A Quantum Splitting Principle

Chin-Lung Wang
National Taiwan University
(Joint work with Lee, Lin and Qu)

USTC, AGAG 2017, Hefei
May 11, 2017

Contents

- QH and analytic continuations
- Quantum Leray-Hirsch in the split case
- Classical splitting and inversion of degenerations
- Strong virtual pushforward for split P^{1}-bundles
- Relative type I, II and ancestors
- Problem: non-split QLH?

Quantum cohomology

- Let X be smooth projective variety over \mathbb{C}.
- Basis $T_{i} \in H=H(X)$, dual $\left\{T^{i}\right\}, t=\sum t^{i} T_{i}, g_{i j}:=\left\langle T_{i}, T_{j}\right\rangle$.
- Genus zero GW formal prepotential $F(t)=\langle\langle \rangle\rangle$:

$$
\left\langle\left\langle a_{1}, \ldots, a_{m}\right\rangle\right\rangle=\sum_{\beta \in N E(X)} \sum_{n=0}^{\infty} \frac{q^{\beta}}{n!}\left\langle a_{1}, \ldots, a_{m}, t^{\otimes n}\right\rangle_{g=0, m+n, \beta}
$$

- 3-pt function $F_{i j k}=\partial_{i j k}^{3} F=\left\langle\left\langle T_{i}, T_{j}, T_{k}\right\rangle\right\rangle, A_{i j}^{k}:=F_{i j l} g^{l k}$, then

$$
T_{i} *_{t} T_{j}=\sum A_{i j}^{k}(t) T_{k} .
$$

- The Dubrovin connection ∇ on $T_{0} \hat{H} \otimes \mathbb{C} \llbracket q^{\bullet} \rrbracket \times \mathbb{A}_{z}^{1}$ is flat:

$$
\nabla=d-\frac{1}{z} \sum_{i} d t^{i} \otimes A_{i}=d-\frac{1}{z} \sum_{i} d t^{i} \otimes T_{i} *_{t}
$$

Gromov-Witten invariants

Let $\overline{\mathscr{M}}_{g, n}(X, \beta)$ be the moduli stack of n-pointed genus g stable maps $f:\left(C ; x_{1}, \ldots, x_{n}\right) \rightarrow X$ with $f_{*}[C]=\beta \in H_{2}(X)$. We have

$$
\operatorname{ev}_{j}: \overline{\mathscr{M}}_{g, n}(X, \beta) \rightarrow X, \quad f \mapsto f\left(x_{j}\right), \quad 1 \leq j \leq n
$$

For $\alpha_{j} \in H^{*}(X), \psi_{j}=c_{1}\left(x_{j}^{*} \omega_{\mathscr{C} / \overline{\mathscr{M}}_{g, n}(X, \beta)}\right)$, the descendant invariant is

$$
\left\langle\prod_{j=1}^{n} \tau_{k_{j}}\left(\alpha_{j}\right)\right\rangle_{g, \beta}^{X}=\int_{\left[\overline{\mathscr{M}}_{g, n}(X, \beta)\right]^{\mathrm{vir}}} \prod_{j} \mathrm{ev}_{j}^{*}\left(\alpha_{j}\right) \prod_{j} \psi_{j}^{k_{j}}
$$

When $2 g+n \geq 3$, there is a stabilization map

$$
\text { st : } \overline{\mathscr{M}}_{g, n}(X, \beta) \rightarrow \overline{\mathscr{M}}_{g, n} .
$$

Now let $\bar{\psi}_{j} \in H^{2}\left(\overline{\mathscr{M}}_{g, n}\right)$ instead. Then the ancestor invariant is

$$
\left\langle\prod_{j=1}^{n} \bar{\tau}_{k_{j}}\left(\alpha_{j}\right)\right\rangle_{g, \beta}^{X}=\int_{\left[\mathscr{M}_{g, n}(X, \beta)\right]^{\operatorname{vir}}} \prod_{j} \operatorname{ev}_{j}^{*}\left(\alpha_{j}\right) \mathrm{st}^{*}\left(\prod_{j} \bar{\psi}_{j}^{k_{j}}\right) .
$$

Cyclic \mathscr{D}^{z}-modules

$\triangleright t=t_{0}+t_{1}+t_{2}, t_{0} \in H^{0}, t_{1} \in H^{2}:$

$$
\begin{aligned}
J\left(t, z^{-1}\right) & =1+\frac{t}{z}+\sum_{\beta, n, i} \frac{q^{\beta}}{n!} T_{i}\left\langle\frac{T^{i}}{z\left(z-\psi_{1}\right)},(t)^{n}\right\rangle_{\beta} \\
& =e^{\frac{t}{z}}+\sum_{\beta \neq 0, n, i} \frac{q^{\beta}}{n!} e^{\frac{t_{0}+t_{1}}{z}+\left(t_{1} \cdot \beta\right)} T_{i}\left\langle\frac{T^{i}}{z\left(z-\psi_{1}\right)},\left(t_{2}\right)^{n}\right\rangle_{\beta}
\end{aligned}
$$

