE for Slopes)

The slope function $s:=\wp^{\prime} /\left(\wp-e_{2}\right)$ satisfies the $O D E$:

$$
s^{\prime \prime}=\frac{1}{2} s^{3}-6 e_{2} s
$$

- Using elliptic functions on T^{\prime} and the addition theorem,

$$
\begin{aligned}
g(z) & =\sum_{i=1}^{l}\left(\zeta\left(z-p_{i}\right)-\zeta\left(z-p_{i}-\omega_{2}\right)\right)+l \eta_{2} / 2 \\
& =-\frac{1}{2} \sum_{i=1}^{l} \frac{\wp^{\prime}\left(z-p_{i}\right)}{\wp\left(z-p_{i}\right)-e_{2}} \quad\left(e_{i}:=\wp\left(\frac{1}{2} \omega_{i}^{\prime}\right)\right) .
\end{aligned}
$$

- Lemma (ODE for Slopes)

The slope function $s:=\wp^{\prime} /\left(\wp-e_{2}\right)$ satisfies the $O D E$:

$$
s^{\prime \prime}=\frac{1}{2} s^{3}-6 e_{2} s
$$

- Then $0=g(0)=g^{\prime \prime}(0)=g^{(4)}(0)=\cdots$ leads to that all odd symmetric function of slopes $s\left(p_{i}\right)$'s are zero. This leads to the evenness of solutions.
- The remaining condition $0=g^{\prime}(0)=g^{\prime \prime \prime}(0)=g^{(5)}(0)=\ldots$ leads to the polynomial equations of $\wp\left(p_{i}\right)$'s using the half period formula on $T^{\prime}=\mathbb{C} / \mathbb{Z} \omega_{2}+\mathbb{Z} 2 \omega_{2}$:

$$
\wp\left(z+\omega_{2}\right)=e_{2}+\frac{\left(e_{1}-e_{2}\right)\left(e_{3}-e_{2}\right)}{\wp(z)-e_{2}} .
$$

- The remaining condition $0=g^{\prime}(0)=g^{\prime \prime \prime}(0)=g^{(5)}(0)=\cdots$ leads to the polynomial equations of $\wp\left(p_{i}\right)$'s using the half period formula on $T^{\prime}=\mathbb{C} / \mathbb{Z} \omega_{2}+\mathbb{Z} 2 \omega_{2}$:

$$
\wp\left(z+\omega_{2}\right)=e_{2}+\frac{\left(e_{1}-e_{2}\right)\left(e_{3}-e_{2}\right)}{\wp(z)-e_{2}} .
$$

- Theorem

All type I solutions u are even with $\sum_{i=1}^{l} p_{i} \equiv \frac{1}{2} \omega_{1}(\bmod \Lambda)$.

- The remaining condition $0=g^{\prime}(0)=g^{\prime \prime \prime}(0)=g^{(5)}(0)=\cdots$ leads to the polynomial equations of $\wp\left(p_{i}\right)$'s using the half period formula on $T^{\prime}=\mathbb{C} / \mathbb{Z} \omega_{2}+\mathbb{Z} 2 \omega_{2}$:

$$
\wp\left(z+\omega_{2}\right)=e_{2}+\frac{\left(e_{1}-e_{2}\right)\left(e_{3}-e_{2}\right)}{\wp(z)-e_{2}} .
$$

- Theorem

All type I solutions u are even with $\sum_{i=1}^{l} p_{i} \equiv \frac{1}{2} \omega_{1}(\bmod \Lambda)$.
(1) No type I solutions for $\rho=8 k \pi, k \in \mathbb{N}$.

