Quantum Flips

Chin-Lung Wang National Taiwan University
(A joint project with Y.-P. Lee and H.-W. Lin)

The 8th ICCM, Beijing
June 11, 2019

Contents

1 What is quantum cohomology?

- Example: a toric bundle

2 Quantum motives? The functoriality problem
3 Statement of results on simple flips $f: X \rightarrow X^{\prime}$
Sketch of proof in 3 steps:
4 (i) Irregular singularity of $\overline{Q H(X)}$ along vanishing cycles
5 (ii) Block diagonalizations and BF/GMT over $N E\left(X^{\prime}\right)$
6 (iii) The non-linear F-embedding $Q H\left(X^{\prime}\right) \hookrightarrow \overline{Q H(X)}$

- Example: $(2,1)$ flips

1. What is Quantum Cohomology?

A: Deformation of $(H(X), \cup)$ by rational curves.

- Let X / \mathbb{C} be a projective manifold, $\bar{M}_{n}(X, \beta)$ be the moduli space of stable maps

$$
f:\left(C, p_{1}, \ldots, p_{n}\right) \rightarrow X
$$

from n-pointed rational nodal curves to X with image class $\beta \in N E(X)$, the Mori cone of effective 1-cycles.

- For $i \in[1, n]$, let $e_{i}: \bar{M}_{n}(X, \beta) \rightarrow X$ be the evaluation map

$$
e_{i}(f):=f\left(p_{i}\right) \in X
$$

- Let $\mathbf{t} \in H=H(X)$. The $g=0$ Gromov-Witten potential

$$
\begin{aligned}
& F(\mathbf{t})=\langle\langle-\rangle\rangle(\mathbf{t}): \\
&=\sum_{n, \beta} \frac{q^{\beta}}{n!}\left\langle\mathbf{t}^{\otimes n}\right\rangle_{n, \beta}^{X} \\
&=\sum_{n \geq 0, \beta \in N E(X)} \frac{q^{\beta}}{n!} \int_{\left[\bar{M}_{n}(X, \beta)\right]^{i v i}} \prod_{i=1}^{n} e_{i}^{*} \mathbf{t}
\end{aligned}
$$

is a formal function in \mathbf{t} and $q^{\beta \prime}$ (Novikov variables).

- We call $\mathscr{R}:=\mathbb{C} \llbracket q^{\bullet} \rrbracket$ the (formal) Kähler moduli and denote

$$
H_{\mathscr{R}}=H \otimes \mathscr{R} .
$$

- Let $\left\{T_{\mu}\right\}$ be a basis of H and $\left\{T^{\mu}:=\sum g^{\mu \nu} T_{\nu}\right\}$ the dual basis with respect to the Poincaré pairing

$$
g_{\mu \nu}=\left(T_{\mu} \cdot T_{v}\right), \quad\left(g^{\mu \nu}\right)=\left(g_{\mu \nu}\right)^{-1} .
$$

- Let $\mathbf{t}=\sum t^{\mu} T_{\mu}$. The big quantum ring $(Q H(X), *)$ is a \mathbf{t}-family of rings $Q_{\mathbf{t}} H(X)=\left(T_{\mathbf{t}} H_{\mathscr{R}}, *_{\mathbf{t}}\right)$:

$$
\begin{aligned}
& T_{\mu} *_{\mathbf{t}} T_{v}:= \sum_{\epsilon, \kappa} \partial_{\mu} \partial_{\nu} \partial_{\epsilon} F(\mathbf{t}) g^{\epsilon \kappa} T_{\kappa} \equiv \sum F_{\mu v \epsilon} g^{\epsilon \kappa} T_{\kappa} \\
&= \sum_{\epsilon, \kappa}\left\langle\left\langle T_{\mu}, T_{v}, T_{\epsilon}\right\rangle\right\rangle(\mathbf{t}) g^{\epsilon \kappa} T_{\kappa} \\
& \quad=\sum_{\kappa, n \geq 0, \beta \in N E(X)} \frac{q^{\beta}}{n!}\left\langle T_{\mu}, T_{v}, T^{\kappa}, \mathbf{t}^{\otimes n}\right\rangle_{n+3, \beta}^{X} T_{\kappa} .
\end{aligned}
$$

- The WDVV associativity equations equip $\left(H_{\mathscr{R}}, g_{\mu v}, F_{i j k}, T_{0}=\mathbf{1}\right)$ a structure of formal Frobenius manifold over \mathscr{R}.
- It is equivalent to the flatness of the Dubrovin connection

$$
\nabla^{z}=d-\frac{1}{z} A:=d-\frac{1}{z} \sum_{\mu} d t^{\mu} \otimes T_{\mu} *_{\mathbf{t}}
$$

on the formal relative tangent bundle $T H_{\mathscr{R}}$ for all $z \in \mathbb{C}^{\times}$:

$$
\partial_{\mu} A_{v}=\partial_{\nu} A_{\mu}, \quad\left[A_{\mu}, A_{\nu}\right]=0,
$$

- where the (connection) matrix A_{μ} for $z \nabla_{\mu}^{z}$ is z-free:

$$
A_{\mu}(\mathbf{t})=T_{\mu} *_{\mathbf{t}}
$$

- This z-free property uniquely characterizes the constant frame $\left\{T_{\mu}\right\}$ among all frames $\left\{\tilde{T}_{\mu}\right\}$ with

$$
\tilde{T}_{\mu}\left(q^{\bullet}, \mathbf{t}, z\right) \equiv T_{\mu} \quad(\bmod \mathscr{R}) .
$$

- Let $\psi=c_{1}\left(\mathbf{p}_{1}^{*} \omega_{\mathscr{C} / \bar{M}_{n}}\right)$ be the class of cotangent line at the first marked section $\mathbf{p}_{1}: \bar{M}_{n} \rightarrow \mathscr{C}$ of $\mathscr{C} \rightarrow \bar{M}_{n}$, then

$$
J\left(\mathbf{t}, z^{-1}\right):=1+\frac{\mathbf{t}}{z}+\sum_{\beta, n, \mu} \frac{q^{\beta}}{n!} T_{\mu}\left\langle\frac{T^{\mu}}{z(z-\psi)}, \mathbf{t}^{\otimes n}\right\rangle_{n+1, \beta}^{X}
$$

encodes invariants with one descendent insertion.

- The topological recursion relation (TRR):

$$
\left\langle\left\langle\tau_{d+1} T_{i}, T_{j}, T_{k}\right\rangle\right\rangle=\sum_{\mu}\left\langle\left\langle\tau_{d} T_{i}, T_{\mu}\right\rangle\right\rangle\left\langle\left\langle T^{\mu}, T_{j}, T_{k}\right\rangle\right\rangle
$$

implies the quantum differential equation (QDE):

$$
z \partial_{\mu} z \partial_{\nu} J=\sum_{\kappa} A_{\mu \nu}^{\kappa} z \partial_{\kappa} J
$$

- Let \mathscr{D}^{z} be the ring of differential operators generated by $z \partial_{i}$ with coefficients in $\mathscr{O}=\mathbb{C}[z] \llbracket q^{\bullet}, \mathbf{t} \rrbracket$. The \mathscr{D}^{z}-module $\mathscr{O}^{\operatorname{dim} H}$ associated to $z \partial_{i} \mapsto z \nabla_{i}^{z}$ is isomorphic to the cyclic \mathscr{D}^{z}-module $\mathscr{D}^{z} \mathrm{~J}$.
- In practice, one might be able to find element

$$
I\left(\hat{\mathbf{t}}, z, z^{-1}\right) \in \mathscr{D}^{z} J\left(\mathbf{t}, z^{-1}\right)
$$

but only along some restricted variables $\hat{\mathbf{t}} \in H_{1} \subset H$.

- If H_{1} generates H (either in classical product or quantum product), then often one may compute $J\left(\mathbf{t}, z^{-1}\right)$ and ∇^{z}.
- For a toric manifold X, such an I function can be found through the \mathbb{C}^{\times}-localization data with $\hat{\mathbf{t}} \in H^{\leq 2}(X)$.
- [Lian-Liu-Yau 1996, Givental 1996] For $c_{1}(X) \geq 0, I\left(\hat{\mathbf{t}}, z^{-1}\right)$ can be found and $J\left(\hat{\mathbf{t}}, z^{-1}\right)$ is obtained by a mirror transform.
- [Coates-Givental 2005, Iritani 2008, Brown 2010] $I\left(\hat{\mathbf{t}}, z, z^{-1}\right)$ is found for all toric manifolds. However, the structures and computations are far more complicated. Need BF/GMT:

Birkhoff Fatcorizations + Generalized Mirror Transform.