$-\mathrm{TRR} \Longrightarrow$ QDE (denote by $z \partial_{i}=z \partial_{t^{i}}=z \partial_{T_{i}}$):

$$
z \partial_{i} z \partial_{j} J=\sum_{k} A_{i j}^{k}(t) z \partial_{k} J .
$$

- $Q H(X) \equiv$ cyclic \mathscr{D}^{z}-module $\mathscr{D}^{z} J$ with basis (frame)

$$
z \partial_{i} J \equiv e^{t / z} T_{i} \quad\left(\bmod q^{\bullet}\right)=T_{i}+\cdots
$$

Given an ordinary P^{r}-flop

$$
f: X \rightarrow X^{\prime}
$$

the graph $\Gamma_{f} \subset X \times X^{\prime}$ induces an isomorphism of motives

$$
\mathscr{F}=\left[\bar{\Gamma}_{f}\right]_{*}: H(X) \xrightarrow{\sim} H\left(X^{\prime}\right),
$$

which preserves the Poincaré pairing. We set

$$
\mathscr{F}\left(q^{\beta}\right)=q^{\mathscr{F}(\beta)} .
$$

Theorem (Analytic continuation in q^{ℓ})
The correspondence \mathscr{F} induces an isomorphism of big quantum rings $Q H(X) \cong Q H\left(X^{\prime}\right)$ after an analytic continuation over the Novikov variable q^{ℓ} corresponding to the extremal ray. The results also hold for relative invariants and (relative) ancestors.

Step 1 [LLW 2008]

- Degeneration + Reconstruction reduce the proof to the case of local models.
- Let $\left(S, F, F^{\prime}\right)$ consist of two v.b.'s F and F^{\prime} of rank $r+1$ over a smooth S. The f-exc loci $Z \subset X$ and $Z^{\prime} \subset X^{\prime}$ are

$$
\bar{\psi}: Z=P_{S}(F) \rightarrow S, \quad \bar{\psi}^{\prime}: Z^{\prime}=P_{S}\left(F^{\prime}\right) \rightarrow S
$$

and the (projective) local model of f is

$$
X=P_{Z}(N \oplus \mathscr{O}) \stackrel{f}{-\rightarrow} X^{\prime}=P_{Z^{\prime}}\left(N^{\prime} \oplus \mathscr{O}\right)
$$

where $N=N_{Z / X} \cong \mathscr{O}_{Z}(-1) \otimes \bar{\psi}^{*} F^{\prime}$ and similarly for N^{\prime}.

- The flop f is the blowup of X along Z followed by contracting the exc-divisor $E=Z \times{ }_{S} Z^{\prime}$ along the $\bar{\psi}$-ruling.
- The local model of f is a functor over the triples $\left(S, F, F^{\prime}\right)^{\prime}$ s.

Step 2 [LLW 2011]

- For $F=\bigoplus_{i=0}^{r} L_{i}, F^{\prime}=\bigoplus_{i=0}^{r} L_{i}^{\prime}$ being split bundles, based on [Brown 2009], a quantum Leray-Hirsch theorem is proved:

$$
Q H(X) \cong \mathscr{D}^{z} p^{*} Q H(S)[\hat{h}, \hat{\zeta}] /\left(\hat{f}_{F}, \hat{f}_{N \oplus \mathcal{O}}\right)
$$

- Here $\hat{h}=z \partial_{h}, \hat{\xi}=z \partial_{\tilde{\xi}}$, and

$$
\begin{aligned}
\hat{f}_{F} & =\square_{\ell}
\end{aligned}=\prod z \partial_{h+L_{i}}-q^{\ell} e^{t^{h}} \prod z \partial_{\tilde{\zeta}-h+L_{i}^{\prime}},
$$

are the Picard-Fuchs operators which are the "quantized version" of the Chern polynomials.

- The pullback $p^{*} Q H(S)$ is an admissible lifting of the Dubrovin connection on $H(S)$ to $H(X)$:

Let $D=t^{h} h+t^{\xi} \xi$ be the relative divisor class, $\bar{t} \in H(S)$, then

$$
z \partial_{i} z \partial_{j}=\sum_{\bar{\beta} \in N E(S), k} q^{\beta} e^{D \cdot \bar{\beta}^{*}}\left[A_{S}\right]_{i j, \bar{\beta}}^{k}(\bar{t}) z \partial_{k} \mathbf{D}_{\beta}(z)
$$

for some admissible lifting $\beta \in N E(X)$ and differential operator

$$
\begin{aligned}
& \mathbf{D}_{\beta}(z):=\prod_{m=0}^{-\xi \cdot \beta-1}\left(z \partial_{\xi}-m z\right) \times \\
& \prod_{i=0}^{r}\left(\prod_{m=0}^{-\left(h+L_{i}\right) \cdot \beta-1}\left(z \partial_{h+L_{i}}-m z\right) \prod_{m=0}^{-\left(\xi-h+L_{i}^{\prime}\right) \cdot \beta-1}\left(z \partial_{\tilde{\zeta}-h+L_{i}^{\prime}}-m z\right)\right) .
\end{aligned}
$$

Here β is admissible if $-\left(h+L_{i}\right) \cdot \beta \geq 0,-\left(\xi-h+L_{i}^{\prime}\right) \cdot \beta \geq 0$ and $-\xi . \beta \geq 0$. It exists, but might not be unique. Nevertheless, $\mathbf{D}_{\beta}(z)$ is well-defined modulo the Picard-Fuchs ideal $\left\langle\square_{\ell}, \square_{\gamma}\right\rangle$.

