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I This is a joint project with Chang-Shou Lin.

I The Green function G(z, w) on a flat torus T = C/Λ,
Λ = Zω1 + Zω2 is the unique function on T× T which satisfies

−4zG(z, w) = δw(z)− 1
|T|

and
∫

T G(z, w) dA = 0, where δw is the Dirac measure with
singularity at z = w.

I Because of the translation invariance of4z, we have
G(z, w) = G(z−w, 0) and it is enough to consider the Green
function G(z) := G(z, 0). Asymptotically

G(z) = − 1
2π

log |z|+ o(|z|2).
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I Not surprisingly, G can be explicitly solved in terms of elliptic
functions.

I Let z = x + iy, τ := ω2/ω1 = a + ib ∈H and q = eπiτ with
|q| = e−πb < 1. Then

ϑ1(z; τ) = −i
∞

∑
n=−∞

(−1)nq(n+ 1
2 )2

e(2n+1)πiz.

I (Neron):

G(z) = − 1
2π

log
∣∣∣∣ ϑ1(z)
ϑ′1(0)

∣∣∣∣+ 1
2b

y2.

I The structure of G, especially its critical points and critical
values, will be the fundamental objects that interest us.
∇G(z) = 0⇐⇒

∂G
∂z
≡ −1

4π

(
(log ϑ1)z + 2πi

y
b

)
= 0.
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I Recall ℘(z) = 1/z2 + · · · , ζ(z) = −
∫ z

℘ = 1/z + · · · . and
σ(z) = exp

∫ z
ζ(w) dw = z + · · · is entire, odd with a simple

zero on lattice points and

σ(z + ωi) = −eηi(z+ 1
2 ωi)σ(z)

with ηi = ζ(z + ωi)− ζ(z) = 2ζ( 1
2 ωi) the quasi-periods.

I Indeed

σ(z) = eη1z2/2 ϑ1(z)
ϑ′1(0)

.

Hence ζ(z)− η1z = (log ϑ1(z))z.

I Let z = tω1 + sω2. By Legendre relation η1ω2 − η2ω1 = 2πi,
∇G(z) = 0 if and only if

Gz = − 1
4π

(
ζ(tω1 + sω2)− (tη1 + sη2)

)
= 0.

I Question: How many critical points can G have in T?
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I The 3 half periods are trivial critical points. Indeed,

G(z) = G(−z)⇒ ∇G(z) = −∇G(−z).

Let p = 1
2 ωi then p = −p in T and so ∇G(p) = −∇G(p) = 0.

I Other critical points must appear in pair ±z ∈ T.

I Example
For rectangular tori T: (ω1, ω2) = (1, τ = bi), 1

2 ωi, i = 1, 2, 3 are
precisely all the critical points.

I Example
For the torus T with τ = eπi/3, there are at least 5 critical points: 3 half
periods 1

2 ωi plus 1
3 ω3, 2

3 ω3.

I However, it is very difficult to study the critical points from the
“simple equation” ζ(tω1 + sω2) = tη1 + sη2 directly.
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I In PDE, the geometry of G(z, w) plays fundamental role in the
non-linear mean field equations (= Liouville equation with
singular RHS): On a flat torus T it takes the form (ρ ∈ R+)

4u + ρeu = ρδ0.

I It is originated from the prescribed curvature problem
(Nirenberg problem, constant K with cone metrics etc.).

I It is the mean field limit of Euler flow in statistic physics.

I It is related to the self-dual condensation of abelian
Chern-Simons-Higgs model (Nolasco and Tarantello 1999).

I In Arithmetic Geometry, G(z, w) also appears in the Arakelov
geometry as the intersection number of two sections z and w of
the arithmetic surface T → Spec Z∪ {∞} at the ∞ fiber T∞ =
Riemann surface T.
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I When ρ 6∈ 8πN, it has been proved by C.-C. Chen and C.-S. Lin
that the Leray-Schauder degree is

dρ = k + 1 for ρ ∈ (8kπ, 8(k + 1)π),

so the equation has solutions, regardless on the shape of T.

I The first interesting case remained is when ρ = 8π where the
degree theory fails completely.

