Mathematics on Tori/3

CHIN-LUNG WANG
 (NCU and NCTS)

July 14, 2004
Colloquium at Taiwan University

Part A: Classical Feature

1. Weierstrass's \wp function
2. Classical Applications
3. Riemann's Theta Functions ϑ_{i}

Part B: Recent Feature (Selected)

4. Birational Geometry
5. Non-linear PDE
6. Arithmetic Geometry

1. Weierstrass's \wp function

Lattice $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$.
Torus $T=\mathbb{C} / L$. Genus $g(T)=1$.
Analysis: Doubly periodic functions on \mathbb{R}^{2}.
Algebra: Elliptic Curves $y^{2}=4 x^{3}-g_{2} x-g_{3}$.

Geometry: Flat tori. Curvature zero.

No holomorphic functions on T - Liouville.
Cauchy: no meromorphic with single pole:

$$
\frac{1}{2 \pi i} \int_{C} f(z) d z=0
$$

Number of zeros $=$ number of poles:

$$
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

Constraint $\sum_{p} \operatorname{ord}_{p}(f) \vec{p}=0(\bmod L)$ from

$$
\frac{1}{2 \pi i} \int_{C} z \frac{f^{\prime}(z)}{f(z)} d z \in L
$$

Weierstrass: \exists unique meromorphic function with double pole at 0 .

$$
\begin{gathered}
\wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in L^{\times}}\left(\frac{1}{(z-w)^{2}}-\frac{1}{\omega^{2}}\right) . \\
\wp^{\prime}(z)=-2 \sum_{\omega \in L} \frac{1}{(z-\omega)^{3}} .
\end{gathered}
$$

By canceling poles of order 6 ,

$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2}(L) \wp \wp(z)-g_{3}(L) .
$$

Algebraic curve realization $\phi: T \rightarrow \mathbb{P}^{2}$ via

$$
z \mapsto(x: y: 1)=\left(\wp(z): \wp^{\prime}(z): 1\right) .
$$

2. Classical Applications

I. Calculus: non-integrability of elliptic integral as elementary functions.

Abel-Jacobi: extending the integral over \mathbb{C},

$$
\frac{d x}{\sqrt{4 x^{3}-g_{2} x-g_{3}}}=\frac{d x}{y}=\frac{d \wp(z)}{\wp^{\prime}(z)}=d z .
$$

The integral $z(x)=\int^{x} d x / y$ has a doubly periodic inverse function $x(z)=\wp(z)$, hence $z(x)$ can not be elementary.

II. Differential Equations:

$$
\begin{gathered}
\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-g_{2} \wp-g_{3}, \\
2 \wp^{\prime} \wp^{\prime \prime}=12 \wp^{2} \wp^{\prime}-g_{2} \wp^{\prime}, \\
2 \wp^{\prime \prime}=12 \wp^{2}-g_{2}, \\
\wp^{\prime \prime \prime}=12 \wp \wp^{\prime} .
\end{gathered}
$$

$u(z, t)=\wp(z)$ is a solution of $\mathrm{K}-\mathrm{dV}$:

$$
u_{t}=u_{z z z}-12 u u_{z}
$$

To get time-dependent solutions we need theta functions and to differentiate in $\tau=\omega_{2} / \omega_{1}$.
III. Algebra: Solving polynomial equations:

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

Abel, Galois: Not every polynomial equation can be solved by radicals.

Kronecker: Can solve polynomial equation of degree 5 in terms of radicals and $\wp(a ; L)$.

Klein, Jordan, Thomae: Can solve all polynomial equations in terms of radicals and special values of (generalized) theta functions.