- Now we may compute the first order system

$$
z \partial_{t^{a}}\left(\hat{T}_{i}\right)=\left(\hat{T}_{i}\right) C_{a}\left(z, q^{\bullet}\right), \quad t^{a}=t^{h}, t^{\xi}, \bar{t}^{i} .
$$

under the naive frame $\hat{T}_{i}=z \partial_{\bar{t}^{i}}\left(z \partial_{t^{k}}\right)^{j}\left(z \partial_{t^{\tilde{\xi}}}\right)^{k \prime} \mathrm{~s}$.

- This is "equivalent" to $\mathscr{D}^{z} J^{X}$ as \mathscr{D}^{z}-modules.
- The analytic continuation of \mathscr{D}^{z}-modules in q^{ℓ} follows easily from the above presentation and

$$
\mathscr{F}:\left\langle\square_{\ell}, \square_{\gamma}\right\rangle \cong\left\langle\square_{\ell^{\prime}}, \square_{\gamma^{\prime}}\right\rangle .
$$

- To get $Q H(X)$ from the \mathscr{D}^{z}-module, we need BF/GMT: Birkhoff factorization/generalized mirror transform.
- A technical induction was performed so that this procedure is compatible with analytic continuations.

Example

Let $f: X \longrightarrow X^{\prime}$ be a P^{1}-flop, $\left(S, F, F^{\prime}\right)=\left(P^{1}, \mathscr{O} \oplus \mathscr{O}, \mathscr{O} \oplus \mathscr{O}(1)\right)$. Write $H(S)=\mathbb{C}[p] /\left(p^{2}\right)$ with Chern polynomials

$$
f_{F}(h)=h^{2}, \quad f_{N \oplus \mathscr{O}}(\xi)=\xi(\xi-h)(\xi-h+p)
$$

Then $H=H(X)=H(S)[h, \xi] /\left(f_{F}, f_{N \oplus \mathscr{O}}\right)$ has dimension $N=12$ with basis $\left\{T_{i} \mid 0 \leq i \leq 11\right\}$ being

$$
1, h, \xi, p, h \xi, h p, \xi^{2}, \xi p, h \tilde{\xi}^{2}, h \xi p, \xi^{2} p, h \tilde{\xi}^{2} p
$$

Denote by $q_{1}=q^{\ell} e^{t^{1}}, q_{2}=q^{\gamma} e^{t^{2}}, \bar{q}=q^{b} e^{t^{3}}$, where $b=[S] \cong\left[P^{1}\right]$. The Picard-Fuchs operators are

$$
\begin{aligned}
& \square_{\ell}=\left(z \partial_{h}\right)^{2}-q_{1} z \partial_{\tilde{\xi}-h} z \partial_{\tilde{\xi}-h+p} \\
& \square_{\gamma}=z \partial_{\xi} z \partial_{\tilde{\xi}-h} z \partial_{\tilde{\xi}-h+p}-q_{2}
\end{aligned}
$$

They lead to a Grobner basis:

$$
\begin{aligned}
& \left(z \partial_{h}\right)^{2}=\mathbf{f}\left(q_{1}\right)\left(\left(z \partial_{\xi}\right)^{2}-z \partial_{p} z \partial_{h}+z \partial_{p} z \partial_{\xi}-2 z \partial_{h} z \partial_{\xi}\right) \\
& \left(z \partial_{\xi}\right)^{3}=q_{2}\left(1-q_{1}\right)-z \partial_{p}\left(z \partial_{\xi}\right)^{2}+2 z \partial_{h}\left(z \partial_{\xi}\right)^{2}+z \partial_{p} z \partial_{h} z \partial_{\xi}
\end{aligned}
$$

Here $\mathbf{f}(q):=q /\left(1-(-1)^{r+1} q\right)$ which satisfies

$$
\mathbf{f}(q)+\mathbf{f}\left(q^{-1}\right)=(-1)^{r} .
$$

$H(S)=\mathbb{C} \mathbf{1} \oplus \mathbb{C} p$ has only small parameter \bar{q} with QDE

$$
z \partial_{p}\left(z \partial_{1}, z \partial_{p}\right)=\left(z \partial_{1}, z \partial_{p}\right)\left(\begin{array}{ll}
0 & \bar{q} \\
1 & 0
\end{array}\right) .
$$