- The remaining condition $0=g^{\prime}(0)=g^{\prime \prime \prime}(0)=g^{(5)}(0)=\cdots$ leads to the polynomial equations of $\wp\left(p_{i}\right)$'s using the half period formula on $T^{\prime}=\mathbb{C} / \mathbb{Z} \omega_{2}+\mathbb{Z} 2 \omega_{2}$:

$$
\wp\left(z+\omega_{2}\right)=e_{2}+\frac{\left(e_{1}-e_{2}\right)\left(e_{3}-e_{2}\right)}{\wp(z)-e_{2}} .
$$

- Theorem

All type I solutions u are even with $\sum_{i=1}^{l} p_{i} \equiv \frac{1}{2} \omega_{1}(\bmod \Lambda)$.
(1) No type I solutions for $\rho=8 k \pi, k \in \mathbb{N}$.
(2) For $\rho=4 \pi l$ with $l=2 k+1(k \geq 0)$, f has simple zeros at $\omega_{1} / 2$ and $\pm p_{i}$ for $i=1, \ldots, k$. When $k=0(\rho=4 \pi), \exists$! solution.

- The remaining condition $0=g^{\prime}(0)=g^{\prime \prime \prime}(0)=g^{(5)}(0)=\cdots$ leads to the polynomial equations of $\wp\left(p_{i}\right)$'s using the half period formula on $T^{\prime}=\mathbb{C} / \mathbb{Z} \omega_{2}+\mathbb{Z} 2 \omega_{2}$:

$$
\wp\left(z+\omega_{2}\right)=e_{2}+\frac{\left(e_{1}-e_{2}\right)\left(e_{3}-e_{2}\right)}{\wp(z)-e_{2}} .
$$

- Theorem

All type I solutions u are even with $\sum_{i=1}^{l} p_{i} \equiv \frac{1}{2} \omega_{1}(\bmod \Lambda)$.
(1) No type I solutions for $\rho=8 k \pi, k \in \mathbb{N}$.
(2) For $\rho=4 \pi l$ with $l=2 k+1(k \geq 0)$, f has simple zeros at $\omega_{1} / 2$ and $\pm p_{i}$ for $i=1, \ldots, k$. When $k=0(\rho=4 \pi), \exists$! solution.
(3) The equation is algebraically completely integrable: For

$$
\begin{aligned}
x_{i} & :=\wp\left(p_{i}\right)-e_{2} \text { and } \tilde{x}_{i}:=\wp\left(q_{i}=p_{i}+\omega_{2}\right)-e_{2}, \\
& \sum_{i=1}^{k} x_{i}^{m}-\sum_{i=1}^{k} \tilde{x}_{i}^{m}=c_{m}, \quad x_{m} \tilde{x}_{m}=\mu, \quad m=1, \ldots, k .
\end{aligned}
$$

- Type II (Blow-Up) Solutions:

$$
f\left(z+\omega_{1}\right)=e^{2 i \theta_{1}} f(z), \quad f\left(z+\omega_{2}\right)=e^{2 i \theta_{2}} f(z)
$$

- Type II (Blow-Up) Solutions:

$$
f\left(z+\omega_{1}\right)=e^{2 i \theta_{1}} f(z), \quad f\left(z+\omega_{2}\right)=e^{2 i \theta_{2}} f(z)
$$

- If f satisfies this, $e^{\lambda} f$ also satisfies this for any $\lambda \in \mathbb{R}$. Thus

$$
u_{\lambda}(z)=c_{1}+\log \frac{e^{2 \lambda}\left|f^{\prime}(z)\right|^{2}}{\left(1+e^{2 \lambda}|f(z)|^{2}\right)^{2}}
$$

is a scaling family of solutions with developing maps $\left\{e^{\lambda} f\right\}$.

- Type II (Blow-Up) Solutions:

$$
f\left(z+\omega_{1}\right)=e^{2 i \theta_{1}} f(z), \quad f\left(z+\omega_{2}\right)=e^{2 i \theta_{2}} f(z)
$$

- If f satisfies this, $e^{\lambda} f$ also satisfies this for any $\lambda \in \mathbb{R}$. Thus

$$
u_{\lambda}(z)=c_{1}+\log \frac{e^{2 \lambda}\left|f^{\prime}(z)\right|^{2}}{\left(1+e^{2 \lambda}|f(z)|^{2}\right)^{2}}
$$

is a scaling family of solutions with developing maps $\left\{e^{\lambda} f\right\}$.

