
ANALYTIC CONTINUATIONS OF GW THEORY

CHIN-LUNG WANG

ABSTRACT. This talk surveys my recent works with Yuan-Pin Lee and Hui-Wen
Lin on analytic continuations of GW theory under simple ordinary flops [9, 6]. We
first reduce the problem to local models via degeneration analysis. The genus zero
theory (quantum cohomology) is then handled by classical mirror symmetry for
toric varieties. The higher genus case follows from the genus zero result through
sophesticated quantization procedure of semisimple theories. Explicit formulas of
generating functions on extremal rays are given to demonstrate the result.

1. THE GROMOV–WITTEN THEORY

Let X be a complex projective manifold and Xg,n,β the moduli space of stable
maps f : (C, p1, . . . , pn) → X with g(C) = g and [ f (C)] = β ∈ NE(X). The
virtual fundamental class Lg,n,β ∈ AD(Xg,n,β)⊗Q with expected dimension D =
(c1(X).β) + (dim X− 3)(1− g) + n.

Let 0 ≤ m ≤ n. If m 6= 0 it is required that 2g + m ≥ 3 (the stable range). The
(n, m)-mixed invariants are〈 m

∏
i=1

τki ,l̄i ai,
n

∏
i=m+1

τki
ai

〉
g

=
∫

Lg,n,β

m

∏
i=1

ψ
ki
i ψ̄

li
i e∗i ai

n

∏
i=m+1

ψki e∗i ai.

The insertion (field) at the i-th marked point comes from
(1) Primary fields: ai ∈ H(X) with ei : Xg,n,β → X the evaluation map ei( f ) =

f (pi).
(2) Descendants: ψi = c1(Li) with Li the universal cotangent line at the i-th

section of the universal curve Xg,n+1,β → Xg,n,β.
(3) Ancestors: ψ̄i = π∗ψi, with π : Xg,n,β → Mg,n → Mg,m the stabilization

followed by the forgetting map.

Let {Ti} be a basis of H(X, C), gij = (Ti.Tj) and {Ti = ∑j gijTj} the dual basis.
The element s ∈ H = H(X) is denoted by s = ∑i siTi, and the element t ∈ Ht =
H[z] ∼=

⊕∞
k=0 H is denoted by t = ∑k,i ti

kTiψ
k. Then for any (n, m)-mixed insertion

A we have generating (formal) functions

〈A〉g(t, s) = ∑
β;n1,n2

qβ

n1!n2!
〈A, t⊗n1 , s⊗n2〉g,n+n1+n2,β.

Similarly this applies to t̄ = ∑k,i t̄i
kTiψ̄

k ∈ Ht in place of t. In particular for A = ∅
(n = 0), we have descendant potentials

FX
g (t) = 〈−〉g(t); DX(t) = exp

∞

∑
g=0

h̄g−1FX
g (t).
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The Gromov–Witten potential FX
g (s) is the restriction to t = s ∈ H. The quan-

tum product uses genus 0 theory with n ≥ 3 marked points. Namely

Ti ∗s Tj = ∑
k

∂3F0(s)
∂si∂sj∂sk Tk = ∑

n,β,k

qβ

n!
〈Ti, Tj, Tk, s⊗n〉0,3+n,β Tk.

The associativity of the quantum product is equivalent to the WDVV equations–
the flatness of the Dubrovin connection

∇z
i =

∂

∂si −
1
z

Ti ∗s

on the (trivial) tangent bundle TH → H 3 s, with z ∈ C× being a free parameter.
The GW potential is regraded as a function in two sets of variables. One is in

the (complexified) Kähler moduli:

ω = B + iH ∈ K C
X = H2(X, R)/H2(X, Z) + iKX ,

with KX being the Kähler cone, such that

qβ = e2πi
∫

β ω = e2πi(B.β)e−2π(H.β).

Conjecturally, Fg(t) converges for H large. At ∞, qβ = 0 for β ∈ NE(X)\{0} and
∗ reduces to cup product. Alternatively one uses Novikov ring to work formally:

N(X) = C ̂[NE(X)],

the formal completion at the maximal ideal generated by all qβ with β 6= 0.
The second set of variables are si’s. For similar convergence problem one views

{si} as formal variables and Fg(s) as formal power series. This issue can be easily
avoided since one usually work with n-pointed GW invariants instead of the full
generating functions. The quantum cohomology ring (QH(X), ∗) gives rise to a
formal conformal Frobenius manifold (H⊗N(X), (.), ∗, 1, E) with (, ) the Poincaré
pairing, 1 the fundamental class, and E ∈ Γ(TH) the Euler vector field:

E = ∑
i
(1− 1

2
deg Ti)si ∂

∂si + c1(TX).