3. Riemann's Theta Function ϑ_{i}

$L=\mathbb{Z}+\mathbb{Z} \tau, \tau \in \operatorname{SL}(2, \mathbb{Z}) \backslash \mathcal{H}=\mathcal{M}_{1}$.
Let $q=e^{\pi i \tau}, \tau=a+b i$, then $|q|=e^{-b}<1$.

$$
\vartheta_{1}(z ; \tau)=-i \sum_{n=-\infty}^{\infty}(-1)^{n} q^{\left(n+\frac{1}{2}\right)^{2}} e^{\left(n+\frac{1}{2}\right) 2 \pi i z} .
$$

It is an entire odd function with

$$
\begin{aligned}
\vartheta_{1}(z+1) & =-\vartheta_{1}(z), \\
\vartheta_{1}(z+\tau) & =-q^{-1} e^{-2 \pi i z} \vartheta_{1}(z) .
\end{aligned}
$$

Heat equation:

$$
\frac{\partial^{2} \vartheta_{1}}{\partial z^{2}}=4 \pi i \frac{\partial \vartheta_{1}}{\partial \tau}
$$

Relations to Weierstrass theory:
$\wp^{\prime}(z)$ is odd with zeros at $\omega_{i} / 2, i=1,2,3$.

$$
\wp^{\prime}(z)^{2}=4\left(\wp(z)-e_{1}\right)\left(\wp(z)-e_{2}\right)\left(\wp(z)-e_{3}\right),
$$

with $e_{i}=\wp\left(\omega_{i} / 2\right)$.
Let $\zeta(z)=-\int^{z} \wp(w) d w=1 / z+\cdots$, it is odd with quasi-periods

$$
\eta_{i}=\zeta\left(z+\omega_{i}\right)-\zeta(z)=2 \zeta\left(\omega_{i} / 2\right)
$$

Let $\sigma(z)=e^{\int^{z} \zeta(w) d w} . \sigma(z)=z+\cdots$ is odd, entire with simple zeros at $z \in L$. Then

$$
\sigma(z)=e^{\eta_{1} z^{2} / 2} \frac{\vartheta_{1}(z)}{\vartheta_{1}^{\prime}(0)}
$$

Jacobi's imaginary transformation formula \Rightarrow modularity for theta values: for $\tau \tau^{\prime}=-1$,

$$
\vartheta_{1}(z ; \tau)=-i\left(i \tau^{\prime}\right)^{1 / 2} e^{\pi i \tau^{\prime} z^{2}} \vartheta_{1}\left(z \tau^{\prime} ; \tau^{\prime}\right)
$$

Recall $\operatorname{SL}(2, \mathbb{Z})=\langle S, T\rangle$ with $S \tau=-1 / \tau \equiv \tau^{\prime}$ and $T \tau=\tau+1$.

Lemma 1 For $\hat{\tau}=S T^{-2} S T^{-1} \tau=\frac{\tau-1}{2 \tau-1}$,
$\left(\log \vartheta_{1}\right)_{\hat{\tau}}\left(\frac{1}{2} ; \hat{\tau}\right)=-(1-2 \tau)+(1-2 \tau)^{2}\left(\log \vartheta_{1}\right)_{\tau}\left(\frac{1}{2} ; \tau\right)$.

4. Birational Geometry

Let (X, h) be a complex hermitian n-manifold. Let $R=\nabla_{h}^{2} \in \wedge^{2}\left(\operatorname{End}\left(T_{X}\right)\right)$ with Chern forms

$$
c(X)=\operatorname{det}\left(I-\frac{1}{2 \pi i} R\right)=1+c_{1}+c_{2}+\cdots
$$

Let $\phi: Y \rightarrow X$ be a bi-moromorphic morphism. For $K_{n} \in \mathbb{C}\left[c_{1}, \cdots, c_{n}\right]$ a degree $2 n$ form, we attach to it a "measure" $d \mu:=K_{n}$.

Question: When do we have a CVF like

$$
\int_{X} d \mu_{X}=\int_{Y} A(\phi) d \mu_{Y},
$$

with $A(\phi)$ depends only on $J \phi:=\operatorname{det} D \phi$?

