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1. Weierstrass’'s p function
Lattice L = Zw1 + Zwo>.
Torus T'=C/L. Genus ¢g(T) = 1.
Analysis: Doubly periodic functions on R2.
Algebra: Elliptic Curves y2 = 4z3 — gox — ¢g3.

Geometry: Flat tori. Curvature zero.



No holomorphic functions on T° — Liouville.
Cauchy: no meromorphic with single pole:

1 / f(z)dz = 0.

271
Number of zeros = number of poles:

f’(Z)
ori Jo f(z)
Constraint Zp ord,(f)p =0 (mod L) from

1 f’(Z)
2ri Jo f(z)

= 0.

dz € L.



Weierstrass: 4 unique meromorphic function
with double pole at O.

@(2)=Zi2+ > <(Z_1w)2—$>.

weLX

1
wElL(Z-_<U>3.

By canceling poles of order 6,

0 (2)% = 4p(2)> — go(L)p(2) — g3(L).

Algebraic curve realization ¢ : T — P2 via

2> (x:y:1)=(p(2): ) :1).

o' (z) = -2



2. Classical Applications

I. Calculus: non-integrability of elliptic inte-
gral as elementary functions.

Abel-Jacobi: extending the integral over C,
dx _dz _ dp(z)

Jac® —gow—gs v )

The integral z(x) = [*dx/y has a doubly peri-

odic inverse function z(z) = p(z), hence z(x)
can not be elementary.

dz.



II. Differential Equations:

(92 = 49> — gop — g3,

/I 1 __

20’0 = 12p%¢" — go¢,
20" = 12p°% — go,
p/// — 12@@/
u(z,t) = p(z) is a solution of K-dV:

Ut — Uzzz — 12'U/U/2;.

To get time-dependent solutions we need theta
functions and to differentiate in 7 = wy /w1 .



ITI. Algebra: Solving polynomial equations:

anx’ + an_laf;n_l +---4+ajx+ ag =0.

Abel, Galois: Not every polynomial equation
can be solved by radicals.

Kronecker: Can solve polynomial equation of
degree 5 in terms of radicals and p(a; L).

Klein, Jordan, Thomae: Can solve all poly-
nomial equations in terms of radicals and spe-
cial values of (generalized) theta functions.



3. Riemann’s Theta Function 9,

L=7+7Zr, 1€ SL(2,Z)\H = M;.
Let g = e™T + = a4+ bi, then lq| = e b <1,

I1(z;,7) = —1 Z (_1)nq(n+%)2€(n+%)2ﬁiz.

It is an entire odd function with

V1(z + 1) = —91(2),

01(z +7) = —¢ e (2).
Heat equation:

0291 _ 4201

0z2 or




Relations to Weierstrass theory:
©'(z) is odd with zeros at w;/2, i = 1,2, 3.

o' (2)° = 4(p(2) — 1) (p(2) — e2)(p(2) — e3),

Let ((z) = — [*p(w)dw =1/z+ ---, it is odd
with quasi-periods

ni = C(z +w;) — ¢(2) = 2¢(w;/2).

Let o(2) = el C(w)dw, o(z) = z+4 --- is odd,
entire with simple zeros at z € L. Then

o(z) = e”lZQ/Qﬁl(Z)
(2) 7 (0)’




Jacobi’'s imaginary transformation formula =
modularity for theta values: for 77/ = —1,

91(z;7) = —i(ir") /2™, (o7 7).
Recall SL(2,Z) = (S,T) with St = —1/7 = 7/
and T'r =71+ 1.

T—1
21 — 1’

(10g 91)- (g ?) — _(1—27) + (1—27)2(log 91), @ T) |

Lemma 1l For 7= ST28T 1r =
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4. Birational Geometry

Let (X,h) be a complex hermitian n-manifold.
Let R = V% € A?(End(Tx)) with Chern forms

C(X):det(l_QiR):]-_l_cl_l_CQ‘l'

%)
Let ¢ : Y — X be a bi-moromorphic morphism.
For K,, € Cleq,--+,cn] a degree 2n form, we

attach to it a “measure” du = K.

Question: When do we have a CVF like

d :/ A(&) dpy
/X px = [ (¢) dpy
with A(¢) depends only on J¢ := det D¢~

11



Hirzebruch: 3 Q(x) =1+ --- € C[[x]] s.t.

/X dpx = /X iljl Q(x;),

x; are the Chern roots: c(X) = [~ 1(1 + =;).