Similarly we have the ancestor potentials

F̄X
g (t̄, s) = 〈−〉g(t̄, s); AX(t̄, s) = exp

∞

∑
g=0

h̄g−1 F̄X
g (t̄, s).

While descendants appear naturally in localization formula, the ancestors do have
better functoriality. They are closely related:

Proposition 1.1. In the stable range 2g + n ≥ 3, for (k1, l1) = (k + 1, l),

〈τk+1,l̄ a1, · · · 〉g(t̄, s)

= 〈τk,l+1 a1, · · · 〉g(t̄, s) + ∑
ν

〈τk a1, Tν〉0(s) 〈τl Tν, · · · 〉g(t̄, s).(1.1)
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2. SIMPLE FLOPS AND QUANTUM CORRECTIONS

Let ψ : X → X̄ be a flopping contraction, with ψ̄ : Z ∼= Pr → pt the restriction
to the exceptional loci. Assume that NZ/X

∼= OPr (−1)⊕(r+1), then a simple Pr flop
f : X 99K X′ exists by blowing-up φ : Y = BlZX → X followed by a blowing-down
φ′ : Y → X′ of the exceptoonal divisor E ∼= Pr × Pr in the different direction:

E ⊂ Y
φ

yyssssssssss
φ′

%%LLLLLLLLLL

Z ⊂ X
f //

ψ $$JJJJJJJJJ Z′ ⊂ X′.

ψ′yyssssssssss

pt ∈ X̄

The graph closure [Γ̄ f ] = [Y] ∈ A∗(X×X′) induces a correspondence F which
identifies H(X) and H(X′) as well as the Poincare pairing. However the cup prod-
uct is not preserved. Indeed let H(Z) = H(Pr) = Z[h]/(hr+1) and denote also by
the same h a class in X which restricts to the hyperplane class of Z. For 3 classes
ai ∈ Aki (X) with 1 ≤ ki ≤ r, k1 + k2 + k3 = dim X = 2r + 1, there is a topological
defect of the cubic product:

(F a1.F a2.F a3)X′ − (a1.a2.a3)X = (−1)r(a1.hr−k1)X(a2.hr−k2)X(a3.hr−k3)X .

The quantum product comes in to rescue. It turns out that QH(X) and QH(X′)
are invariant under F , after an analytic continuation in the extended Kähler mod-
uli space. The analytic continuation is needed since FKX ∩KX′ = ∅. Equiva-
lently for `, `′ the extremal rays of ψ, ψ′ respectively, F ` = −`′ and we identify

F qβ = qF β; F q` = q−`′

in the comparison of F FX
0 (s) and FX′

0 (F s). In doing so we have to first show that
they are algebraic functions of q` and q`′ respectively.

Let ai ∈ Aki (X) with ∑ ki = 2r + 1 + (n− 3). Using localization and classical
mirror symmetry techniques (plus divisor reconstruction), we proved

Theorem 2.1 (Generalized multiple cover formula for g = 0).

〈a1, . . . , an〉Xn,d` = (−1)(r+1)(d−1)Nk1,...,kn dn−3(a1.hr−k1)X · · · (an.hr−kn)X .

Here Nk1,...,kn ’s are recursively defined universal constants.

To see this leads to quantum corrections to the cup product, consider the ratio-
nal form of the geometric series

f(q) :=
q

1− (−1)r+1q
= ∑

d≥1
(−1)(r+1)(d−1)qd.

It satisfies the functional equation E(q) := f(q) + f(q−1) + (−1)r+1 = 0 (E(q) is
the formal Euler series), which will be the main source of analytic continuations.

Indeed, for extremal functions 〈a〉0 := ∑∞
d=0〈a〉d` qd`,

〈F a1, F a2, F a3〉X
′

0 −F 〈a1, a2, a3〉X0
= (a1.hr−k1)(a2.hr−k2)(a3.hr−k3)

(
(−1)r − f(q`′)− f(q−`′)

)
= 0.
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For n ≥ 4, let δ = δh = q`∂/∂q` = −q`′∂/∂q`′ = −δh′ be the power operator. Then

〈F a1, · · · , F an〉X
′

0 −F 〈a1, · · · , an〉X0

= (−1)nNk1,...,kn

n

∏
i=1

(ai.hr−ki ) δn−3(f(q`′) + f(q−`′)
)

= 0.