Example: a Fano toric bundle

$$
\begin{gathered}
X=P_{P^{1}}(\mathscr{O}(-1) \oplus \mathscr{O}) \xrightarrow{\pi} P^{1} \\
c_{1}(X)=h+2 \xi>0 \\
H(X)=\mathbb{C}[h, \xi] /\left(h^{2}, \xi(\xi-h)\right)
\end{gathered}
$$

Let ℓ be the zero section, γ the fiber line, then

$$
\begin{gathered}
N E(X)=\mathbb{Z} \ell+\mathbb{Z} \gamma \\
Q H(X)=?
\end{gathered}
$$

- $\left\{T_{0}, T_{1}, T_{2}, T_{3}\right\}=\left\{1, h, \xi, \xi^{2}\right\}$,

$$
\hat{\mathbf{t}}=t^{0} T_{0}+D, \quad D=t^{1} h+t^{2} \xi \in H^{2} .
$$

- Let $q_{1}=q^{\ell} e^{t^{1}}$ and $q_{2}:=q^{\gamma} e^{t^{2}}$ (small parameters), then

$$
\begin{aligned}
& I\left(\hat{\mathbf{t}}, z^{-1}\right):=e^{\frac{0^{0} T_{0}}{z}} \sum_{\beta=d_{1} \ell+d_{2} \gamma} q^{\beta} e^{\frac{D}{z}+(D . \beta)} I_{\beta}=e^{\frac{\hat{t}}{z}} \sum_{d_{1}, d_{2}=0}^{\infty} q_{1}^{d_{1}} q_{2}^{d_{2}} I_{d_{1}, d_{2}} \\
& I_{d_{1}, d_{2}}:=\frac{1}{\prod_{m=1}^{d_{1}}(h+m z)^{2} \prod_{m=1}^{d_{2}-d_{1}}(\xi-h+m z) \prod_{m=1}^{d_{2}}(\xi+m z)}=O\left(z^{-2}\right) .
\end{aligned}
$$

- [LLY, Givental] $\Longrightarrow I\left(\hat{\mathbf{t}}, z^{-1}\right)=J\left(\hat{\mathbf{t}}, z^{-1}\right)$. However, t^{3} is missing.
- In general, if $c_{1}(X) . \beta<0$ for some β, then the z power $\rightarrow+\infty$.
- Technique: use Naive Quantization to replace $z \partial_{3} J$: e.g.

$$
\widehat{T}_{i} I=z \partial_{i} I, \quad i=0,1,2, \quad \widehat{T}_{3} I=\widehat{\widehat{\zeta}^{2}} I:=\left(z \partial_{2}\right)^{2} I .
$$

- In general, since $I \in \mathscr{D}^{z} J$, we get $\widehat{T}_{i} I \in \mathscr{D}^{z} J$ too. Hence

$$
\left(\widehat{T}_{i} I\right)\left(\hat{\mathbf{t}}, z, z^{-1}\right)=z \nabla J\left(\sigma(\hat{\mathbf{t}}), z^{-1}\right) B(\hat{\mathbf{t}}, z)
$$

- The unique gauge transform is called the BF. It implies

$$
J\left(\sigma(\hat{\mathbf{t}}), z^{-1}\right)=z \partial_{0} J=\sum_{i} \widehat{T}_{i} I \cdot\left(B^{-1}\right)_{i}^{0}=: P\left(\hat{\mathbf{t}}, z \partial_{1}, z \partial_{2}\right) I\left(\hat{\mathbf{t}}, z, z^{-1}\right)
$$

- The z^{-1} coefficient of PI gives the GMT: $\hat{\mathbf{t}} \mapsto \sigma(\hat{\mathbf{t}}) \in H_{\mathscr{R}}$.
- In practice, we study $B, \sigma(\hat{\mathbf{t}})$ via the Picard-Fuchs equations of I :

$$
\begin{aligned}
& \square_{\ell}=\left(z \partial_{1}\right)^{2}-q_{1}\left(z \partial_{2}-z \partial_{1}\right), \\
& \square_{\gamma}=\left(z \partial_{2}-z \partial_{1}\right) z \partial_{2}-q_{2} .
\end{aligned}
$$

- This leads to the connection matrix in the frame $\widehat{T}_{i} I$:

$$
z \partial_{a}\left(\widehat{T}_{i} I\right)=\left(\widehat{T}_{i} I\right) C_{a}(\hat{\mathbf{t}}, z), \quad a=1,2 .
$$

- In this example the choice of $\left\{\widehat{T}_{i} I\right\}$ leads to

$$
C_{1}=\left[\begin{array}{cccc}
& & -q_{2} & q_{1} q_{2} \\
1 & -q_{1} & & q_{2} \\
& q_{1} & &
\end{array}\right], \quad C_{2}=\left[\begin{array}{cccc}
& -q_{2} & & q_{1} q_{2}+z q_{2} \\
& & & q_{2} \\
1 & 1 & 1 & q_{2}
\end{array}\right] .
$$

- $B(\hat{\mathbf{t}}, z)=I_{4}+q_{2} e_{03}\left(\widehat{\tilde{\xi}^{2}} \mapsto \widehat{h \tilde{\zeta}}\right)$ removes the z-dependence:

$$
\tilde{C}_{2}(\hat{\mathbf{t}})=-\left(z \partial_{2} B\right) B^{-1}+B C_{2}(\hat{\mathbf{t}}, z) B^{-1}=\left[\begin{array}{cccc}
& & q_{2} & q_{1} q_{2} \\
& & & q_{2} \\
1 & & & \\
& 1 & 1 &
\end{array}\right] .
$$

- The first column $\Longrightarrow \sigma(\hat{\mathbf{t}})=\hat{\mathbf{t}}$. In general $\tilde{C}=\sigma^{*} A$: i.e.

$$
\tilde{C}_{a}(\hat{\mathbf{t}})=\sum_{\mu} A_{\mu}(\sigma(\hat{\mathbf{t}})) \frac{\partial \sigma^{\mu}}{\partial t^{a}}
$$

2. Quantum Motives? The Functoriality Problem

Q: Which part of the structure on $Q H(X)$ is functorial?

- \mathcal{M}_{k} : the category of Chow motives, k the ground field.
- Objects: \hat{X}, where X a smooth variety over k.
- Morphisms are correspondences

$$
\Gamma \in \operatorname{Mor}\left(\hat{X}, \hat{X}^{\prime}\right):=A\left(X \times X^{\prime}\right) .
$$

- Induced map on Chow groups: $[\Gamma]_{*}: A(X) \rightarrow A\left(X^{\prime}\right):$

$$
\alpha \mapsto \pi_{*}^{\prime}\left(\Gamma . \pi^{*} \alpha\right)
$$

- Linear structures: if $\hat{X} \cong \hat{X}^{\prime}$ then $A^{i}(X) \cong A^{i}\left(X^{\prime}\right)$ for all i. If k is a number field, X and X^{\prime} have the same L functions for each i.
- However, the ring structures are different: $A(X) \nsubseteq A\left(X^{\prime}\right)$!
- [Wang 2002] Is there a universal product structure defined on Chow motives? Namely a universal family $(\mathscr{A}, *) \rightarrow T$ such that all geometric realizations $(A(X), \bullet)$ correspond to special points.
- Typical examples come from ordinary (r, r^{\prime})-flops/flips:

- $\bar{\psi}: Z=P_{S}(F) \rightarrow S$, rk $F=r+1, \psi$-extremal ray $\ell=[C]$.
- $\left.N_{Z / X}\right|_{\bar{\psi}^{-1}(s)} \cong \mathscr{O}_{P r}(-1)^{\oplus\left(r^{\prime}+1\right)}$ for all $s \in S$.
- $Y=\mathrm{Bl}_{Z} X=\mathrm{Bl}_{Z^{\prime}} X^{\prime}, K_{Y}=\phi^{*} K_{X}+r^{\prime} E=\phi^{*} K_{X^{\prime}}+r E$. Hence

$$
\phi^{*} K_{X}=\phi^{\prime *} K_{X^{\prime}}+\left(r-r^{\prime}\right) E .
$$

- For flops $r=r^{\prime}$, we have K-equivalence and $\hat{X} \cong \hat{X}^{\prime}$ via

$$
\Phi:=\left[\bar{\Gamma}_{f}\right]_{*}=\phi_{*}^{\prime} \circ \phi^{*}: H(X) \xrightarrow{\sim} H\left(X^{\prime}\right) .
$$

- It preserves the Poincaré pairing

$$
(\Phi a \cdot \Phi b)^{X^{\prime}}=\left(\phi^{*} \Phi a \cdot \phi^{*} b\right)^{Y}=\left(\left(\phi^{*} a+\xi\right) \cdot \phi^{*} b\right)^{Y}=(a \cdot b)^{X}
$$

but NOT the cup product!

- For the simple case ($S=\mathrm{pt}$), let $\alpha_{i} \in H^{2 l_{i}}(X), \sum_{i=1}^{3} l_{i}=\operatorname{dim} X$,

$$
\left(\Phi \alpha_{1} \cdot \Phi \alpha_{2} \cdot \Phi \alpha_{3}\right)^{X^{\prime}}=\left(\alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3}\right)^{X}-\prod_{i=1}^{3}\left(\alpha_{i} \cdot h^{r-l_{i}}\right)^{Z},
$$

where $h=c_{1}\left(\mathscr{O}_{Z}(1)\right) \in H^{2}(Z)$.