We have admissible lifting $b^{I}=b-\gamma$ and $\mathbf{D}_{b}=z \partial_{\xi} z \partial_{\tilde{\xi}-h}$, hence the lifted QDE:

$$
\left(z \partial_{\rho}\right)^{2}=\bar{q} q_{2}^{-1} z \partial_{\tilde{\xi}} z \partial_{\tilde{\xi}-h} .
$$

We calculate C_{a} in $z \partial_{a} \hat{T}_{j}=\sum_{k} C_{a j}^{k}(z) \hat{T}_{k}$.
Let $q^{*}=\bar{q} q_{2}^{-1}$ be the chosen admissible lift.
Set $\mathbf{g}=\mathbf{f}\left(q^{*}\right), A=q_{2}-q_{1} q_{2}, S=q_{2}+q_{1} q_{2}$. Then

and $C_{p}=$

A gauge transform is needed to remove all appearances of z. In this example GMT is not needed since the first column vectors in C_{a} 's are correct: $\hat{T}_{i} * \hat{\mathbf{1}}=\hat{T}_{i}$.

Step 3: splitting principle [LLQW 2014]

Proposition

Given a \mathbb{C}^{k}-bundle $F \rightarrow S$, there exists a sequence of blow-ups on smooth centers $\phi: \tilde{S} \rightarrow S$ such that there is a filtration of subbundles

$$
0=F_{0} \subset F_{1} \subset \ldots \subset F_{k}=\phi^{*} F
$$

with $\mathrm{rk} F_{i+1} / F_{i}=1$ for all $i ; \phi^{*} F$ can be deformed to a split bundle.
Proof.
Consider the complete flag bundle over S and a rational section s:

$$
\mathcal{F}_{S}(F) \xrightarrow{\sim} S .
$$

Let $\phi: \tilde{S} \rightarrow S$ resolves s. Then $\phi^{*} F$ admits a complete flag, and there is a deformation of sending all extension classes to 0 .

- In the classical setting

$$
p^{*}: H(S) \hookrightarrow H\left(\mathcal{F}_{S}(F)\right), \quad \phi^{*}: H(S) \hookrightarrow H(\tilde{S})
$$

are both ring monomorphisms.

- They lead to the classical splitting principle.
- Such functorialties fail for QH.
- Instead, we develop a quantum splitting principle to study

$$
Q H(S) \rightarrow Q H\left(\mathcal{F}_{S}(F)\right), \quad Q H(S) \rightarrow Q H(\tilde{S}) .
$$

- In particular, \mathscr{F}-invariance (analytic continuations)

$$
\mathscr{F}: Q H\left(X_{\left(S, F, F^{\prime}\right)}\right) \cong Q H\left(X_{\left(S, F, F^{\prime}\right)}^{\prime}\right)
$$

with $\mathscr{F} q^{\ell}=\left(q^{\ell^{\prime}}\right)^{-1}$ is reduced to the split case.

Starting with $\left(S_{0}, F_{0}, F_{0}^{\prime}\right)=\left(S, F, F^{\prime}\right)$, we construct $\left(S_{i}, F_{i}, F_{i}^{\prime}\right)_{i \geq 0}$:

$$
\phi_{i}: S_{i+1}=\mathrm{Bl}_{T_{i}} S_{i} \rightarrow S_{i}
$$

for some smooth $T_{i} \subset S_{i}, F_{i+1}=\phi_{i}^{*} F_{i}$ and $F_{i+1}^{\prime}=\phi_{i}^{*} F_{i}^{\prime}$.

- \mathscr{F}-invariance for $\left(S_{i}, F_{i}, F_{i}^{\prime}\right)$ can be reduced to the \mathscr{F}-invariance for the triple in the next stage $\left(S_{i+1}, F_{i+1}, F_{i+1}^{\prime}\right)$.
- The problem is solved for $S_{i+1}=\tilde{S}$ since GW theory is invariant under smooth deformations.

We consider the deformation to the normal cone for $T_{i} \hookrightarrow S_{i}$:

$$
\begin{gathered}
\Phi_{i}: \mathbf{S}=\mathrm{Bl}_{T_{i} \times\{0\}}\left(S_{i} \times \mathbb{A}^{1}\right) \rightarrow \mathbb{A}^{1}, \\
\mathbf{S}_{t}=S_{i} \sim S_{i+1} \cup_{E_{i}} P_{i}=\mathbf{S}_{0}, \\
E_{i}=\operatorname{Exc} \phi_{i}=P_{T_{i}}\left(N_{T_{i} / S_{i}}\right), \text { and } P_{i}=\operatorname{Exc} \Phi_{i}=P_{T_{i}}\left(N_{T_{i} / S_{i}} \oplus \mathscr{O}\right)
\end{gathered}
$$

- For simplicity, we write

$$
X_{S_{i}} \equiv X_{\left(S_{i}, F_{i}, F_{i}^{\prime}\right)}
$$

etc. when the bundles are from pullbacks (restrictions).