- The blow-up points for $\lambda \rightarrow \infty$ (resp. $-\infty$) are precisely zeros (resp. poles) of $f(z)$.
- Type II (Blow-Up) Solutions:

$$
f\left(z+\omega_{1}\right)=e^{2 i \theta_{1}} f(z), \quad f\left(z+\omega_{2}\right)=e^{2 i \theta_{2}} f(z)
$$

- If f satisfies this, $e^{\lambda} f$ also satisfies this for any $\lambda \in \mathbb{R}$. Thus

$$
u_{\lambda}(z)=c_{1}+\log \frac{e^{2 \lambda}\left|f^{\prime}(z)\right|^{2}}{\left(1+e^{2 \lambda}|f(z)|^{2}\right)^{2}}
$$

is a scaling family of solutions with developing maps $\left\{e^{\lambda} f\right\}$.

- The blow-up points for $\lambda \rightarrow \infty$ (resp. $-\infty$) are precisely zeros (resp. poles) of $f(z)$.
- $g=(\log f)^{\prime}$ is elliptic on $T=\mathbf{C} / \Lambda$, so $g(z)=A \frac{\sigma^{l}(z)}{\prod_{i=1}^{l} \sigma\left(z-p_{i}\right)}$.

Then $l=2 k$ since $\sum \operatorname{res}_{p_{i}} g=\sum(\pm 1)=0$.

- Periods integrals. Let L_{1}, L_{2} be the fundamental 1-cycles. Then

$$
F_{i}(p):=\int_{L_{i}} \Omega(\xi, p) d \xi
$$

where $p \not \equiv \frac{1}{2} \omega_{i}(\bmod \Lambda)$ and

$$
\begin{aligned}
\Omega(\xi, p) & =A \frac{\sigma^{2}(\xi)}{\sigma(\xi-p) \sigma(\xi+p)}=\frac{\wp^{\prime}(p)}{\wp(\xi)-\wp(p)} \\
& =2 \zeta(p)-\zeta(p+\xi)-\zeta(p-\xi) .
\end{aligned}
$$

- Periods integrals. Let L_{1}, L_{2} be the fundamental 1-cycles. Then

$$
F_{i}(p):=\int_{L_{i}} \Omega(\xi, p) d \xi
$$

where $p \not \equiv \frac{1}{2} \omega_{i}(\bmod \Lambda)$ and

$$
\begin{aligned}
\Omega(\xi, p) & =A \frac{\sigma^{2}(\xi)}{\sigma(\xi-p) \sigma(\xi+p)}=\frac{\wp^{\prime}(p)}{\wp(\xi)-\wp(p)} \\
& =2 \zeta(p)-\zeta(p+\xi)-\zeta(p-\xi) .
\end{aligned}
$$

- Lemma (Periods Integrals and Critical Points) Let $p=t \omega_{1}+s \omega_{2}$, then up to $4 \pi i \mathbb{N}$,

$$
\begin{aligned}
& F_{1}(p)=2\left(\omega_{1} \zeta(p)-\eta_{1} p\right)=2\left(\zeta-t \eta_{1}-s \eta_{2}\right) \omega_{1}-4 \pi i s, \\
& F_{2}(p)=2\left(\omega_{2} \zeta(p)-\eta_{2} p\right)=2\left(\zeta-t \eta_{1}-s \eta_{2}\right) \omega_{2}+4 \pi i t .
\end{aligned}
$$

- E.g. when $\rho=8 \pi(l=2), p_{1}=p, p_{2}=-p, g(z)=\Omega(z, p)$ and

$$
f(z)=f(0) \exp \int_{0}^{z} g(\xi) d \xi
$$

gives rise to a type II solution $\Longleftrightarrow F_{i}(p) \in i \mathbb{R} \Longleftrightarrow \nabla G(p)=0$.