- Solution: use quantum product $\left(Q_{\mathbf{t}} H, *_{\mathbf{t}}\right)$ instead.
- The effectivity of extremal curve is not preserved:

$$
\Phi \ell=-\ell^{\prime} \notin N E\left(X^{\prime}\right) .
$$

- It is necessary to consider analytic continuations $\overline{Q H(X)}$ of $Q H(X)$ along the Kähler moduli via the partial compactification

$$
\Phi q^{\beta}=q^{\Phi \beta} \quad \text { toward } \quad " q^{\ell}=\infty^{\prime \prime} .
$$

- For flops, the functoriality is simply the canonical isomorphism

$$
\Phi: \overline{Q H(X)} \xrightarrow{\sim} \overline{Q H\left(X^{\prime}\right)} .
$$

- In terms of Gromov-Witten invariants: for $\mathbf{t} \in H(X)$,

$$
\Phi\left\langle\left\langle T_{i}, T_{j}, T_{k}\right\rangle\right\rangle^{X}(\mathbf{t})=\left\langle\left\langle\Phi T_{i}, \Phi T_{j}, \Phi T_{k}\right\rangle\right\rangle^{X^{\prime}}(\Phi \mathbf{t}) .
$$

- [Li-Ruan] for 3-folds, [LLW, LLQW] for general ordinary flops.
- The simplest non K-equivalent birational maps preserving the dimension of Kähler moduli are smooth ordinary flips.
- Pseudo-abelian completion of Chow motives $\widetilde{\mathcal{M}}$: objects (\hat{X}, p), where $p \in \operatorname{End}(\hat{X})=A(X \times X)$ is a projector: $p^{2}=p$. Then

$$
\hat{X} \equiv(\hat{X}, 1)=(\hat{X}, p) \oplus(\hat{X}, 1-p) .
$$

- For flips with $r>r^{\prime}, \Psi:=\left[\bar{\Gamma}_{f-1}\right]$ induces a sub-motive

$$
\Psi: \hat{X}^{\prime} \xrightarrow{\sim}(\hat{X}, p), \quad p:=\Psi \circ \Phi .
$$

- On cohomology

$$
\Psi: H\left(X^{\prime}\right) \longleftrightarrow H(X),
$$

the Poincare pairing is still preserved $(\Psi a . \Psi b)^{X}=(a . b)^{X^{\prime}}$, but not the cup product. Not even the quantum product!

- Solutions?

3. Statements of Results for Simple Flips

$$
f: X \rightarrow X^{\prime}
$$

- We would like to show that $Q H\left(X^{\prime}\right)$ can still be regarded as a sub-theory of $Q H(X)$ in a canonical, though non-linear, manner.
- First of all, there is a basic split exact sequence

$$
0 \longrightarrow K \longrightarrow H(X) \underset{\Psi}{\stackrel{\Phi}{\underset{\Psi}{\rightleftarrows}}} H\left(X^{\prime}\right) \longrightarrow 0 .
$$

- The kernel space (vanishing cycles) K has dimension $d:=r-r^{\prime}$ and is orthogonal to $\Psi H\left(X^{\prime}\right)$:

$$
K=\bigoplus_{j=r^{\prime}+1}^{r} \mathbb{C}\left[P^{j}\right]
$$

- Secondly, the Dubrovin connection ∇ can be analytically continued along the Kähler moduli to a connection $\Phi \nabla$ under the rule

$$
\Phi q^{\beta}=q^{\Phi \beta}, \quad \beta \in N E(X) .
$$

- As before $\Phi \ell=-\ell^{\prime}$ and analytic continuations are required.
- We use identification of divisorial coordinates t^{i} and Novikov variables $q^{\beta_{i}}$ (divisor axiom): let $D=\sum t^{i} D_{i},\left(D_{i} \cdot \beta_{j}\right)=\delta_{i j}$,

$$
q_{i}:=q^{\beta_{i}} e^{t^{i}}, \quad \partial_{i}=\frac{\partial}{\partial t^{i}}=q_{i} \frac{\partial}{\partial q_{i}} .
$$

- Hence

$$
\nabla_{\mu}=\partial_{\mu}-\frac{1}{z} T_{\mu} *
$$

has only (formal) regular singularities at $q_{i}=0$.

- The resulting connection $\Phi \nabla$ turns out to be analytic in the extremal ray variable q^{ℓ} and contains irregular singularities in the K directions along $q^{\ell}=\infty$, that is $q^{\ell^{\prime}}=0$.
- This suggests to extract the Dubrovin connection ∇^{\prime} on $T H_{\mathscr{R}^{\prime}}^{\prime}$, where $H^{\prime}=H\left(X^{\prime}\right)$ and $\mathscr{R}^{\prime}=\mathbb{C} \llbracket N E\left(X^{\prime}\right) \rrbracket$, from $\Phi \nabla$

by removing the K directions

- since ∇^{\prime} is (formlly) regular.
- We will show that there is a bundle-decomposition

$$
\begin{equation*}
T H \otimes \mathscr{R}^{\prime}\left[1 / q^{\ell^{\prime}}\right]=\mathscr{T} \oplus \mathscr{K} \tag{*}
\end{equation*}
$$

into irregular eigenbundle \mathscr{K} which extends K over $\mathscr{R}^{\prime}\left[1 / q^{\ell^{\prime}}\right]$ and the regular eigenbundle $\mathscr{T}=\mathscr{K}^{\perp}$.

- From WDVV equations, both \mathscr{T} and \mathscr{K} are shown to be integrable distributions.
- The integrable submanifold passing through the section

$$
\mathcal{M}_{q^{\prime}} \supset\left\{\left(q^{\prime} \neq 0, \mathbf{t}=0\right)\right\}
$$

is then the proposed manifold corresponding to $Q H\left(X^{\prime}\right)$.

- However, to relate \mathscr{T}, and hence $\mathcal{M}_{q^{\prime}}$, to $Q H\left(X^{\prime}\right)$, we need to work on the connection (z-dependent) version of $(*)$.
- Hence there are non-trivial BF/GMT involved, and it is unclear what kind of functoriality should exist.
- The end result turns out to be quite satisfactory - the product structure is preserved but not the metric (Poincaré pairing)!

Theorem (Lee-Lin-Wang, 2017)

For the local model $f: X \rightarrow X^{\prime}$ of simple $\left(r, r^{\prime}\right)$ flips, there is a unique \mathscr{R}^{\prime}-point $\sigma_{0}\left(q^{\prime}\right) \in H_{\mathscr{R}^{\prime}}^{\prime}$ and a unique embedding $\widehat{\Psi}\left(q^{\prime}, \mathbf{s}\right)$ over \mathscr{R}^{\prime} :

$$
\begin{aligned}
& \widehat{\Psi}: H\left(X^{\prime}\right)_{\mathscr{R}^{\prime}} \longrightarrow \mathcal{M} \longrightarrow H(X)_{\mathscr{R}^{\prime}}, \\
& \sigma_{0}\left(q^{\prime}\right)+\mathbf{s} \longmapsto \widehat{\Psi}\left(q^{\prime}, \mathbf{s}\right) .
\end{aligned}
$$

where $\mathbf{s} \in H\left(X^{\prime}\right)$, such that
(1) $\left(\widehat{\Psi}, \sigma_{0}\right)$ restricts to $\left(\Psi: H^{\prime} \hookrightarrow H, 0\right)$ when modulo $q^{\ell^{\prime}}$,
(2) $\widehat{\Psi}$ induces an F-embedding over $\mathscr{R}^{\prime}\left[1 / q^{\ell^{\prime}}\right]$:

$$
\left.\left(T H_{\mathscr{R}^{\prime}\left[1 / q^{\ell^{\prime}}\right]}^{\prime} \nabla^{\prime}\right) \stackrel{d \widehat{\Psi}}{\longrightarrow}\left(T H_{\mathscr{R}^{\prime}\left[1 / q^{\ell^{\prime}}\right]}, \nabla\right)\right|_{\mathcal{M}} \longrightarrow \mathscr{K} \cong N_{\widehat{\Psi}} .
$$

- In particular, outside the divisor $q^{\ell^{\prime}}=0$, the big quantum products on the corresponding tangent spaces are preserved.
- Denote the tangent frame by $\widehat{\Psi}_{i}=\partial_{i} \widehat{\Psi}$ and the induced metric by

$$
\mathbf{g}_{i j}=\left(\widehat{\Psi}_{i}, \widehat{\Psi}_{j}\right), \quad \widehat{\Psi}^{i}:=\sum \mathbf{g}^{i j} \widehat{\Psi}_{j} .
$$

- Then $\hat{\Psi}$ is an F-embedding:

$$
\left.\left\langle\left\langle\widehat{\Psi}_{\mu}, \widehat{\Psi}^{i}, \widehat{\Psi}_{j}\right\rangle\right\rangle\right\rangle^{X}\left(\widehat{\Psi}\left(q^{\prime}, \mathbf{s}\right)\right)=\left\langle\left\langle T_{\mu}^{\prime}, T^{\prime i}, T_{j}^{\prime}\right\rangle\right\rangle^{X^{\prime}}\left(\sigma_{0}\left(q^{\prime}\right)+\mathbf{s}\right) .
$$

- Hence there is a family of ring isomorphisms/decompositions:

$$
Q_{\widehat{\Psi}\left(q^{\prime}, \mathbf{s}\right)} H(X) \cong Q_{\sigma_{0}\left(q^{\prime}\right)+\mathbf{s}} H\left(X^{\prime}\right) \times \mathbb{C}^{r-r^{\prime}},
$$

which depend on the points $\left(q^{\prime}, \mathbf{s}\right)$.