Hirzebruch: $\exists Q(x)=1+\cdots \in \mathbb{C}[[x]]$ s.t.

$$
\int_{X} d \mu_{X}=\int_{X} \prod_{i=1}^{n} Q\left(x_{i}\right)
$$

x_{i} are the Chern roots: $c(X)=\prod_{i=1}^{n}\left(1+x_{i}\right)$.
Theorem 2 ($\mathbf{W}-$, 2001) Let $f(x)=x / Q(x)$.
The CVF is valid "if and only if" there is a power series $A(x)$ such that

$$
\frac{1}{f(x) f(y)}=\frac{A(x)}{f(x) f(y-x)}+\frac{A(y)}{f(y) f(x-y)} .
$$

Theorem 3 ($\mathbf{W}-$, 2001) The solutions of the functional equation are given by

$$
f(x)=e^{(k+\zeta(z)) x} \frac{\sigma(x) \sigma(z)}{\sigma(x+z)}
$$

and $A(x)=A(x, 2)$ where

$$
A(x, r)=e^{-(r-1)(k+\zeta(z)) x} \frac{\sigma(x+r z) \sigma(z)}{\sigma(x+z) \sigma(r z)}
$$

Thus they are parameterized by $\overline{\mathcal{M}}_{1,1} \times \mathbb{C}$.

Idea of proof: keep on differentiating, substitute A by $f^{(n)}$ and get some ODE. Solve the ODE by elliptic functions.

5. Non-linear PDE

This is a recent joint work with C.-S. Lin on the Mean Field Equation on a flat torus T :

$$
\triangle u+8 \pi\left(e^{u}-1\right)=8 \pi\left(\delta_{0}-1\right)
$$

Theorem 4 Existence of solutions correspond to existence of extra pair of critical points of Green's function.

Let $G(z)=G(z, 0)$, then G is even, ∇G is odd and so $\nabla G\left(\omega_{i} / 2\right)=0, i=1,2,3$.

Theorem 5 (Quiz: Who did this first?)

$G(z, w)=-\frac{1}{2 \pi} \log \left|\frac{\vartheta_{1}(z-w)}{\vartheta_{1}^{\prime}(0)}\right|+\frac{1}{2 b}(\operatorname{Im}(z-w))^{2}$.
Corollary 6 For $z=x+i y, \nabla G(z)=0 \Longleftrightarrow$

$$
\frac{\partial G}{\partial z} \equiv \frac{-1}{4 \pi}\left(\left(\log \vartheta_{1}\right)_{z}+2 \pi i \frac{y}{b}\right)=0
$$

Equivalently, $\zeta\left(t \omega_{1}+s \omega_{2}\right)=t \eta_{1}+s \eta_{2}$.

Theorem 7 (a) For T a rectangle there are no extra critical points. (b)* For $\tau=(1+\sqrt{3} i) / 2$ there are 5 critical points. (c)** For any flat tori, there are at most 5 critical points.

One key point in the proof is to analyze the degeneracy condition of $\omega_{i} / 2$ along the line $\Re \tau=1 / 2$. Two inequalities are crucial:

$$
\left(e_{1}+\eta_{1}\right)_{b}>0 ; \quad e_{1}-2 \eta_{1}>0
$$

Let $A_{n}=n(n+1) / 2$ and $r=e^{-2 \pi b}$. Then

$$
\begin{aligned}
& \left(e_{1}+\eta_{1}\right)_{b}=-4 \pi\left(\log \vartheta_{1}(1 / 2)\right)_{b b} \\
= & -f \sum_{n>m}(-1)^{A_{n}+A_{m}}\left(A_{n}-A_{m}\right)^{2} r^{A_{n}+A_{m}} \\
= & f\left(r+9 r^{3}-4 r^{4}-36 r^{6}+25 r^{7}+\cdots\right) .
\end{aligned}
$$

It is not hard to estimate that this is positive for $b \geq 1 / 2$ since then r is small.
What happens if $b \leq 1 / 2$ (and so r is large)?