- E.g. when $\rho=8 \pi(l=2), p_{1}=p, p_{2}=-p, g(z)=\Omega(z, p)$ and

$$
f(z)=f(0) \exp \int_{0}^{z} g(\xi) d \xi
$$

gives rise to a type II solution $\Longleftrightarrow F_{i}(p) \in i \mathbb{R} \Longleftrightarrow \nabla G(p)=0$.

- Theorem (Uniqueness)

For $\rho=8 \pi$, the mean field equation $\triangle u+\rho e^{u}=\rho \delta_{0}$ on a flat torus has at most one solution up to scaling.

- E.g. when $\rho=8 \pi(l=2), p_{1}=p, p_{2}=-p, g(z)=\Omega(z, p)$ and

$$
f(z)=f(0) \exp \int_{0}^{z} g(\xi) d \xi
$$

gives rise to a type II solution $\Longleftrightarrow F_{i}(p) \in i \mathbb{R} \Longleftrightarrow \nabla G(p)=0$.

- Theorem (Uniqueness)

For $\rho=8 \pi$, the mean field equation $\triangle u+\rho e^{u}=\rho \delta_{0}$ on a flat torus has at most one solution up to scaling.

- Theorem (Number of Critical Points)

The Green function has either 3 or 5 critical points.

- E.g. when $\rho=8 \pi(l=2), p_{1}=p, p_{2}=-p, g(z)=\Omega(z, p)$ and

$$
f(z)=f(0) \exp \int_{0}^{z} g(\xi) d \xi
$$

gives rise to a type II solution $\Longleftrightarrow F_{i}(p) \in i \mathbb{R} \Longleftrightarrow \nabla G(p)=0$.

- Theorem (Uniqueness)

For $\rho=8 \pi$, the mean field equation $\triangle u+\rho e^{u}=\rho \delta_{0}$ on a flat torus has at most one solution up to scaling.

- Theorem (Number of Critical Points)

The Green function has either 3 or 5 critical points.

- We were unable to prove it from the critical point equation.
- Our proof on uniqueness is based on the method of symmetrization applied to the linearized equation at the unique even solution in u_{λ} (choose $\lambda=-\log |f(0)|$ to get $f(0)=1$).
- Our proof on uniqueness is based on the method of symmetrization applied to the linearized equation at the unique even solution in u_{λ} (choose $\lambda=-\log |f(0)|$ to get $f(0)=1$).
- In fact we prove uniqueness of the one parameter family

$$
\triangle u+\rho e^{u}=\rho \delta_{0}, \quad \rho \in[4 \pi, 8 \pi]
$$

on T within even solutions, by the continuity method.

- Our proof on uniqueness is based on the method of symmetrization applied to the linearized equation at the unique even solution in u_{λ} (choose $\lambda=-\log |f(0)|$ to get $f(0)=1$).
- In fact we prove uniqueness of the one parameter family

$$
\triangle u+\rho e^{u}=\rho \delta_{0}, \quad \rho \in[4 \pi, 8 \pi]
$$

on T within even solutions, by the continuity method.

- Theorem

For $\rho \in[4 \pi, 8 \pi]$, Let u be a solution of $\triangle u+\rho e^{u}=\rho \delta_{0}, u(-z)=u(z)$ in T (so $\int_{T} e^{u}=1$.) Then the linearized equation at u :

$$
\left\{\begin{array}{l}
\triangle \varphi+\rho e^{u} \varphi=0 \\
\varphi(z)=\varphi(-z)
\end{array} \quad \text { in } T\right.
$$

is non-degenerate, i.e. it has only trivial solution $\varphi \equiv 0$.