- The degeneration formula in GW theory says that

$$
\langle\alpha\rangle^{X_{S_{i}}}=\sum_{\vec{\mu}}\left\langle\alpha_{1} \mid \vec{\mu}\right\rangle^{\bullet\left(X_{S_{i+1}}, X_{E_{i}}\right)}\left\langle\alpha_{2} \mid \vec{\mu}^{\vee}\right\rangle^{\bullet\left(X_{P_{i}}, X_{E_{i}}\right)}
$$

where $\vec{\mu}=\left\{\left(\mu_{i}, e_{i}\right)\right\}$ is a $H\left(X_{E_{i}}\right)$-weighted partition.

- Thus, for both factors, we need to control
relative invariants for a smooth divisor pair $\left(X_{S}, X_{D}\right)$
by the absolute invariants of X_{S} and X_{D}.
- A trivial degeneration (to the normal cone)

$$
S \sim S \cup_{D} P, \quad P=P_{D}(N \oplus \mathscr{O}) \xrightarrow{\pi} D
$$

leads to

$$
\langle\alpha\rangle^{X_{S}}=\sum_{\vec{\mu}}\left\langle\alpha_{1} \mid \vec{\mu}\right\rangle^{\bullet\left(X_{S}, X_{D}\right)}\left\langle\alpha_{2} \mid \vec{\mu}^{\vee}\right\rangle^{\bullet\left(X_{P}, X_{D}\right)}
$$

- The problem becomes "inversion of this linear system", with coefficients being relative invariants of $\left(X_{P}, X_{D}\right)$.
- Here $X_{P} \rightarrow X_{D}$ is a split P^{1}-bundle arising from $\pi: P \rightarrow D$.
- Since $D=P_{T}\left(N_{T / S}\right) \rightarrow T$ has

$$
\operatorname{dim} T<\operatorname{dim} S
$$

\Longrightarrow the absolute invariants for X_{P} are handled inductively.

- To handle $\left(X_{P}, X_{D}\right)$, fiberwise localization was used in [Maulik-Pandharipande 2006].
- Among other technical issues, localizations create descendants which breaks \mathscr{F}-invariance.
- We replaced descendants by descendants of special type, which solved the simple P^{r}-flop case in [LLW 2006].
- And then by ancestors in [Iwao-LLW 2012], we extended \mathscr{F}-invariance to all $g \geq 0$ under simple P^{r}-flops.
- Now, to treat general $P=P_{D}(N \oplus \mathscr{O})$, localizations are replaced by more complex degeneration argument and
- the strong virtual pushforward property, which extends earlier works of [H.-H. Lai 2008, Manolache 2012].

Review of relative obstruction theory

The universal curve $\mathscr{C}=\overline{\mathscr{M}}_{g, n+1}(X, \beta)$ with $f=\operatorname{ev}_{n+1}: \mathscr{C} \rightarrow X$:

leads to a perfect obstruction theory and virtual cycle

$$
E^{\bullet}:=\left(R \pi_{*} *^{*} T_{X}\right)^{\vee} \rightarrow \mathbb{L}_{\overline{\mathscr{M}}^{\prime}}, \quad \text { and } \quad\left[\overline{\mathscr{M}}_{g, n}(X, \beta)\right]^{\mathrm{vir}}
$$

[Li-Tian 1998, Behrend-Fantachi 1997]. Also a relative theory for $i: X \hookrightarrow X^{\prime}$ OR with $i_{*}: A_{1}(X) \hookrightarrow A_{1}\left(X^{\prime}\right)$ [Manolache 2012]:

$$
\begin{gathered}
\bar{i}: \overline{\mathscr{M}}_{g, n}(X, \beta) \rightarrow \overline{\mathscr{M}}_{g, n}\left(X^{\prime}, i_{*} \beta\right), \\
E_{\bar{i}}^{\bullet}:=\left(R \pi_{*} f^{*} \mathbb{L}_{i}^{\vee}\right)^{\vee} \rightarrow \mathbb{L}_{\bar{i}} .
\end{gathered}
$$

It is perfect if $g=0$ and X^{\prime} is convex (e.g. homogeneous). Then there is a commutative diagram

$$
\overline{\mathscr{M}}_{0, n}(X, \beta) \xrightarrow[\mathcal{M}_{0, n}]{\bar{i}}{\overline{\rho^{\prime}}}_{0, n}\left(X^{\prime}, i_{*} \beta\right)
$$

through the Artin stack $\mathfrak{M}_{0, n}$ of prestable curves. We have compatible obstruction theories

and $\left[\overline{\mathscr{M}}_{0, n}(X, \beta)\right]^{\mathrm{vir}}=\bar{i}!\left[\overline{\mathscr{M}}_{0, n}\left(X^{\prime}, i_{*} \beta\right)\right]^{\mathrm{vir}}$.

Strong Virtual Pushforward

- Consider the split P^{1}-bundle

$$
\pi: Y=P_{X}(L \oplus \mathscr{O}) \rightarrow X
$$

which has two sections $i_{0}: Y_{0} \hookrightarrow Y$ and $i_{\infty}: Y_{\infty} \hookrightarrow Y$.