6. Arithmetic Geometry

Goal: Solving polynomial equations in \mathbb{Z}.

Hasse-Minkowski: $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0, f$ homogeneous of degree 2. Then $f=0$ has \mathbb{Z} solutions if and only if that $f=0(\bmod p)$ has solutions for all prime p and it has solutions in \mathbb{R}.

Selmer: Not true for cubic equations like

$$
3 X^{3}+4 Y^{3}+5 Z^{3}=0
$$

Motivic Approach: Let X be an elliptic curve over \mathbb{Z}, X_{p} be its reduction mod p. Consider the zeta function:

$$
\begin{aligned}
Z\left(X_{p}, t\right) & =\sum_{k \geq 1}\left|X_{p}\left(\mathbb{F}_{p^{k}}\right)\right| \frac{t^{k}}{k} \\
& =\frac{f_{p}(t)}{(1-t)(1-p t)} .
\end{aligned}
$$

Then $f_{p}(t) \in \mathbb{Z}[t], \operatorname{deg} f(t)=2$, and

$$
f(\alpha)=0 \Rightarrow|\alpha|=1 / \sqrt{p} .
$$

This gives the L function as an Euler product:

$$
L(X, s)=\prod_{p}^{\prime} \frac{1}{f_{p}\left(p^{-s}\right)} ; \quad \operatorname{Re} s>\frac{3}{2} .
$$

Wiles' Theorem. Let

$$
\wedge(s)=N^{s / 2}(2 \pi)^{-s} \Gamma(s) L(X, s),
$$

Hasse-Weil conjectured that $L(X, s)$ is entire and $\Lambda(2-s)= \pm \Lambda(s)$. Taniyama-Weil-Shimura conjectured that $L(X, s)$ is indeed a modular form. These are proved by A . Wiles.

Birch \& Swinnerton-Dyer Conjecture: for r the Mordell-Weil rank of $X(\mathbb{Q})$,

$$
\begin{gathered}
L(X, s)=C(s-1)^{r}+\cdots \\
C=\frac{R}{2}|\operatorname{Sha}(X)|\left|X(\mathbb{Q})_{\text {tor }}\right|^{-2} \prod_{p} c_{p} \int_{X(\mathbb{R})}|d z| .
\end{gathered}
$$

Arakelov: Let $S=\operatorname{Spec} \mathbb{Z}$ and $\pi: X \rightarrow S$ as an arithmetric surface. The genus of X can be any $g \geq 0$. Complete S by adding archimedean places as the S_{∞}. Here $S_{\infty}=\{\mathbb{Q} \hookrightarrow \mathbb{C}\}$.
X_{p} is the reduction of $X \bmod p$ for $p \in S$. X_{∞} is simply the torus $X(\mathbb{C})$.

Let $P, Q \in X(\overline{\mathbb{Q}})$. They give rise to π-sections. Hence the intersection numbers

$$
(P, Q)_{\mathrm{Ar}}:=\sum_{p}(P, Q)_{p}+G(P, Q) .
$$

Key: $(D, D)_{\mathrm{Ar}}$ is defined by linear equivalence and is related to the height function.

Faltings: Arithmetic Riemann-Roch theorem, Hodge index theorem, Noether formula etc for curves X over \mathbb{Q} of any genus $g \geq 0$. In particular, he defined the Arakelov divisor ω_{X} and proved $\omega_{X}^{2}=\left(\omega_{X}, \omega_{X}\right)_{\mathrm{Ar}} \geq 0$.

Parshin (1986): (a) An upper bound for ω_{X}^{2} in terms of K, g and places (primes) where X has bad reduction implies the Mordell conjecture. (b) the "Arithmetic Miyaoka-Yau inequality"

$$
c_{1}^{2} \leq 3 c_{2}
$$

implies the Fermat Last Theorem.