Sketch of the main idea:

Use $x=\wp(z)$ as two-fold covering map $T \rightarrow S^{2}=\mathbb{C} \cup\{\infty\}$ and require \wp being an isometry:

$$
e^{u(z)}|d z|^{2}=e^{v(x)}|d x|^{2}=e^{v(x)}\left|\wp^{\prime}(z)\right|^{2}|d z|^{2} .
$$

Namely we set

$$
v(x):=u(z)-\log \left|\wp^{\prime}(z)\right|^{2} \quad \text { and } \quad \psi(x):=\varphi(z) .
$$

There are four branch points on $\mathbb{C} \cup\{\infty\}, p_{0}=\wp(0)=\infty$ and $p_{j}=e_{j}:=\wp\left(\omega_{j} / 2\right)$ for $j=1,2,3$. Since $\wp^{\prime}(z)^{2}=4 \prod_{j=1}^{3}\left(x-e_{j}\right)$, then

$$
\left\{\begin{array}{l}
\triangle v+\rho e^{v}=\sum_{j=1}^{3}(-2 \pi) \delta_{p_{j}} \quad \text { in } \mathbb{R}^{2} \\
\triangle \psi+\rho e^{v} \psi=0
\end{array}\right.
$$

At infinity let $y=1 / x$. The isometry reads as

$$
\begin{gathered}
e^{u(z)}|d z|^{2}=e^{w(y)}|d y|^{2}=e^{w(y)} \frac{\left|\wp^{\prime}(z)\right|^{2}}{|\wp(z)|^{4}}|d z|^{2}, \\
w(y)=u(z)-\log \frac{\left|\wp^{\prime}(z)\right|^{2}}{|\wp(z)|^{4}} \sim\left(\frac{\rho}{2 \pi}-2\right) \frac{1}{2} \log |y| .
\end{gathered}
$$

Thus $\rho \geq 4 \pi$ implies that p_{0} is a singularity with non-negative α_{0}.
By replacing u by $u+\log \rho$ etc., we may (and will) replace the ρ in the left hand side by 1 for simplicity. The total measure on T and \mathbb{R}^{2} are then given by

$$
\int_{T} e^{u} d z=\rho \leq 8 \pi \quad \text { and } \quad \int_{\mathbb{R}^{2}} e^{v} d x=\frac{\rho}{2} \leq 4 \pi .
$$

The proof is then reduced to:

Theorem (Symmetrization Lemma)

Let $\Omega \subset \mathbb{R}^{2}$ be a simply-connected domain and let v be a solution of

$$
\Delta v+e^{v}=\sum_{j=1}^{N} \alpha_{j} \delta_{p_{j}}
$$

in Ω. Suppose that the first eigenvalue of $\triangle+e^{v}$ is zero on Ω with φ the first eigenfunction. If the isoperimetric inequality with respect to $d s^{2}=e^{v}|d x|^{2}$:

$$
2 \ell^{2}(\partial \omega) \geq m(\omega)(4 \pi-m(\omega))
$$

holds for all level domains $\omega=\{\varphi \geq t\}$ with $t \geq 0$, then

$$
\int_{\Omega} e^{v} d x \geq 2 \pi
$$

Moreover, the isoperimetric inequality holds if there is only one negative α_{j} and $\alpha_{j}=-1$.

- It remains to study the geometry of critical points over \mathcal{M}_{1}.
- It remains to study the geometry of critical points over \mathcal{M}_{1}.
- It relies on methods of deformations in \mathcal{M}_{1} and the degeneracy analysis of half periods.
- It remains to study the geometry of critical points over \mathcal{M}_{1}.
- It relies on methods of deformations in \mathcal{M}_{1} and the degeneracy analysis of half periods.
- Theorem (Moduli dependence ${ }^{* *}$)
(1) Let $\Omega_{3} \subset \mathcal{M}_{1} \cup\{\infty\} \cong S^{2}$ (resp. Ω_{5}) be the set of tori with 3 (resp. 5) critical points, then $\Omega_{3} \cup\{\infty\}$ is closed containing $i \mathbb{R}$, Ω_{5} is open containing the vertical line $\left[e^{\pi i / 3}, i \infty\right)$.
(2) Both Ω_{3} and Ω_{5} are simply connected with $C:=\partial \Omega_{3}=\partial \Omega_{5}$ homeomorphic to S^{1} containing ∞.
(3) Moreover, the extra critical points are split out from some half period point when the tori move from Ω_{3} to Ω_{5} across C.