- Relative/Log GW invariants on $\left(Y, Y_{0}\right)$ and $\left(Y, Y_{\infty}\right)$ are called type I; those on $\left(Y, Y_{0} \sqcup Y_{\infty}\right)$ are called type II. They are equivalent for $g=0$ [Abramovich et. al 2014].
- Let $\left(Y, Y_{0} \sqcup Y_{\infty}\right),\left(Y, Y_{0}\right)$ and $\left(Y, Y_{\infty}\right)$ denote the log schemes, which are log smooth and integral. And

$$
\overline{\mathscr{M}}_{0, n}(Y ; \mu, v):=\overline{\mathscr{M}}_{0, n}\left(\left(Y, Y_{0} \sqcup Y_{\infty}\right), \beta ; \mu, v\right) \quad \text { etc. }
$$

be the \log stack of stable log maps with curve class β.

- μ, v are partitions of $d_{0}=\int_{\beta} Y_{0}$ and $d_{\infty}=\int_{\beta} Y_{\infty}$, which specify the contact orders of marked points in Y_{0} and Y_{∞}.

When $\theta:=\pi_{*} \beta \neq 0$ or $n \geq 3$, we have induced maps:

$$
\begin{aligned}
& p: \overline{\mathscr{M}}_{0, n}(Y ; \mu, v) \rightarrow \overline{\mathscr{M}}_{0, n}(X, \theta), \\
& q: \overline{\mathscr{M}}_{0, n}(Y ; v) \rightarrow \overline{\mathscr{M}}_{0, n}(X, \theta) .
\end{aligned}
$$

Lemma (Virtual dimension count)

1. $\operatorname{dim}\left[\overline{\mathscr{M}}_{g, n}(Y ; \mu, v)\right]^{\text {vir }}=\operatorname{dim}\left[\overline{\mathscr{M}}_{g, n}(X, \theta)\right]^{\mathrm{vir}}+1-g$.
2. $\operatorname{dim}\left[\overline{\mathscr{M}}_{g, n}(Y ; v)\right]^{\mathrm{vir}}=\operatorname{dim}\left[\overline{\mathscr{M}}_{g, n}(X, \theta)\right]^{\mathrm{vir}}+1-g+\int_{\beta} Y_{0}$.

Proof. For log moduli stack we need to impose conditions by the contact orders. In (1) it is $d_{0}+d_{\infty}$ and in (2) it is d_{∞}. Now

$$
c_{1}(Y) \cdot \beta=\left(\pi^{*} c_{1}(X)+Y_{0}+Y_{\infty}\right) \cdot \beta=c_{1}(X) \cdot \theta+d_{0}+d_{\infty}
$$

Also $(\operatorname{dim} Y-\operatorname{dim} X)(1-g)=1-g$.

Proposition (Strong virtual pushforward for $g=0$)

1. In $A_{*}\left(\overline{\mathscr{M}}_{0, n}(X, \theta)\right)$, there exists $N(\mu, v) \in \mathbb{Q}$ such that

$$
\begin{aligned}
& p_{*}\left[\overline{\mathscr{M}}_{0, n}(Y ; \mu, v)\right]^{\mathrm{vir}}=0, \\
& p_{*}\left(\left[\overline{\mathscr{M}}_{0, n}(Y ; \mu, v)\right]^{\mathrm{vir}} \cap \operatorname{ev}_{1}^{*}\left[Y_{0}\right]\right)=N(\mu, v)\left[\overline{\mathscr{M}}_{0, n}(X, \theta)\right]^{\mathrm{vir}} .
\end{aligned}
$$

2. Assume $\int_{\beta} Y_{0} \geq 0$, then $q_{*}\left[\overline{\mathscr{M}}_{0, n}(Y ; v)\right]^{\mathrm{vir}}=0$.

Proof. Choose $M \in \operatorname{Pic} X$ such that M and $L \otimes M$ are both very ample. Then we have a cartesian diagram of embeddings
with $L=i^{*} \mathscr{O}(-1,1)$. The proposition holds for $\tilde{\pi}$.

It induces a cartesian diagram between log stacks

$$
\begin{gathered}
\overline{\mathscr{M}}_{0, n}(Y ; \mu, v) \xrightarrow{\bar{j}} \overline{\mathscr{M}}_{0, n}(P(\mathscr{O}(-1,1) \oplus \mathscr{O}) ; \mu, v) \\
\quad \mid p \\
\overline{\mathscr{M}}_{0, n}(X, \theta) \xrightarrow{\bar{i}} \overline{\mathscr{M}}_{0, n}\left(P^{|M|} \times P^{|L \otimes M|},\left(\int_{\theta} M, \int_{\theta} L \otimes M\right)\right) .
\end{gathered}
$$

As \bar{i} is strict, the underlying stack-diagram is also cartesian. The relative perfect obstruction theories $E_{\bar{i}}^{\bullet} \rightarrow \mathbb{L}_{\bar{i}}$ and $E_{\dot{j}}^{\bullet} \rightarrow \mathbb{L}_{\bar{j}}$ fit in

since $p^{*} \mathbb{L}_{i} \cong \mathbb{L}_{j}$ (cf. Manolache). Now $\bar{i}!$ and \bar{j} pullback virtual cycles. The results for (π, p) follow from that for $(\tilde{\pi}, \tilde{p})$.