4. STEP (i)

Irregular Singularity of $\overline{Q H(X)}$ along Vanishing Cycles

- Small parameters $\hat{\mathbf{t}}=t^{0} T_{0}+D \in H^{\leq 2}(X), \hat{\mathbf{s}}=s^{0} T_{0}^{\prime}+D^{\prime}$.

$$
\begin{gathered}
D=t^{1} h+t^{2} \xi=\Psi D^{\prime}=\Psi\left(s^{1} h^{\prime}+s^{2} \xi^{\prime}\right)=s^{1}(\xi-h)+s^{2} \xi . \\
s^{1}=-t^{1}, \quad s^{2}=t^{2}+t^{1} .
\end{gathered}
$$

- Kähler moduli: $N E(X)=\mathbb{Z} \ell \oplus \mathbb{Z} \gamma, N E\left(X^{\prime}\right)=\mathbb{Z} \ell^{\prime} \oplus \mathbb{Z} \gamma^{\prime}$.

$$
\begin{aligned}
\Phi \ell & =-\ell^{\prime}, & & \Phi \gamma=\gamma^{\prime}+\ell^{\prime}, \\
q_{1} & =q^{\ell} e^{t^{1}}, & & q_{2}=q^{\gamma} e^{t^{2}}, \\
x=q_{1}^{\prime}=q^{\ell^{\prime}} e^{s^{1}} & =1 / q_{1}, & & y=q_{2}^{\prime}=q^{\gamma^{\prime}} e^{s^{2}}=q_{1} q_{2} .
\end{aligned}
$$

- Naive quantization, for $i \in[0, r], j \in\left[0, r^{\prime}+1\right], a=h^{i} \xi^{j}$,

$$
\hat{a} \equiv \partial^{z a}:=\hat{h}^{i} \hat{\hat{\xi}^{j}}=\left(z \partial_{h}\right)^{i}\left(z \partial_{\xi}\right)^{j}=\left(z \partial_{1}\right)^{i}\left(z \partial_{2}\right)^{j} .
$$

- X is Fano, $c_{1}(X)=\left(r-r^{\prime}\right) h+\left(r^{\prime}+2\right) \xi$ is ample,
- X^{\prime} is bad, $c_{1}\left(X^{\prime}\right)=\left(r^{\prime}-r\right) h^{\prime}+(r+2) \xi^{\prime}$ has no fixed sign.
- For $\beta=d_{1} \ell+d_{2} \gamma \in N E(X)$,

$$
I_{\beta}=\frac{1}{\prod_{m=1}^{d_{1}}(h+m z)^{r+1} \prod_{m=1}^{d_{2}-d_{1}}(\xi-h+m z)^{r^{\prime}+1} \prod_{m=1}^{d_{2}}(\xi+m z)}
$$

- $I=e^{\hat{t} / z} \sum_{\beta} e^{D \cdot \beta} q^{\beta} I_{\beta}$ is annihilated by Picard-Fuchs equations:

$$
\begin{aligned}
& \square_{\ell}=\left(z \partial_{h}\right)^{r+1}-q_{1}\left(z \partial_{\xi-h}\right)^{r^{\prime}+1} \\
& \square_{\gamma}=z \partial_{\tilde{\xi}}\left(z \partial_{\xi-h}\right)^{r^{\prime}+1}-q_{2} .
\end{aligned}
$$

- $I=I\left(z^{-1}\right) \Longrightarrow I=J_{\text {small }}$ and $Q_{0} H(X)$ is "easy". It is still non-trivial to write down the Dubrovin connection ∇^{X}.
- The naive frame, for $\mathbf{e}=h^{i} \xi^{j}\left(\right.$ or even $\left.h^{i}(\xi-h)^{j}\right)$,

$$
\partial^{z \mathbf{e}} I \equiv \hat{h}^{i} \hat{\xi}^{j} I:=\left(z \partial_{h}\right)^{i}\left(z \partial_{\xi}\right)^{j} I
$$

does not lead to z-free connection matrices for $z \partial_{1}, z \partial_{2}$!

Example: the case of $(2,1)$ flips.

- For the naive frame respecting $H(X)=\Psi H\left(X^{\prime}\right) \oplus^{\perp} K$, with $v_{6}=\hat{\kappa}_{0}=(\hat{\xi}-\hat{h})^{2}$, we have

$$
z \partial_{1}\left(\partial^{z \mathbf{e}} I\right)=z q_{1} \frac{\partial}{\partial q_{1}}\left(\partial^{z \mathbf{e}} I\right)=\left(\partial^{z \mathbf{e}} I\right) C_{1}(q, z)
$$

$$
C_{1}(q, z)=\left[\begin{array}{ccccccccc}
\\
1 & & & & & & q_{1} q_{2} & & -z q_{1} q_{2} \\
& 1 & & & & & & & q_{1} q_{2} \\
& & 1 & & & & & & \\
& 1 & -1 & q_{1} & & & & -z q_{1} & \\
& & & & 1 & & & z^{2} q_{1} \\
& & & & 1 & 1 & 1 & -q_{1} & \\
\hline
\end{array}\right.
$$

- It is even unclear where the irregular singularities at $q_{1}=\infty$ are located. (Not just in the K directions?)

The Ψ-corrected quantum frame

- The quantized basis corresponding to $\operatorname{ker} \Phi$ is chosen to be

$$
\hat{\kappa}_{i} I=\hat{h}^{i}(\hat{\xi}-\hat{h})^{r^{\prime}+1} I, \quad i \in\left[0, r-r^{\prime}-1\right] .
$$

- For $e_{1} \in[0, r+1], e_{2} \in\left[0, r^{\prime}\right]$, we define

$$
v_{\mathrm{e}}:=\hat{h}^{e_{1}}(\hat{\xi}-\hat{h})^{e_{2}} I+\delta_{\left(e_{1}, e_{2}\right)}(-1)^{r^{\prime}-e_{2}} \hat{\kappa}_{e_{1}+e_{2}-\left(r^{\prime}+1\right)},
$$

where

$$
\begin{cases}\delta_{\left(e_{1}, e_{2}\right)}=0 & \text { if } e_{1}+e_{2} \in\left[0, r^{\prime}\right], \text { and } \\ \delta_{\left(e_{1}, e_{2}\right)}=1 & \text { otherwise } .\end{cases}
$$

- The added term comes from $\operatorname{ker} \Phi \Longleftrightarrow e_{1}+e_{2} \in\left[r^{\prime}+1, r\right]$.
- But $H^{2 j}\left(X^{\prime}\right)$ with $j \geq r+1$ are also corrected accordingly.
- The frame reduces to a classical basis when modulo $N E(X)$.

The connection matrices for $z \partial_{1}$ and $z \partial_{2}$.

- For $i=1,2$, the connection matrix $C_{i}\left(q_{1}, q_{2}\right)$ in the Ψ corrected frame is independent of z. Moreover, $A_{i}(\hat{\mathbf{t}})=C_{i}$.
- Write $C_{i}=\left[\begin{array}{ll}C_{i}^{11} & C_{i}^{12} \\ C_{i}^{21} & C_{i}^{22}\end{array}\right]$ wrt. $H(X)=\Psi H\left(X^{\prime}\right) \oplus^{\perp} K$.
- Let $d=\operatorname{dim} K=r-r^{\prime}$.
- For C_{1}, the $d \times d$ block corresponding to $\operatorname{ker} \Phi$ is given by

$$
C_{1}^{22}=\left[\begin{array}{llll}
1 & & & (-1)^{r^{\prime}+1} q_{1} \\
& \ddots & & \\
& & 1 &
\end{array}\right]
$$

- Other entries in C_{1} and C_{2} have "good properties"!
- Corollary 1. The Ψ-corrected frame corresponds to the constant frame for ∇^{X}.
- Corollary 2. Under the analytic continuation in the Kähler moduli over $N E\left(X^{\prime}\right), \nabla^{X}$ is irregular in the divisor $(x=0)$ precisely in the kernel block.
- To proceed, we denote

$$
\begin{aligned}
R & =\operatorname{dim} H(X)=(r+1)\left(r^{\prime}+2\right) \\
R^{\prime} & =\operatorname{dim} H\left(X^{\prime}\right)=(r+2)\left(r^{\prime}+1\right)
\end{aligned}
$$

And then $d=R-R^{\prime}=r-r^{\prime}=\operatorname{dim} K$.

5. STEP (ii)

Block Diagonalizations and BF/GMT over $N E\left(X^{\prime}\right)$

- We have $A_{j}(\hat{\mathbf{t}})=C_{j}, j=1,2$:

$$
C_{1}^{22}=\left[\begin{array}{cccc}
0 & 0 & \cdots & (-1)^{r^{\prime}+1} q_{1} \\
1 & 0 & \cdots & 0 \\
& \ddots & & \\
0 & \cdots & 1 & 0
\end{array}\right]=\frac{1}{x}\left[\begin{array}{cccc}
0 & 0 & \cdots & (-1)^{r^{\prime}+1} \\
x & 0 & \cdots & 0 \\
& \ddots & & \\
0 & \cdots & x & 0
\end{array}\right] .
$$

- We will now work on the irregular system of PDE in variables (x, y) with a parameter z.
- The irregularity comes only from x, and it is thus necessary to keep track of the lowest order entries in x in C_{j} 's.
- A transformation is needed to bring C_{1}^{22} into its "semisimple" form: let $u=x^{1 / d}$, we modify the constant frame to $\left\{T_{i}\right\}$ with

$$
\left\{T_{i}\right\}_{i=0}^{R^{\prime}-1}=\left\{T_{\mathbf{e}}\right\}, \quad\left\{T_{R^{\prime}+i}\right\}_{i=0}^{d-1}=\left\{u^{i} k_{i}\right\}_{i=0}^{d-1}
$$

Lemma on shearing (= base change in \mathscr{D}-modules).