Theorem 2 (W—, 2001) Let f(x) = z/Q(x).
The CVF is valid “if and only if” there is a
power series A(x) such that
1 A@) AW
f@f)  f@fly—=)  f)flz—y)
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Theorem 3 (W—, 2001) The solutions of the
functional equation are given by

) — k()2 9(2)o(2)
J) o(z+z)

and A(x) = A(x,2) where

(D)t oz +r2)o(2)
Alw,r) = e o(x + 2)o(rz)

Thus they are parameterized by j\7l1,1 x C.

Idea of proof: keep on differentiating, substi-
tute A by f(") and get some ODE. Solve the
ODE by elliptic functions.
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5. Non-linear PDE

This is a recent joint work with C.-S. Lin on
the Mean Field Equation on a flat torus T

Au—+ 8m(e" — 1) =8n(dg — 1).

Theorem 4 Existence of solutions correspond
to existence of extra pair of critical points of
Green’s function.

Let G(z) = G(%,0), then G is even, VG is odd
and so VG(w;/2) =0, i =1,2,3.

14



Theorem 5 (Quiz: Who did this first?)

_ 1 iz —w)| | 1

> (Im(z—w))?.

Corollary 6 For z=x 4+ iy, VG(z) = 0 <—

oG _ 1 ((Iog V1) + 2m%> = 0.

0z  4m
Equivalently, ¢(twq1 + swo) = tny + sno.

Theorem 7 (a) ForT a rectangle there are no
extra critical points. (b)* For v = (1 + /3i)/2
there are 5 critical points. (c)** For any flat
tori, there are at most 5 critical points.

15



One key point in the proof is to analyze the
degeneracy condition of w;/2 along the line
R = 1/2. Two inequalities are crucial:

(e1 +11)p >0, er —2n1 > 0.
Let A, =n(n+1)/2 and r = e 2™, Then
(e1 +1n1)p = —4m(10991(1/2))ps
=—f Zn>m(_1)An+Am(An — Am)Q"“An_i_Am
=f(r4+9r3 —4ar* —36r° + 257" +...).
It is not hard to estimate that this is positive

for b > 1/2 since then r is small.
What happens if b < 1/2 (and so r is large)?
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6. Arithmetic Geometry
Goal: Solving polynomial equations in Z.

Hasse-Minkowski: f(x1,z5, -+ ,x2n) = 0, f ho-
mogeneous of degree 2. Then f = 0 has Z-
solutions if and only if that

f =0 (mod p) has solutions for all prime p
and it has solutions in R.

Selmer: Not true for cubic equations like

3X34+4yY3 4573 =0.

17



Motivic Approach: Let X be an elliptic curve
over Z, Xp be its reduction mod p. Consider

the zeta function:
+k
Z(Xp, t) = > [ Xp(F, k:)|_

k>1
_ fp(1)
(1-t)(1 —pt)
Then f,(t) € Z[t], deg f(t) = 2, and

fla) =0=|a| =1//p.
This gives the L function as an Euler product:
/ 1

L(X,S)Zprp( _S)' Res>g.
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Wiles’ Theorem. Let

A(s) = N¥/2(27) 75T (s) L(X, s),

Hasse-Weil conjectured that L(X,s) is entire
and A(2—s) = £A(s). Taniyama-Weil-Shimura
conjectured that L(X,s) is indeed a modular
form. These are proved by A. Wiles.

Birch & Swinnerton-Dyer Conjecture: for
r the Mordell-Weil rank of X (Q),

L(X,s) =C(s—1)" 4.

| cp /X(]R) |dz|.

R
C = 218ha (X)X (@ror 72
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Arakelov: Let S = SpecZ and = : X — S as
an arithmetric surface. The genus of X can be
any g > 0. Complete S by adding archimedean
places as the S». Here Soo = {Q — C}.

Xp is the reduction of X mod p for pe S.
Xoo is simply the torus X (C).

Let P,Q € X(Q). They give rise to w-sections.
Hence the intersection numbers

(P7 Q)Ar L= Zp(Pa Q)p _I_ G(PaQ)

Key: (D, D)a, is defined by linear equivalence
and is related to the height function.
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Faltings: Arithmetic Riemann-Roch theorem,
Hodge index theorem, Noether formula etc for
curves X over Q of any genus g > 0. In par-
ticular, he defined the Arakelov divisor wy and
proved w% = (wx,wx)ar > 0.

Parshin (1986): (a) An upper bound for w% in
terms of K, g and places (primes) where X has
bad reduction implies the Mordell conjecture.
(b) the “Arithmetic Miyaoka-Yau inequality”

cf < 3co

implies the Fermat Last T heorem.
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