I Theorem (Existence Criterion)
For ρ = 8π, the mean field equation on a flat torus T = C/Λ:

4u + ρeu = ρδ0

has solutions if and only if the G has more than 3 critical points. Moreover,
each extra pair of critical points ±p corresponds to an one parameter family
of solutions uλ, where limλ→∞ uλ(z) blows up precisely at z ≡ ±p.
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I Structure of solutions and relation to extra critical points.

I Liouville’s theorem says that any solution u of4u + eu = 0 in a
simply connected domain Ω ⊂ C must be of the form

u = c1 + log
|f ′|2

(1 + |f |2)2 ,

where f , called a developing map of u, is meromorphic in Ω.

I It is straightforward to show that

S(f ) ≡ f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

= uzz −
1
2

u2
z .

I.e., any developing map f of u has the same Schwartz
derivative.
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I Thus for any two developing maps f and f̃ of u, there exists

S =
(

p −q̄
q p̄

)
∈ PSU(2) such that f̃ = Sf :=

pf − q̄
qf + p̄

.

I Geometrically the Liouville equation is simply the prescribing
Gauss curvature equation in the new metric g = eug0 over D,
where g0 is the Euclidean flat metric on C:

Kg = −e−u4u = ρ. (1)

I It is then clear the inverse stereographic projection
C→ S2

1/
√

ρ\N

(X, Y, Z) =
1
√

ρ

( 2x
1 + x2 + y2 ,

2y
1 + x2 + y2 ,

−1 + x2 + y2

1 + x2 + y2

)
provides solutions to (1).
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I In this case the conformal factor is

eu =
( 2
√

ρ(1 + |z|2)

)2
.

I Starting from this special solution for D = ∆, the unit disk,
general solutions on simply connected domain D can be
obtained by using the Riemann mapping theorem via a
holomorphic map

f : D→ ∆.

I The conformal factor is then the one as expected:

eu =
4|f ′|2

ρ(1 + |f |2)2 .
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I Given Λ, for ρ = 4πl, l ∈N, by analytic continuing the f ’s
among simply connected domains via PSU(2), f is glued into a
meromorphic function on C. (Not yet on T = C/Λ.)

I Let z = e2πiw : H→ ∆× and let F(w) = f (z) = f (e2πiw). Then

F(w + 1) = SF(w)

for some S ∈ PSU(2). Up to a conjugation, we may start with
another f so that

F(w + 1) = e−2iθF(w)

for some θ ∈ [0, π).

I Now let Ψ(w) = e−2iθwF(w). Then

Ψ(w + 1) = e−2iθ(w+1)F(w + 1) = e−2iθwF(w) = Ψ(w).

Hence Ψ(w) comes from a meromorphic function ψ(z) on ∆×.
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with the LHS being the spherical area under the inverse
stereographic projections, covered by f (∆×).

I This implies that ψ is meromorphic on the whole ∆.

I For ρ = 4πl with l ∈N, the asymptotic of u at z = 0 is given by

u(z) ∼ 2l log |z|

since ρ/2π = 2l.
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I Let n = ordz=0 ψ ∈ Z and ψ = zng. Then f = zag with
a = n + θ/π and

u = c1 + 2 log
|z|a−1|ag + zg′|

1 + |zag|2 .

I If a = 0 then n = 0 and θ = 0 (since 0 ≤ θ < π). In this case
f = g = ψ is holomorphic at 0. So we may assume that a 6= 0.

I The asymptotic is then given by

u(z) ∼ 2(|a| − 1) log |z|.

In particular, |a| = l + 1 ∈N, which forces θ = 0 because
0 ≤ θ < π. Moreover f = z±(l+1)g is meromorphic at z = 0.
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I First constraint from the double periodicity:

f (z + ω1) = S1f , f (z + ω2) = S2f

with S1S2 = ±S2S1.

I Second constraint from the Dirac singularity:

(1) Let f (z) has a pole at z0.

If z0 ≡ 0 (mod Λ) then the order r = l + 1.
If z0 6≡ 0 (mod Λ) then r = 1.

(2) Let f (z) = a0 + ar(z− z0)r + · · · be regular at z0.

If z0 ≡ 0 (mod Λ) then r = l + 1.
If z0 6≡ 0 (mod Λ) then r = 1.
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I May assume that S1 =
(

eiθ1 0
0 e−iθ1

)
, S2 =

(
p −q̄
q p̄

)
, then

f (z + ω1) = e2iθ1 f (z), f (z + ω2) = S2f (z).