- Let $Y(x)=\operatorname{diag}\left(1^{R^{\prime}}, u^{0}, u^{1}, \cdots, u^{d-1}\right)$. After substitutions $S=Y W$ and $x=u^{d}$, the equation $z x \frac{\partial}{\partial x} S=C_{1} S$ becomes

$$
\begin{gather*}
z u \frac{\partial}{\partial u} W=D_{1}(u, z) W, \tag{**}\\
D_{1}^{11}=d \cdot C_{1}^{11}, \\
D_{1}^{12}=d \cdot C_{1}^{12} \cdot \operatorname{diag}\left(u^{0}, u^{1}, \cdots, u^{d-1}\right), \\
D_{1}^{21}=d \cdot \operatorname{diag}\left(u^{0}, u^{-1}, \ldots, u^{-d+1}\right) \cdot C_{1}^{21}, \\
D_{1}^{22}=\frac{d}{u} \cdot\left[\begin{array}{cccc}
0 & 0 & \cdots & (-1)^{r^{\prime}+1} \\
1 & -z \frac{1}{d} u & \cdots & 0 \\
& \ddots & \ddots & \\
0 & \cdots & 1 & -z \frac{d-1}{d} u
\end{array}\right] .
\end{gather*}
$$

- D_{1}^{21} is polynomial in u. Thus, $(* *)$ is irregular of Poincaré rank 1 in u, and the irregular part only appears in the $(2,2)$ block D_{1}^{22}.
- Therefore, $D_{1}(z=0)$ has R eigenvalues, including $0^{R^{\prime}}$ and d distinct nonzero eigenvalues from $D_{1}^{22}(0)$ as solutions to

$$
\omega^{d}=(-1)^{r^{\prime}+1} .
$$

- By the classical procedure due to Wasow / Shibuya, together with the flatness of the Dubrovin connection, we conclude that
(i) The connection matrices C_{1}, C_{2} can be simultaneously block diagonalized to $\tilde{C}_{1}, \tilde{C}_{2}$, such that the $(2,2)$ blocks are diagonalized.
(ii) Furthermore, the block-diagonalization frame (gauge matrix)

$$
P=\left[\tilde{T}_{0}, \ldots, \tilde{T}_{R^{\prime}-1}, \tilde{T}_{R^{\prime}}, \ldots, \tilde{T}_{R-1}\right]=\left[\begin{array}{cc}
I_{R^{\prime}} & * \\
* & I_{d}
\end{array}\right]
$$

can be chosen so that \tilde{T}_{i} has the initial term T_{i} in u.
(iii) \mathscr{T} spanned by $\tilde{T}_{0}, \ldots, \tilde{T}_{R^{\prime}-1}$ and \mathscr{K} spanned by $\tilde{T}_{R^{\prime}}, \ldots, \tilde{T}_{R-1}$ lead to reduction of connection and are orthogonal to each other.

- Extract $Q H\left(X^{\prime}\right)$ from $Q H(X)$: On X^{\prime}, let $\beta^{\prime}=d_{1}^{\prime} \ell^{\prime}+d_{2}^{\prime} \gamma^{\prime}$, then

$$
I_{\beta^{\prime}}^{X^{\prime}}=\frac{1}{\prod_{1}^{d_{1}^{\prime}}\left(h^{\prime}+m z\right)^{r^{\prime}+1} \prod_{1}^{d_{2}^{\prime}-d_{1}^{\prime}}\left(\xi^{\prime}-h^{\prime}+m z\right)^{r+1} \prod_{1}^{d_{2}^{\prime}}\left(\xi^{\prime}+m z\right)} .
$$

- It has Picard-Fuchs equations

$$
\begin{aligned}
& \square_{\ell^{\prime}}:=\left(z \partial_{2}-z \partial_{1}\right)^{r^{\prime}+1}-q_{1}^{\prime}\left(z \partial_{1}\right)^{r+1}, \\
& \square_{\gamma^{\prime}}:=\left(z \partial_{2}\right)\left(z \partial_{1}\right)^{r+1}-q_{2}^{\prime} .
\end{aligned}
$$

- Since $\square_{\ell^{\prime}}=q_{1}^{-1} \square_{\ell}$ and $\square_{\gamma^{\prime}}=z \partial_{2} \square_{\ell}-q_{1} \square_{\gamma}$, we get the
- Key Lemma. Over $\mathbb{C}\left[q_{1}, q_{1}^{-1}, q_{2}\right] \cong \mathbb{C}\left[q_{1}^{\prime}, q_{1}^{\prime-1}, q_{2}^{\prime}\right]$, we have

$$
\left\langle\square_{\ell}, \square_{\gamma}\right\rangle \cong\left\langle\square_{\ell^{\prime}}, \square_{\gamma^{\prime}}\right\rangle .
$$

- Corollary. The matrices $\tilde{C}_{1}^{11}, \tilde{C}_{2}^{11}$ can be used to compute $\nabla^{X^{\prime}}$.
- For $a, b \in H(X)$ we have $a b=a * b+\sum_{\beta} q^{\beta} c_{\beta}$ for some $c_{\beta} \in H(X)$. By induction on the Mori cone we conclude that

$$
T_{\mu} *=\sum_{\beta \in N E(X)} q^{\beta} P_{\beta}\left(h *, \xi^{*}\right)
$$

where P_{β} is a polynomial. Since X is Fano, the sum is finite.

- So the block diagonalization in $u=x^{1 / d}, y, z$ extends to all $T_{\mu} *$.
- In fact \tilde{C}_{1}^{11} and \tilde{C}_{2}^{11}, hence all \tilde{C}_{μ}^{11}, are expressible in x, y, z.
- Two technical problems:
(i) Remove the NEW z-dependence in $\tilde{C}_{\mu}^{11}(x, y, z)$ introduced in the block-diagonalization. (Sol. BF/GMT.)
(ii) Since $T_{\mu} *$ is generated by $h *$ and $\xi *$ over $N E(X)$ instead of over $N E\left(X^{\prime}\right)$, will $\tilde{C}_{\mu}^{11}(x, y, z)$ contain negative powers in x ? (Sol. No!)
(i) Let $B_{1}=B_{1}(x, y, z)$ be the BF matrix and $B_{1}(0):=B_{1}(x, y, 0)$.

$$
\left[\mathbf{T}_{0}, \ldots, \mathbf{T}_{R^{\prime}-1}\right]:=\left(\left[\tilde{T}_{0}, \ldots, \tilde{T}_{R^{\prime}-1}\right] B_{1}^{-1}\right)(z=0)
$$

- Under $x=q^{\ell^{\prime}} e^{s^{1}}, y=q^{\gamma^{\prime}} e^{s^{2}}, a=0,1,2$, the " z-free" matrix

$$
C_{a}^{\prime}(\hat{\mathbf{s}})=-\left(z \partial_{a} B_{1}\right) B_{1}^{-1}+B_{1} \tilde{C}_{a}^{11} B_{1}^{-1}=B_{1}(0) \tilde{C}_{a ; 0}^{11} B_{1}(0)^{-1}(x, y)
$$

is related to $A_{\mu}^{\prime}(\sigma)$ for $T_{\mu}^{\prime} *^{\prime}$ at $\sigma=\sigma(\hat{\mathbf{s}}) \in H\left(X^{\prime}\right) \llbracket x, y \rrbracket$ via

$$
\begin{aligned}
C_{a}^{\prime}(\hat{\mathbf{s}}) & =\sum_{\mu} A_{\mu}^{\prime}(\sigma(\hat{\mathbf{s}})) \frac{\partial \sigma^{\mu}}{\partial s^{a}}(\hat{\mathbf{s}}), \quad a=0,1,2, \\
\left\langle\left\langle T_{a}, \mathbf{T}_{j}, \mathbf{T}^{i}\right\rangle\right\rangle^{X}(\hat{\mathbf{s}}) & =\sum_{\mu} \frac{\partial \sigma^{\mu}}{\partial s^{a}}(\hat{\mathbf{s}})\left\langle\left\langle T_{\mu}^{\prime}, T_{j}^{\prime}, T^{\prime i}\right\rangle\right\rangle^{X^{\prime}}(\sigma(\hat{\mathbf{s}})) .
\end{aligned}
$$

- Since $\left(A_{\mu}^{\prime}\right)_{0}^{i}=\delta_{\mu}^{i}, \sigma(\hat{\mathbf{s}})$ is determined by the first column:

$$
\left(C_{a}^{\prime}\right)_{0}^{\mu}(\hat{\mathbf{s}})=\left\langle\left\langle T_{a}, \mathbf{T}_{0}, \mathbf{T}^{\mu}\right\rangle\right\rangle^{X}(\hat{\mathbf{s}})=\frac{\partial \sigma^{\mu}}{\partial s^{a}}(\hat{\mathbf{s}}) .
$$

6. STEP (iii)

The Non-Linear F-Embedding $Q H\left(X^{\prime}\right) \hookrightarrow \overline{Q H(X)}$
(ii) The next step is to transform T_{0} to the identity element (section) $e \in \mathscr{T}$ and normalized \mathbf{T}_{i} 's to $\tilde{\mathbf{T}}_{i}$'s accordingly.

