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1. Weierstrass’s ℘ function

Lattice L = Zω1 + Zω2.

Torus T = C/L. Genus g(T ) = 1.

Analysis: Doubly periodic functions on R2.

Algebra: Elliptic Curves y2 = 4x3 − g2x− g3.

Geometry: Flat tori. Curvature zero.
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No holomorphic functions on T — Liouville.

Cauchy: no meromorphic with single pole:

1

2πi

∫
C
f(z) dz = 0.

Number of zeros = number of poles:

1

2πi

∫
C

f ′(z)

f(z)
dz = 0.

Constraint
∑

p
ordp(f)~p = 0 (mod L) from

1

2πi

∫
C
z
f ′(z)

f(z)
dz ∈ L.
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Weierstrass: ∃ unique meromorphic function

with double pole at 0.

℘(z) =
1

z2
+

∑
ω∈L×

(
1

(z − w)2
−

1

ω2

)
.

℘′(z) = −2
∑
ω∈L

1

(z − ω)3
.

By canceling poles of order 6,

℘′(z)2 = 4℘(z)3 − g2(L)℘(z)− g3(L).

Algebraic curve realization φ : T → P2 via

z 7→ (x : y : 1) = (℘(z) : ℘′(z) : 1).
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2. Classical Applications

I. Calculus: non-integrability of elliptic inte-

gral as elementary functions.

Abel-Jacobi: extending the integral over C,

dx√
4x3 − g2x− g3

=
dx

y
=
d℘(z)

℘′(z)
= dz.

The integral z(x) =
∫ x dx/y has a doubly peri-

odic inverse function x(z) = ℘(z), hence z(x)

can not be elementary.
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II. Differential Equations:

(℘′)2 = 4℘3 − g2℘− g3,

2℘′℘′′ = 12℘2℘′ − g2℘
′,

2℘′′ = 12℘2 − g2,

℘′′′ = 12℘℘′.

u(z, t) = ℘(z) is a solution of K-dV:

ut = uzzz − 12uuz.

To get time-dependent solutions we need theta

functions and to differentiate in τ = ω2/ω1.
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III. Algebra: Solving polynomial equations:

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0.

Abel, Galois: Not every polynomial equation

can be solved by radicals.

Kronecker: Can solve polynomial equation of

degree 5 in terms of radicals and ℘(a;L).

Klein, Jordan, Thomae: Can solve all poly-

nomial equations in terms of radicals and spe-

cial values of (generalized) theta functions.
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3. Riemann’s Theta Function ϑi

L = Z + Zτ , τ ∈ SL(2,Z)\H =M1.

Let q = eπiτ , τ = a+ bi, then |q| = e−b < 1.

ϑ1(z; τ) = −i
∞∑

n=−∞
(−1)nq(n+1

2)2
e(n+1

2)2πiz.

It is an entire odd function with

ϑ1(z + 1) = −ϑ1(z),

ϑ1(z + τ) = −q−1e−2πizϑ1(z).

Heat equation:

∂2ϑ1

∂z2
= 4πi

∂ϑ1

∂τ
.
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Relations to Weierstrass theory:

℘′(z) is odd with zeros at ωi/2, i = 1,2,3.

℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3),

with ei = ℘(ωi/2).

Let ζ(z) = −
∫ z ℘(w) dw = 1/z + · · · , it is odd

with quasi-periods

ηi = ζ(z + ωi)− ζ(z) = 2ζ(ωi/2).

Let σ(z) = e
∫ z ζ(w) dw. σ(z) = z + · · · is odd,

entire with simple zeros at z ∈ L. Then

σ(z) = eη1z
2/2ϑ1(z)

ϑ′1(0)
.
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Jacobi’s imaginary transformation formula ⇒
modularity for theta values: for ττ ′ = −1,

ϑ1(z; τ) = −i(iτ ′)1/2eπiτ
′z2
ϑ1(zτ ′; τ ′).

Recall SL(2,Z) = 〈S, T 〉 with Sτ = −1/τ ≡ τ ′

and Tτ = τ + 1.

Lemma 1 For τ̂ = ST−2ST−1τ =
τ − 1

2τ − 1
,

(logϑ1)τ̂

(
1

2
; τ̂

)
= −(1−2τ) + (1−2τ)2(logϑ1)τ

(
1

2
; τ

)
.
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4. Birational Geometry

Let (X,h) be a complex hermitian n-manifold.

Let R = ∇2
h ∈ Λ2(End(TX)) with Chern forms

c(X) = det
(
I −

1

2πi
R

)
= 1 + c1 + c2 + · · ·

Let φ : Y → X be a bi-moromorphic morphism.

For Kn ∈ C[c1, · · · , cn] a degree 2n form, we

attach to it a “measure” dµ := Kn.

Question: When do we have a CVF like∫
X
dµX =

∫
Y
A(φ) dµY ,

with A(φ) depends only on Jφ := detDφ?
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Hirzebruch: ∃ Q(x) = 1 + · · · ∈ C[[x]] s.t.∫
X
dµX =

∫
X

n∏
i=1

Q(xi),

xi are the Chern roots: c(X) =
∏n
i=1(1 + xi).

Theorem 2 (W–, 2001) Let f(x) = x/Q(x).