S1S2 = ±S2S1 leaves with essentially 2 possibilities:

(1) p = 0 and eiθ1 = ±i (may further assume q = 1).

(2) q = 0 (and so p = eiθ2 ).

I The essential object to consider is the logarithmic derivative

g(z) = (log f (z))′ =
f ′(z)
f (z)

.

Any zero/pole of f gives a simple pole of g. The residue is
+1/− 1 outside Λ.
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I Type I (Topological) Solutions:

f (z + ω1) = −f (z), f (z + ω2) =
1

f (z)
.

Then g = (log f )′ is elliptic on T′ = C/Λ′, Λ′ = Zω1 + Z2ω2
with

g(z + ω2) = −g(z).

I For ρ = 4πl, since g must have zeros, we get
f (z) = f (0) + al+1zl+1 + · · · with f (0) 6= 0 and g has its only
zeros at z = 0, ω2 mod Λ′, both of order l.

I So g has 2l simple poles coming from p1, . . . , pl (simple zeros of
f ) and q1, . . . , ql (simple poles of f ) on T′. May set

qi ≡ pi + ω2, i = 1, . . . , l.

The first condition forces that ∑ pi ≡ 1
2 ω1 (mod Λ).
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I Using elliptic functions on T′ and the addition theorem,

g(z) =
l

∑
i=1

(ζ(z− pi)− ζ(z− pi −ω2)) + lη2/2

= −1
2

l

∑
i=1

℘′(z− pi)
℘(z− pi)− e2

(ei := ℘( 1
2 ω′i)).

I Lemma (ODE for Slopes)
The slope function s := ℘′/(℘− e2) satisfies the ODE:

s′′ =
1
2

s3 − 6e2s.

I Then 0 = g(0) = g′′(0) = g(4)(0) = · · · leads to that all odd
symmetric function of slopes s(pi)’s are zero. This leads to the
evenness of solutions.
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I The remaining condition 0 = g′(0) = g′′′(0) = g(5)(0) = · · ·
leads to the polynomial equations of ℘(pi)’s using the half
period formula on T′ = C/Zω2 + Z2ω2:

℘(z + ω2) = e2 +
(e1 − e2)(e3 − e2)

℘(z)− e2
.

I Theorem
All type I solutions u are even with ∑l

i=1 pi ≡ 1
2 ω1 (mod Λ).

(1) No type I solutions for ρ = 8kπ, k ∈N.
(2) For ρ = 4πl with l = 2k + 1 (k ≥ 0), f has simple zeros at ω1/2

and ±pi for i = 1, . . . , k. When k = 0 (ρ = 4π), ∃! solution.
(3) The equation is algebraically completely integrable: For

xi := ℘(pi)− e2 and x̃i := ℘(qi = pi + ω2)− e2,

∑k
i=1 xm

i −∑k
i=1 x̃m

i = cm, xmx̃m = µ, m = 1, . . . , k.
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I Type II (Blow-Up) Solutions:

f (z + ω1) = e2iθ1 f (z), f (z + ω2) = e2iθ2 f (z).

I If f satisfies this, eλf also satisfies this for any λ ∈ R. Thus

uλ(z) = c1 + log
e2λ|f ′(z)|2

(1 + e2λ|f (z)|2)2

is a scaling family of solutions with developing maps {eλf}.
I The blow-up points for λ→ ∞ (resp. −∞) are precisely zeros

(resp. poles) of f (z).

I g = (log f )′ is elliptic on T = C/Λ, so g(z) = A
σl(z)

∏l
i=1 σ(z− pi)

.

Then l = 2k since ∑ respig = ∑(±1) = 0.
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I Periods integrals. Let L1, L2 be the fundamental 1-cycles. Then

Fi(p) :=
∫

Li

Ω(ξ, p) dξ,

where p 6≡ 1
2 ωi (mod Λ) and

Ω(ξ, p) = A
σ2(ξ)

σ(ξ − p)σ(ξ + p)
=

℘′(p)
℘(ξ)− ℘(p)

= 2ζ(p)− ζ(p + ξ)− ζ(p− ξ).