- Lemma. There is a unique element $\mathbf{S}_{0} \in \mathscr{T}$ such that

$$
\mathbf{S}_{0} * \mathbf{T}_{0}=e,
$$

and so e acts as zero on \mathscr{K}. (This requires delicate calculations!)

- Define the normalized frame on \mathscr{T} by

$$
\widetilde{\mathbf{T}}_{\mu}:=\mathbf{T}_{\mu} * \mathbf{S}_{0} .
$$

- Theorem (Initial quantum invariance up to a shifting) Let $\mathbb{T}_{i}\left(q^{\prime}\right)=\widetilde{\mathbf{T}}_{i}\left(q^{\prime}, \hat{\mathbf{s}}=0, z=0\right)$ and $\sigma_{0}\left(q^{\prime}\right)=\sigma\left(q^{\prime}, \hat{\mathbf{s}}=0\right)$. Then we have

$$
\left\langle\mathbb{T}_{\mu}, \mathbb{T}^{i}, \mathbb{T}_{j}\right\rangle^{X}=\left\langle\left\langle T_{\mu}^{\prime}, T^{\prime i}, T_{j}^{\prime}\right\rangle\right\rangle^{X^{\prime}}\left(\sigma_{0}\left(q^{\prime}\right)\right)
$$

- An F-manifold M is a complex manifold with a commutative product structure on each $T_{p} M$, such that a WDVV-type integrability condition is forced when $p \in M$ varies.
- In $Q H(X)$, this is the structure which remembers $*_{p}$ but forgets the metric $g_{i j}$. Hertling and Manin showed that the WDVV equations can be rewritten as

$$
L_{X * Y} *=X * L_{Y} *+Y * L_{X} *
$$

for any local vector fields X and Y.

- I.e., for any local vector fields X, Y, Z, W :

$$
\begin{aligned}
& {[X * Y, Z * W]-[X * Y, Z] * W-[X * Y, W] * Z} \\
& \quad=X *[Y, Z * W]-X *[Y, Z] * W-X *[Y, W] * Z \\
& \quad+Y *[X, Z * W]-Y *[X, Z] * W-Y *[X, W] * Z
\end{aligned}
$$

- Denote by \mathcal{K} the irregular eigenbundle and $\mathcal{T}:=\mathcal{K}^{\perp}$ the regular eigenbundle, which extend \mathscr{K} and \mathscr{T} from $\mathbf{s}=0$ to big \mathbf{s}.
- Lemma
\mathcal{T} is an integrable distribution of the relative tangent bundle $T H_{\mathscr{R}}$.
In particular, $\operatorname{Im} \widehat{\Psi}$ is the integral submanifold \mathcal{M} (over \mathscr{R}^{\prime}) containing the slice $\left(q^{\ell^{\prime}} \neq 0, \mathbf{t}=0\right)$ which contains $\operatorname{Im} \Psi$ when modulo \mathscr{R}^{\prime}.
- Proof.

Let X, Z be any local vector fields in $\mathcal{T}=\mathcal{K}^{\perp}$. Let $Y=e_{i}$ and $W=e_{j}$ be idempotents in \mathcal{K}. Since $a * b=0$ for $a \in \mathcal{K}, b \in \mathcal{K}^{\perp}$,

$$
0=-X * Z *\left[e_{i}, e_{j}\right]-\delta_{i j} e_{j} *[X, Z] .
$$

Let $i=j$ we get $e_{j} *[X, Z]=0$ for all j. Hence $[X, Z] \in \mathcal{K}^{\perp}$.

- The quantum product on the Frobenius manifold $H\left(X^{\prime}\right) \otimes \mathscr{R}^{\prime}$ is semi-simple. Let $v_{0}^{\prime}, \ldots, v_{R^{\prime}-1}^{\prime}$ be the idempotent vector fields.
- Dubrovin 1996: $\left[v_{i}^{\prime}, v_{j}^{\prime}\right]=0$ for all $0 \leq i, j \leq R^{\prime}-1$. Hence the corresponding canonical coordinates $u^{\prime 0}, \ldots, u^{\prime R^{\prime}-1}$ satisfying

$$
\left(u^{\prime i}\left(q^{\prime}, \mathbf{s}=0\right)\right)=\sigma_{0}\left(q^{\prime}\right)
$$

and $v_{i}^{\prime}=\partial / \partial u^{\prime i}$ exist.

- This was extended to F-manifolds by Hertling. The F-manifold \mathcal{M} is semi-simple in the sense that $*_{p}$ on $T_{p} \mathcal{M}$ for $p \in \mathcal{M}$ is semi-simple. Denote the idempotent vector fields by $v_{1} \ldots, v_{R^{\prime}}$.
- Hertling 2002: $\left[v_{i}, v_{j}\right]=0$ for all $0 \leq i, j \leq R^{\prime}-1$. Hence the canonical coordinates $u^{0}, \ldots, u^{R^{\prime}-1}$ near each $p \in \mathcal{M}$ exist in the sense that $v_{i}=\partial / \partial u^{i}$.
- Fixing the initial correspondence of frames:
- We have constructed an analytic family of coordinate systems $\left(u^{0}\left(q^{\prime}, p\right), \ldots, u^{R^{\prime}-1}\left(q^{\prime}, p\right)\right)$ parametrized by $q^{\prime} \in \mathscr{R}^{\prime}$. Write

$$
\mathbb{T}_{i}\left(q^{\prime}\right)=\sum_{j=0}^{R^{\prime}-1} a_{i}^{j}\left(q^{\prime}\right) v_{j}\left(q^{\prime}, \mathbf{s}=0\right)
$$

for an invertible $R^{\prime} \times R^{\prime}$ matrix $\left(a_{i}^{j}\left(q^{\prime}\right)\right)$.

$$
\begin{equation*}
\left\langle\mathbb{T}_{\mu}, \mathbb{T}^{i}, \mathbb{T}_{j}\right\rangle^{X}=\left\langle\left\langle T_{\mu}^{\prime}, T^{\prime i}, T_{j}^{\prime}\right\rangle\right\rangle^{X^{\prime}}\left(\sigma_{0}\left(q^{\prime}\right)\right) . \tag{1}
\end{equation*}
$$

From this relation, we see easily that:

- Lemma

After a possible reordering of $\left\{v_{j}^{\prime}\right\}$, we have for all $i=0, \ldots, R^{\prime}-1$:

$$
T_{i}^{\prime}=\sum_{j=0}^{R^{\prime}-1} a_{i}^{j}\left(q^{\prime}\right) v_{j}^{\prime}\left(\sigma_{0}\left(q^{\prime}\right)\right)
$$

- Now we define the map $\hat{\Psi}$ by matching the canonical coordinates. Namely, $\hat{\Psi}\left(q^{\prime}, s\right) \in \mathcal{M}$ is the unique point on \mathcal{M} so that

$$
u^{i}\left(\hat{\Psi}\left(q^{\prime}, \mathbf{s}\right)\right)=u^{\prime i}\left(q^{\prime}, \mathbf{s}\right)=u^{\prime i}\left(\sigma_{0}\left(q^{\prime}\right)+\mathbf{s}\right)
$$

for $i=0, \ldots, R^{\prime}-1$.

- Since the tangent map $\hat{\Psi}_{*}$ matches the idempotents

$$
\hat{\Psi}_{*} \partial / \partial u^{\prime i}=\partial / \partial u^{i},
$$

it induces a product structure isomorphism, and hence an F-structure isomorphism by "coordinates-free WDVV".

- Also along $\mathbf{s}=0$, by Lemma we have

$$
\hat{\Psi}_{*} T_{i}^{\prime}=\mathbb{T}_{i}
$$

which matches the initial condition along the \mathscr{R}^{\prime}-axis.

- $H\left(X^{\prime}\right)$ is contractible $\Longrightarrow \hat{\Psi}$ exists globally.

Ending Remarks

- Work in progress by LLW:
(1) Globalization to simple $\left(r, r^{\prime}\right)$ flips.
(2) Generalizations to ordinary flips with non-trivial base.
(3) Reconstruction of $Q H(X)$ from $Q H\left(X^{\prime}\right)$ and "the K-block".
- Other approaches to quantum flips:
(4) [Woodward et. al.] studying wall crossing of GW invariants in different GIT quotients.
(5) [Shoemaker et. al] studying asymptotic of I functions in the toric setup.
- Would be interesting to compare their approaches with ours.