The CVF is valid “if and only if” there is a

power series A(x) such that

1

f(x)f(y)
=

A(x)

f(x)f(y − x)
+

A(y)

f(y)f(x− y)
.
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Theorem 3 (W–, 2001) The solutions of the

functional equation are given by

f(x) = e(k+ζ(z))x σ(x)σ(z)

σ(x+ z)
,

and A(x) = A(x,2) where

A(x, r) = e−(r−1)(k+ζ(z))x σ(x+ rz)σ(z)

σ(x+ z)σ(rz)
.

Thus they are parameterized by M̄1,1 × C.

Idea of proof: keep on differentiating, substi-

tute A by f(n) and get some ODE. Solve the

ODE by elliptic functions.

13



5. Non-linear PDE

This is a recent joint work with C.-S. Lin on

the Mean Field Equation on a flat torus T :

4u+ 8π(eu − 1) = 8π(δ0 − 1).

Theorem 4 Existence of solutions correspond

to existence of extra pair of critical points of

Green’s function.

Let G(z) = G(z,0), then G is even, ∇G is odd

and so ∇G(ωi/2) = 0, i = 1,2,3.
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Theorem 5 (Quiz: Who did this first?)

G(z, w) = −
1

2π
log

∣∣∣∣∣ϑ1(z − w)

ϑ′1(0)

∣∣∣∣∣+ 1

2b
(Im(z−w))2.

Corollary 6 For z = x+ iy, ∇G(z) = 0⇐⇒

∂G

∂z
≡
−1

4π

(
(logϑ1)z + 2πi

y

b

)
= 0.

Equivalently, ζ(tω1 + sω2) = tη1 + sη2.

Theorem 7 (a) For T a rectangle there are no

extra critical points. (b)∗ For τ = (1 +
√

3i)/2

there are 5 critical points. (c)∗∗ For any flat

tori, there are at most 5 critical points.
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One key point in the proof is to analyze the

degeneracy condition of ωi/2 along the line

<τ = 1/2. Two inequalities are crucial:

(e1 + η1)b > 0; e1 − 2η1 > 0.

Let An = n(n+ 1)/2 and r = e−2πb. Then

(e1 + η1)b = −4π(logϑ1(1/2))bb
=− f

∑
n>m

(−1)An+Am(An −Am)2rAn+Am

=f(r + 9r3 − 4r4 − 36r6 + 25r7 + · · · ).
It is not hard to estimate that this is positive

for b ≥ 1/2 since then r is small.

What happens if b ≤ 1/2 (and so r is large)?
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6. Arithmetic Geometry

Goal: Solving polynomial equations in Z.

Hasse-Minkowski: f(x1, x2, · · · , xn) = 0, f ho-

mogeneous of degree 2. Then f = 0 has Z-

solutions if and only if that

f = 0 (mod p) has solutions for all prime p

and it has solutions in R.

Selmer: Not true for cubic equations like

3X3 + 4Y 3 + 5Z3 = 0.
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Motivic Approach: Let X be an elliptic curve

over Z, Xp be its reduction mod p. Consider

the zeta function:

Z(Xp, t) =
∑
k≥1

|Xp(Fpk)|
tk

k

=
fp(t)

(1− t)(1− pt)
.

Then fp(t) ∈ Z[t], deg f(t) = 2, and

f(α) = 0⇒ |α| = 1/
√
p.

This gives the L function as an Euler product:

L(X, s) =
∏′
p

1

fp(p−s)
; Re s >

3

2
.
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Wiles’ Theorem. Let

Λ(s) = Ns/2(2π)−sΓ(s)L(X, s),

Hasse-Weil conjectured that L(X, s) is entire

and Λ(2−s) = ±Λ(s). Taniyama-Weil-Shimura

conjectured that L(X, s) is indeed a modular

form. These are proved by A. Wiles.

Birch & Swinnerton-Dyer Conjecture: for

r the Mordell-Weil rank of X(Q),

L(X, s) = C(s− 1)r + · · ·

C =
R

2
|Sha(X)||X(Q)tor|−2∏

p
cp

∫
X(R)

|dz|.
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Arakelov: Let S = SpecZ and π : X → S as

an arithmetric surface. The genus of X can be

any g ≥ 0. Complete S by adding archimedean

places as the S∞. Here S∞ = {Q ↪→ C}.

Xp is the reduction of X mod p for p ∈ S.

X∞ is simply the torus X(C).

Let P,Q ∈ X(Q̄). They give rise to π-sections.

Hence the intersection numbers

(P,Q)Ar :=
∑

p
(P,Q)p +G(P,Q).

Key: (D,D)Ar is defined by linear equivalence

and is related to the height function.
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Faltings: Arithmetic Riemann-Roch theorem,

Hodge index theorem, Noether formula etc for

curves X over Q of any genus g ≥ 0. In par-

ticular, he defined the Arakelov divisor ωX and

proved ω2
X = (ωX , ωX)Ar ≥ 0.

Parshin (1986): (a) An upper bound for ω2
X in

terms of K, g and places (primes) where X has

bad reduction implies the Mordell conjecture.

(b) the “Arithmetic Miyaoka-Yau inequality”

c21 ≤ 3c2

implies the Fermat Last Theorem.
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