Back to $\left(X_{P}, X_{D}\right)$, i.e. type I invariants

- Recall $\pi: P=P_{D}(N \oplus \mathscr{O}) \rightarrow D$, with $P_{0}, P_{\infty} \cong D$, induces

$$
\pi: X_{P}=P_{X_{D}}(L \oplus \mathscr{O}) \rightarrow X_{D}
$$

with $L=\left(X_{D} \rightarrow D\right)^{*} N$ and sections $X_{P_{0}}, X_{P_{\infty}} \cong X_{D}$.

- A non-vanishing theorem modelled on $\left(P^{1},\{0\}\right) \times X_{\mathrm{pt}}$ is proved to show the invertibility of the linear system.
- Moreover, under the trivial degenerations

$$
P \sim P \cup_{P_{\infty}} P, \quad\left(P, P_{0}\right) \sim\left(P, P_{0}\right) \cup_{P_{\infty}} P,
$$

the "strong virtual pushforward" and "TRR for ancestors" \Longrightarrow type I invariants are determined by absolute, type II, and rubber invariants modulo lower degree ones.

- For $X_{P} \rightarrow Z_{P} \rightarrow P$ with relative hyperplane classes ξ, h, a class $\beta \in N E\left(X_{P}\right)$ has $\left(\beta_{P}, d\right) \in N E(P) \times \mathbb{Z}$ with $d=\int_{\beta} \xi$. The genus 0 generating series

$$
\langle\alpha\rangle_{\left(\beta_{P}, d\right)}^{X_{P}}:=\sum_{\beta \in\left(\beta_{P}, d\right)}\langle\alpha\rangle_{\beta}^{X_{P}} q^{\beta}
$$

is a sum over the extremal ray. Similarly for type I, II, etc.

- Then for ω being pullback insertions from X_{D}, we have

$$
\begin{aligned}
& \quad\left\langle\vec{v} \mid \omega \cdot \prod_{i=1}^{l} i_{\infty *}\left(\alpha_{i}\right)\right\rangle_{\left(\beta_{P}, d\right)}^{\left(X_{P}, X_{P_{\infty}}\right)}= \\
& \sum_{I, \eta=\left(\Gamma_{1}, \Gamma_{2}\right)} C_{\eta}\langle\vec{v}| \omega_{1} \cdot \prod_{i=1}^{l} i_{\infty *}\left(\alpha_{i}\right)\left|\mu, e^{I}\right\rangle_{\Gamma_{1}}^{\bullet} \cdot\left\langle\mu, e_{I} \mid \omega_{2}\right\rangle_{\Gamma_{2}}^{\bullet}
\end{aligned}
$$

spanned by type II and type I series with pullback insertions.

- Moreover, if $\int_{\beta_{P}} P_{0} \geq 0$ then $\langle\omega \mid \vec{v}\rangle_{\beta_{S}, d}^{\left(X_{P}, X_{P_{\infty}}\right)}=0$.

Proposition (Type I reduction)

Assume $\int_{\beta_{P}} P_{0}<0$. An ordering is introduced on $\{\vec{v}\}$ such that

1. If $\vec{v}=\left\{\left(v_{j}, B_{j}\right)\right\} \neq \varnothing$ then there exists $C(\vec{v})>0, k(\vec{v}) \in \mathbb{Z}_{\geq 0}$,

$$
C(\vec{v})\langle\omega \mid \vec{v}\rangle_{\left(\beta_{P}, d\right)}^{\left(X_{P}, X_{P_{\infty}}\right)}-\left\langle\omega \cdot\left[X_{P_{\infty}}\right]^{k(\vec{v})} \cdot \prod_{j} \bar{\tau}_{v_{j}-1}\left(i_{\infty *}\left(B_{j}\right)\right)\right\rangle_{\left(\beta_{P}, d\right)}^{X_{P}}
$$

is generated by "relative and rubber series" on X_{P} of class at most $\left(\beta_{P}, d\right)$, and those of $\left(X_{P}, X_{P_{\infty}}\right)$ involving class $\left(\beta_{P}, d\right)$ whose orders are lower than $\langle\omega \mid \vec{v}\rangle_{\left(\beta_{P}, d\right)}$.
2. If $\vec{v}=\varnothing$ then

$$
\langle\omega \mid \vec{v}\rangle_{\left(\beta_{p}, d\right)}^{\left(X_{P}, X_{P_{\infty}}\right)}-\langle\omega\rangle_{\left(\beta_{P}, d\right)}^{X_{P}}
$$

is generated by series of relative invariants on X_{P} with curve classes lower than $\left(\beta_{P}, d\right)$.