I Lemma (Periods Integrals and Critical Points)
Let p = tω1 + sω2, then up to 4πiN,

F1(p) = 2(ω1ζ(p)− η1p) = 2(ζ − tη1 − sη2)ω1 − 4πis,
F2(p) = 2(ω2ζ(p)− η2p) = 2(ζ − tη1 − sη2)ω2 + 4πit.
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I E.g. when ρ = 8π (l = 2), p1 = p, p2 = −p, g(z) = Ω(z, p) and

f (z) = f (0) exp
∫ z

0
g(ξ) dξ

gives rise to a type II solution⇐⇒ Fi(p) ∈ i R⇐⇒ ∇G(p) = 0.

I Theorem (Uniqueness)
For ρ = 8π, the mean field equation4u + ρeu = ρδ0 on a flat torus has at
most one solution up to scaling.

I Theorem (Number of Critical Points)
The Green function has either 3 or 5 critical points.

I We were unable to prove it from the critical point equation.
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I Our proof on uniqueness is based on the method of
symmetrization applied to the linearized equation at the unique
even solution in uλ (choose λ = − log |f (0)| to get f (0) = 1).
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I Theorem
For ρ ∈ [4π, 8π], Let u be a solution of4u + ρeu = ρδ0, u(−z) = u(z) in
T (so

∫
T eu = 1.) Then the linearized equation at u:{

4ϕ + ρeu ϕ = 0
ϕ(z) = ϕ(−z) in T

is non-degenerate, i.e. it has only trivial solution ϕ ≡ 0.
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Sketch of the main idea:

Use x = ℘(z) as two-fold covering map T → S2 = C∪ {∞} and
require ℘ being an isometry:

eu(z)|dz|2 = ev(x)|dx|2 = ev(x)|℘′(z)|2|dz|2.

Namely we set

v(x) := u(z)− log |℘′(z)|2 and ψ(x) := ϕ(z).

There are four branch points on C∪ {∞}, p0 = ℘(0) = ∞ and
pj = ej := ℘(ωj/2) for j = 1, 2, 3. Since ℘′(z)2 = 4 ∏3

j=1(x− ej), then{
4v + ρ ev = ∑3

j=1(−2π)δpj

4ψ + ρ evψ = 0
in R2



At infinity let y = 1/x. The isometry reads as

eu(z)|dz|2 = ew(y)|dy|2 = ew(y) |℘′(z)|2
|℘(z)|4 |dz|2,

w(y) = u(z)− log
|℘′(z)|2
|℘(z)|4 ∼

( ρ

2π
− 2
) 1

2
log |y|.

Thus ρ ≥ 4π implies that p0 is a singularity with non-negative α0.

By replacing u by u + log ρ etc., we may (and will) replace the ρ in the
left hand side by 1 for simplicity. The total measure on T and R2 are
then given by∫

T
eu dz = ρ ≤ 8π and

∫
R2

ev dx =
ρ

2
≤ 4π.

The proof is then reduced to:



Theorem (Symmetrization Lemma)
Let Ω ⊂ R2 be a simply-connected domain and let v be a solution of

4v + ev = ∑N
j=1 αjδpj

in Ω. Suppose that the first eigenvalue of4+ ev is zero on Ω with ϕ the
first eigenfunction. If the isoperimetric inequality with respect to
ds2 = ev|dx|2:

2`2(∂ω) ≥ m(ω)(4π −m(ω))

holds for all level domains ω = {ϕ ≥ t} with t ≥ 0, then∫
Ω

ev dx ≥ 2π.

Moreover, the isoperimetric inequality holds if there is only one negative αj
and αj = −1.



• It remains to study the geometry of critical points overM1.

• It relies on methods of deformations inM1 and the degeneracy
analysis of half periods.

I Theorem (Moduli dependence**)

(1) Let Ω3 ⊂M1 ∪ {∞} ∼= S2 (resp. Ω5) be the set of tori with 3
(resp. 5) critical points, then Ω3 ∪ {∞} is closed containing iR,
Ω5 is open containing the vertical line [eπi/3, i∞).

(2) Both Ω3 and Ω5 are simply connected with C := ∂Ω3 = ∂Ω5
homeomorphic to S1 containing ∞.

(3) Moreover, the extra critical points are split out from some half
period point when the tori move from Ω3 to Ω5 across C.
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