Example: $(2,1)$ flip

$R=9, R^{\prime}=8$. The following frame (recall $I=J_{\text {small }}$)

$$
\begin{aligned}
& v_{1}=\hat{\mathbf{1}} J=J, \\
& v_{2}=\hat{h} J, \quad v_{3}=(\hat{\xi}-\hat{h}) J, \\
& v_{4}=\hat{h}^{2} J-(\hat{\xi}-\hat{h})^{2} J, \quad v_{5}=\hat{h}(\hat{\xi}-\hat{h}) J+(\hat{\xi}-\hat{h})^{2} J, \\
& v_{6}=\hat{h}^{3} J-\hat{h}(\hat{\xi}-\hat{h})^{2} J, \quad v_{7}=\hat{h}^{2}(\hat{\xi}-\hat{h}) J+\hat{h}(\hat{\xi}-\hat{h})^{2} J, \\
& v_{8}=\hat{h}^{3}(\hat{\xi}-\hat{h}) J+\hat{h}^{2}(\hat{\xi}-\hat{h})^{2} J, \\
& v_{9}=\hat{\kappa}_{0} J=(\hat{\xi}-\hat{h})^{2} J,
\end{aligned}
$$

respects $H(X)=\Phi^{-1} H\left(X^{\prime}\right) \oplus^{\perp} K$ when modulo q_{1}, q_{2}.
They are precisely

$$
z \partial_{i} J \quad \text { at } t \in H^{0} \oplus H^{2}, \quad 1 \leq i \leq 9,
$$

and we get the Dubrovin connection:

$$
\begin{aligned}
& A_{1}=h *_{\text {small }}=\left[\begin{array}{lllllllll}
1 & & & & & q_{1} q_{2} & & \\
& 1 & & & & & & q_{1} q_{2} & \\
& & 1 & & & & & & \\
& & & 1 & & & & & -1 \\
& & & & 1 & & -1 & 1 & \\
& 1 & -1 & & & & & & q_{1}
\end{array}\right], \\
& A_{2}=\xi *_{\text {small }}=\left[\begin{array}{llllllll}
1 & & & -q_{2} & q_{2} & q_{1} q_{2} & & \\
1 & & & & & & -q_{2} & q_{2} \\
& 1 & & & & & & q_{1} q_{2} \\
& 1 & 1 & & & & & q_{2} \\
& & & 1 & & & & \\
\\
& & & & & & & 1
\end{array}\right] \\
&
\end{aligned}
$$

$$
x:=q_{1}^{\prime}=1 / q_{1}, \quad y:=q_{2}^{\prime}=q_{1} q_{2} .
$$

Chain rule: $y \partial_{y}=x y \partial_{q_{2}}=\partial_{2}$, and

$$
x \partial_{x}=x\left(-x^{-2} \partial_{q_{1}}+y \partial_{q_{2}}\right)=-\partial_{1}+\partial_{2}=\partial_{\tilde{\xi}-h} .
$$

Further simplification: Let $w_{i}=\sum_{j} v_{j} T_{j i}$

and $w_{9}=v_{9}=\kappa_{0}$ satisfies $\left(w_{9}, w_{i}\right)^{X}=\delta_{9, i}$.

Irregular in the K-block, of Poincaré rank one.

Block diagonalization w.r.t. $H(X)=\Phi^{-1} H\left(X^{\prime}\right) \oplus^{\perp} K$ (Wasow 1960's) + flatness of $\nabla^{X} \Longrightarrow$
\exists ! formal gauge transformation $S=P Z$

$$
P(x, y, z)=I+\left[\begin{array}{cc}
0 & g_{\bullet}^{\bullet} \\
f_{\bullet} & 0
\end{array}\right]=\left[\begin{array}{cccc}
1 & & & g_{1} \\
& \ddots & & \vdots \\
& & 1 & g_{8} \\
f_{1} & \cdots & f_{8} & 1
\end{array}\right],
$$

such that

$$
z\left(x \partial_{x}\right) Z=E_{1} Z, \quad z\left(y \partial_{y}\right) Z=E_{2} Z
$$

with E_{1}, E_{2} being block diagonalized. Also, for $i^{\prime}:=9-i$,

$$
f_{i}(x, y, z)=-\bar{g}_{i^{\prime}}:=-g_{9-i}(x, y,-z) .
$$

Get the deformed, (x, y, z)-dependent, frame

$$
\widetilde{w}_{i}=w_{i}+f_{i} \hat{\kappa}_{0}, \quad 1 \leq i \leq 8, \quad \widetilde{\hat{\kappa}}_{0}=\hat{\kappa}_{0}+\sum_{i=1}^{8} g_{i} w_{i} .
$$

From

$$
-z \partial_{k} P+A_{k} P=P E_{k}
$$

the block decomposition is equivalent to

$$
\left[\begin{array}{cc}
A_{k}^{11}+A_{k}^{12} f_{\bullet} & -z \partial_{k} g^{\bullet}+A_{k}^{11} g^{\bullet}+A_{k}^{12} \\
-z \partial_{k} f_{\bullet}+A_{k}^{21}+A_{k}^{22} f_{\bullet} & A_{k}^{21} g^{\bullet}+A_{k}^{22}
\end{array}\right]=\left[\begin{array}{cc}
E_{k}^{11} & g^{\bullet} E_{k}^{22} \\
f_{\bullet} E_{k}^{11} & E_{k}^{22}
\end{array}\right]
$$

In particular we get the equation for f_{i} :

$$
\begin{aligned}
z \partial_{k} f_{i} & =A_{k}^{22} f_{i}+\left(A_{k}^{21}\right)_{i}-\sum_{j=1}^{8} f_{j}\left(E_{k}^{11}\right)_{j i} \\
& =-\frac{\delta_{k 1}}{x} f_{i}+\left(A_{k}\right)_{9 i}-\sum_{j=1}^{8}\left(f_{j}\left(A_{k}\right)_{j i}+f_{j}\left(A_{k}\right)_{j 9} f_{i}\right) .
\end{aligned}
$$

$k=1$: system of inhomogeneous non-linear perturbation of

$$
z x \partial_{x} h=-\frac{1}{x} h
$$

Formality in $s=z x$

$$
\begin{aligned}
& f_{1}=- x^{2}\left(1-3 z x+11 z^{2} x^{2}-50 z^{3} x^{3}+\left(274 z^{4}+6 y\right) x^{4}-\left(1764 z^{5}+87 y z\right) x^{5}\right. \\
&\left.+\left(13068 z^{6}+986 y z^{2}\right) x^{6}-\left(109584 z^{7}+10803 y z^{3}\right) x^{7}+\cdots\right), \\
& f_{2}=- \frac{1}{2} x\left(1-z x+2 z^{2} x^{2}-6 z^{3} x^{3}+\left(24 z^{4}+5 y\right) x^{4}-\left(120 z^{5}+54 y z\right) x^{5}\right. \\
&\left.+\left(720 z^{6}+489 y z^{2}\right) x^{6}-\left(5040 z^{7}+4472 y z^{3}\right) x^{7}+\cdots\right), \\
& f_{3}=x\left(1-z x+2 z^{2} x^{2}-6 z^{3} x^{3}+\left(24 z^{4}+3 y\right) x^{4}-\left(120 z^{5}+30 y z\right) x^{5}\right. \\
&\left.+\left(720 z^{6}+253 y z^{2}\right) x^{6}-\left(5040 z^{7}+2168 y z^{3}\right) x^{7}+\cdots\right),
\end{aligned}
$$

- Formal part: $f_{2}, f_{3} \sim$ factorial series in $z x$.
- $f_{1} \sim$ Stirling numbers of first kind, which counts the number of $\sigma \in S_{n+1}$ with exactly two cycles. It satisfies $a_{0}=1$,

$$
a_{n}=(n+1) a_{n-1}+n!, \quad n \geq 2
$$

Its closed form is $a_{n}=(n+1)!H_{n+1}$.

$$
\begin{aligned}
f_{4}= & -\frac{1}{2} x^{4} y\left(3-23 z x+162 z^{2} x^{2}-1214 z^{3} x^{3}+\left(9972 z^{4}+29 y\right) x^{4}+\cdots\right), \\
f_{5}= & x^{4} y\left(1-7 z x+46 z^{2} x^{2}-326 z^{3} x^{3}+\left(2556 z^{4}+9 y\right) x^{4}+\cdots\right) \\
f_{6}= & -\frac{1}{2} x^{3} y\left(3-14 z x+70 z^{2} x^{2}-404 z^{3} x^{3}+\left(2688 z^{4}+23 y\right) x^{4}\right. \\
& \left.\quad-\left(20376 z^{5}+407 y z\right) x^{5}+\left(173808 z^{6}+5454 y z^{2}\right) x^{6}+\cdots\right) \\
f_{7}= & x^{3} y\left(1-4 z x+18 z^{2} x^{2}-96 z^{3} x^{3}+\left(600 z^{4}+7 y\right) x^{4}\right. \\
& \left.\quad-\left(4230 z^{5}+115 y z\right) x^{5}+\left(35280 z^{6}+1448 y z^{2}\right) x^{6}+\cdots\right) \\
f_{8}= & x^{2} y\left(1-2 z x+6 x^{2} z^{2}-24 z^{3} x^{3}+\left(120 z^{4}+5 y\right) x^{4}\right. \\
& \left.\quad-\left(720 z^{5}+63 y z\right) x^{5}+\left(5040 z^{6}+642 y z^{2}\right) x^{6}+\cdots\right)
\end{aligned}
$$

- $f_{5}: a_{n}=n!\left(n-H_{n}\right) \cdot f_{7}: a_{n}=n \cdot n!$
- $f_{4}+\frac{1}{2} f_{5}=-x^{4} y\left(1-8 z x+58 z^{2} x^{2}+444 z^{3} x^{3}+3708 z^{4} x^{4}+\cdots\right)$ with coefficients $a_{n}=(n+2)\left(H_{n+2}-2\right)+(n+1)$!.
- $f_{6}+\frac{1}{2} f_{7}=-x^{3} y\left(1-5 z x+26 z^{2} x^{2}-154 z^{3} x^{3}+\cdots\right)$ with coefficients $a_{n}=(n+1)!\left(H_{n+1}-1\right)$.