Theorem (Type II invariance)

\mathscr{F}-invariance for X_{D} implies \mathscr{F}-invariance for $\left(X_{P}, X_{P_{0}} \sqcup X_{P_{\infty}}\right)$.

- For fiber class inv., i.e. $\beta \in N E\left(X_{P} / D\right)$, they are reduced to the cup product on a birational $D^{\prime} \rightarrow D$ and the case

$$
\left(P^{1},\{0, \infty\}\right) \times X_{p t}
$$

Thus we consider non-fiber class type II-inv.

- Let $k \geq 0$ be the number of non-pullback insertions in $\pi: X_{P} \rightarrow X_{D}$. If $k \leq 1$, the strong pushforward (1) applies.
- If $k \geq 2$, since

$$
\left[X_{P_{0}}\right]-\left[X_{P_{\infty}}\right]=\pi^{*} c_{1}\left(N_{X_{D} / X_{P}}\right),
$$

modulo type II-inv with $k-1$ non-pullback insertions, we may assume one is $i_{0 *}(\alpha)$ and the others are $i_{\infty *}\left(\alpha_{i}\right)$.

The family $W=\mathrm{Bl}_{X_{P_{\infty}} \times\{0\}} X_{P} \times \mathbb{A}^{1} \rightarrow X_{P} \times \mathbb{A}^{1}$ gives

$$
\begin{aligned}
& \langle\vec{\mu}| \omega \cdot i_{0 *}(\alpha) \prod_{i=1}^{l-1} i_{\infty *}\left(\alpha_{i}\right)|\vec{v}\rangle_{\left(\beta_{P}, d\right)}^{\left(X_{P}, X_{P_{0}}, X_{P_{\infty}}\right)}= \\
& \quad \sum_{I, \eta} C_{\eta}\langle\vec{\mu}| \omega_{1} \cdot i_{0 *}(\alpha)\left|\lambda, e^{I}\right\rangle_{\Gamma_{1}}^{\bullet}\left\langle\lambda, e_{I}\right| \omega_{2} \cdot \prod_{i=1}^{l-1} i_{\infty *}\left(\alpha_{i}\right)|\vec{v}\rangle_{\Gamma_{2}}^{\bullet},
\end{aligned}
$$

where $\eta=\left(\Gamma_{1}, \Gamma_{2}\right)$ is the splitting type.

- Here $\omega, \omega_{1}, \omega_{2}$ are pullbacks insertions from X_{D}.
- The RHS is determined by type II generating functions with at most $k-1$ non-pullback insertions.
- This relation is compatible with \mathscr{F}-invariance, and the theorem follows by induction on $k \in \mathbb{N}$.

We omit the discussion on rubber calculus.

Problem: non-split quantum Leray-Hirsch?

For $P=P_{X}(V)=P_{X}\left(\oplus_{i=1}^{r} L_{i}\right)$, the QLH says that

$$
\mathrm{PF}^{P / X}+\nabla^{X} \Longrightarrow \nabla^{P}
$$

For the primitive class $\ell \in N E(P / X)$, the Picard-Fuchs is

$$
\square_{\ell}=\prod_{i=1}^{r} z \partial_{h+L_{i}}-q^{\ell} e^{t^{h}}
$$

When V is non-split, we may still define $\hat{a}=z \partial_{a}$ and

$$
\tilde{\square}_{\ell}=\hat{f}_{V}=\hat{h}^{r+1}+\widehat{c_{1}(V)} \hat{h}^{r}+\cdots \widehat{c_{r}(V)}-q^{\ell} e^{t^{h}} .
$$

Under QDE it is essentially equivalent to \square_{ℓ}.

For $\bar{\beta} \in N E(X)$, a lift $\beta \in N E(P)$ is admissible if $-\left(h+L_{i}\right) \cdot \beta \geq 0$ for all i. A minimal effective lift $\bar{\beta}^{*}$ is admissible. In this case

$$
\mathbf{D}_{\bar{\beta}^{*}}(z):=\prod_{i=1}^{r} \prod_{m=0}^{-\left(h+L_{i}\right) \cdot \bar{\beta}^{*}-1}\left(z \partial_{h+L_{i}}-m z\right) .
$$

Then the lift of QDE form $H(X)$ to $H(P)$ is

$$
z \partial_{i} z \partial_{j}=\sum_{k, \bar{\beta}} q^{\bar{\beta}^{*}} e^{D \cdot \bar{\beta}^{*}} \bar{A}_{i j, \bar{\beta}}^{k}(\bar{t}) \mathbf{D}_{\bar{\beta}^{*}}(z) z \partial_{k} .
$$

However, $\mathbf{D}_{\bar{\beta}^{*}}(z)$ depends on $\bar{\beta}^{*} . L_{i}$ in an essential way and it is unclear if it is equivalent to another expression which does not depend explicitly on the splitting factors L_{i} 's.
For V non-split, our splitting principle do lead to effective determinations of $Q H\left(P_{X}(V)\right)$ by reducing it to the split case. \square