Analyticity/Algebracity in $t=y x^{4}$
Consider the generalized hypergeometric series

$$
\begin{aligned}
b & =F\left(\frac{1}{9}, \cdots, \frac{8}{9} ; \frac{2}{8}, \cdots, \frac{8}{8}, \frac{9}{8} ; \frac{9^{9}}{8^{8}} t\right) \\
& =\sum_{n \geq 0}\binom{9 n+1}{n} \frac{1}{9 n+1} t^{n},
\end{aligned}
$$

which solves the algebraic equation

$$
t b^{9}=b-1
$$

It is easy to see that

$$
b^{l}=F\left(\frac{l}{9}, \ldots ; \frac{l+1}{8}, \ldots ; \frac{9^{9}}{8^{8}} t\right)=\sum_{n \geq 0}\binom{9 n+l}{n} \frac{l}{9 n+l} t^{n}
$$

is the $(l-1)$-th shift with $\frac{9}{9}$ and $\frac{8}{8}$ skipped.

By solving the quadratic system on h_{i} 's arising from $k=2$:
Theorem (Algebraicity in the CY class $t=y x^{4}$)
Denote $f_{1}(x, y, 0), \ldots, f_{8}(x, y, 0)$ by

$$
x^{2} h_{1}, x h_{2}, x h_{3}, h_{4}, h_{5}, x^{-1} h_{6}, x^{-1} h_{7}, x^{-2} h_{8} .
$$

Then $h_{i}(t)$ depends on tonly and we have

$$
\begin{aligned}
& h_{1}=-b^{6}, \\
& h_{2}=\frac{1}{2} b^{3}-b^{4}, \quad h_{3}=b^{3}, \\
& h_{4}=\frac{1}{2}(1+b)-b^{2}, \quad h_{5}=-1+b, \\
& h_{6}=-\frac{1}{2} b^{7} t-b^{8} t, \quad h_{7}=b^{7} t, \\
& h_{8}=b^{5} t .
\end{aligned}
$$

Remark: For $\left(r, r^{\prime}\right)$ flips, the CY direction is $\left(y^{r-r^{\prime}} x^{r+2}\right)^{1 / D}$ where $D=\operatorname{gcd}\left(r-r^{\prime}, r+2\right)$.

BF/GMT along extremal rays $x=q^{\ell^{\prime}} e^{s_{1}}$ on X^{\prime}
Denote $\delta=z x \partial_{x}$ and its (pseudo) inverse \mathscr{I} by

$$
\mathscr{I} \phi=\mathscr{I}(\phi-\phi(z=0))=\int \frac{\phi-\phi(z=0)}{z x} d x .
$$

For example, $\mathscr{I}\left(f_{1} / x\right)=\frac{3}{2} x^{2}-\frac{11}{3} z x^{3}+\frac{50}{4} z^{2} x^{4}+\cdots(\bmod y)$.
Lemma (The Birkhoff factorization matrix B modulo y)
By writing $B=I+N$ we have $N^{2}=0$ and $B^{-1}=I-N$. In fact
$B=\left[\begin{array}{ccccccc}1 & & & & & & \\ & 1 & & & & & \\ & & 1 & & & & \\ & & & 1 & & & \\ & & & 1 & & \\ -\mathscr{I}^{2}\left(f_{1} / x\right) & \mathscr{I} f_{2} & \mathscr{I} f_{3} & & 1 & & \\ \frac{1}{2} \mathscr{I}^{2}\left(f_{1} / x\right) & -\frac{1}{2} \mathscr{\mathscr { I }} f_{2} & -\frac{1}{2} \mathscr{I} f_{3} & & & 1 & \\ \mathscr{I}^{3}\left(f_{1} / x-f_{3}\right) & -\mathscr{I}^{2} f_{2} & -\mathscr{I}^{2} f_{3} & & & & 1\end{array}\right] \quad(\bmod y)$.

Corollary

For local $(2,1)$ flips, the Dubrovin connection matrices modulo y and up to GMT are given by

$$
\bar{C}_{1}^{\prime}=\left[\begin{array}{cccccccc}
0 & & & & & & \\
0 & & & & & & \\
1 & & & & & & \\
& 0 & & & & & \\
& 1 & & & & & \\
-3 x^{2} / 2 & -x / 2 & x & & & & \\
3 x^{2} / 4 & x / 4 & -x / 2 & 1 & 0 & & & \\
-13 x^{3} / 9 & -x^{2} / 4 & x^{2} / 2 & & & 1 & 0 & 0
\end{array}\right]
$$

and $\bar{C}_{2}^{\prime}=A_{2}^{11}(\bmod y)$. The GMT in the extremal ray variable is

$$
\begin{aligned}
& \sigma\left(s^{1} h^{\prime}+s^{2} \xi^{\prime}\right) \\
& =s^{1} h^{\prime}+s^{2} \xi^{\prime}+\frac{3}{4} e^{2 s^{1}} q^{2 \ell^{\prime}} \xi^{\prime 2} h^{\prime}-\frac{13}{27} e^{3 s^{1}} q^{3 \ell^{\prime}} \xi^{\prime 3} h^{\prime} \quad\left(\bmod q^{\gamma^{\prime}}\right)
\end{aligned}
$$

Example of quantum invariance without BF/GMT

For local $(2,1)$ flip, the final frame $\mathbb{T}_{1}(\bmod y)$ is

$$
[\tilde{\xi}-h]:=(\tilde{\xi}-\tilde{h})(y=0, z=0)=(\tilde{\xi}-h)+x \kappa_{0} .
$$

Theorem (Invariance along extremal rays)
For extremal primary Gromov-Witten invariants of $n \geq 1$ insertions,

$$
\left\langle[\xi-h]^{\otimes n}\right\rangle^{X}=\left\langle\left(h^{\prime}\right)^{\otimes n}\right\rangle^{X^{\prime}}=q^{\ell^{\prime}} .
$$

This is equivalent to the quantum interpretation of Cayley's formula

$$
a_{d}:=\left\langle\kappa_{0}^{\otimes(d+1)}\right\rangle_{d \ell}^{X}=d^{d-2}, \quad d \geq 1,
$$

which is the number of spanning trees in the complete graph on d vertexes (and hence with d-1 edges).

Degenerate case I: Flops, $r=r^{\prime}, \operatorname{ker} \Phi=0$
E.g. Atiyah flops $r=1$. The Ψ-corrected frame is

$$
\begin{aligned}
& v_{1}=I, \\
& v_{2}=\hat{h} I, \quad v_{3}=(\hat{\xi}-\hat{h}) I, \\
& v_{4}=\hat{h}^{2} I-(\hat{\xi}-\hat{h})^{2} I, \quad v_{5}=\hat{h}(\hat{\xi}-\hat{h}) I+(\hat{\xi}-\hat{h})^{2} I, \\
& v_{6}=\hat{h}^{2}(\hat{\xi}-\hat{h}) I+\hat{h}(\hat{\xi}-\hat{h})^{2} I .
\end{aligned}
$$

Let

$$
\mathbf{f}=\mathbf{f}\left(q_{1}\right)=\frac{q_{1}}{1-q_{1}} .
$$

Then Picard-Fuchs \Rightarrow

$$
v_{4}=-\mathbf{f}^{-1}\left(z \partial_{1}\right)^{2} I=-q_{1} \mathbf{f}^{-1}\left(z \partial_{2}-z \partial_{1}\right)^{2} I=\left(q_{1}-1\right) \hat{\kappa}_{0} .
$$

Then we absorb $\hat{\kappa}_{0}$ into v_{4} to get A_{1}, A_{2} as

$$
\left.\begin{array}{l}
A_{1}=\left[\right],
\end{array}\right],
$$

Now $v_{6}=\hat{h} \hat{\xi}(\hat{\xi}-\hat{h}) I=\hat{h} \hat{\xi}^{2} I-q_{1} q_{2} I$ does not come from a naive quantization. The z-independence fails if v_{6} is not Ψ-corrected.

Degenerate case II: $(r, 0)$ flips, i.e blow-ups
Example: For $(1,0)$ flips,

$$
\begin{gathered}
f: X=\Sigma_{-1}=P_{P^{1}}(\mathscr{O}(-1) \oplus \mathscr{O}) \rightarrow X^{\prime}=P^{2} . \\
A_{x}=\left[\begin{array}{lll|l}
& x y & & x y \\
& & x y & \\
& & & -1 \\
\hline 1 & & -x y & -1 / x
\end{array}\right], \\
A_{y}=\left[\begin{array}{ccc|c}
1 & x y & y & x y \\
& 1 & x y & \\
\hline & & -x y &
\end{array}\right] .
\end{gathered}
$$

- In the diagonalization process all the formal series f_{\bullet} and g^{\bullet} in x do not have constant terms.
- For the resulting 3×3 matrices E_{x}^{11} and E_{y}^{11}, the BF matrix $B \equiv I_{3}$ $(\bmod x)$.
- Thus after substituting $x=0$ the resulting matrices for A_{x}, A_{y} go to $\mathbf{0}_{3}$ and

$$
A_{\zeta^{\prime}}=\left[\begin{array}{llll}
& & & y \\
1 & & \\
& 1 &
\end{array}\right]
$$

which recovers the Dubrovin connection on P^{2} with $y=q^{\gamma^{\prime}} e^{t^{\prime}}$.
THANK YOU