These explains the quantum corrections by the extremal rays.
Now we move to g ≥ 1. The virtual dimension of Xg,n,d` is given by

(2.1) Dg,n = (dim X− 3)(1− g) + n

which is independent of d. For α ∈ H(X)⊗n, d ≥ 1, 〈α〉g,n,d depends only on the
local geometry of (Z, NZ/X). For d = 0 it depends on the global geometry of X.

If g = 1 then D1,n = n. By the fundamental class axiom each cohomology inser-
tion must be a divisor. Hence if d ≥ 1 by the divisor axiom the n-point invariants
are determined by 〈−〉1,0,d. We omit the index n when no confusion may arise.

Let G be the genus one extremal function without marked points:

G(q) := 〈−〉1 = ∑
d≥0
〈−〉1,d qd.

For r = 1 (dim X = 3), d ≥ 1, the formula 〈−〉1,d = 1/12d was first obtained by
physical consideration in [1] and later mathematically justified in [5]. By using the
theory of semisimple Frobenius manifolds, we generalize it to all r ∈N:

Theorem 2.2 (Generalized multiple cover formula for g = 1). For d ∈N,

(2.2) 〈−〉1,d = (−1)d(r+1) r + 1
24d

.

Equivalently,

(2.3) δhG = ∑
d≥1
〈h〉1,d` qd = (−1)r+1 r + 1

24
f.

We will verify that F 〈α〉X1 = 〈F α〉X′1 by showing that the genus one invariants
with d ≥ 1 correct the semi-classical defect from d = 0: 〈α〉X1,0 − 〈F α〉X′1,0.

If n ≥ 2, the divisor axiom shows that 〈α〉1,n,0 = 0 and in fact there is no defect.
Now δh′ = −δh and δhf(q) = δh′ f(q′), hence δ2

hG(q) = δ2
h′G
′(q′) and then

〈h, . . . , h〉X1,n = δn
h G(q) = (−1)n−2δn

h′G
′(q′) = (−1)n〈h′, . . . , h′〉X′1,n.

Since F hk = (−1)kh′k, this implies the invariance for all n ≥ 2.
If n = 1, it is well known that Xg,n,0 ∼= X×Mg,n and

(2.4) Lg,n,0 = e(E ) ∩ [X×Mg,n],

where the obstruction bundle is given by E = π∗1 TX ⊗ π∗2H∨g with Hg being the
Hodge bundle. Let λi = ci(Hg). For (g, n) = (1, 1) we have

e(E ) = ctop(X)− ctop−1(X).λ1.

Thus for one point invariant we get a semi-classical term

(2.5) 〈a〉X1,0 = −(ctop−1(X).a)X ·
∫

M1,1

λ1 = − 1
24

(ctop−1(X).a)X ,

where the basic Hodge integral
∫

M1,1
λ1 = 1/24 is used.
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For n = 1, to prove the invariance we may assume that X and X′ are projective
local models PPr (O(−1)r+1 ⊕O). We compute via (2.5), (2.3) that

〈h〉X1 − 〈F h〉X′1 = − 1
24
(
(c2r(X).h)− (c2r(X′).(ξ ′ − h′))

)
− r + 1

24
.

Since X ∼= X′, the invariance follows from the topological calculation:

(c2r(X).(2h− ξ)) = −(r + 1).

For g ≥ 2, we must have dim X = 3 and then Dg,n = n. As in the g = 1 case we
are reduced to consider the case n = 0. For simple P1 flop, the extremal invariants
with d ≥ 1 are determined by Faber and Pandharipande [2] to be

〈−〉g,d = Cg d2g−3

where Cg = |χ(Mg)|/(2g− 3)!. The generating function

(2.6) 〈−〉g :=
∞

∑
d=0
〈−〉g,d qd = 〈−〉g,0 + Cg δ2g−3f,

is invariant under F since 2g− 3 ≥ 1 and 〈−〉Xg,0 = 〈−〉X′g,0: The local models of X
and X′ are both isomorphic to PP1(O(−1)2 ⊕O), and hence have the same degree
zero invariants.

With the above motivations, now we state the main result:

Theorem 2.3. For a simple flop f , any generating function of mixed invariants of f -
special type

〈τk1,l̄1 α1, · · · , τkn ,l̄n αn〉g,

with 2g + n ≥ 3, is invariant under F up to analytic continuation under the identifica-
tion of Novikov variables F qβ = qF β. In particular,

FAX(t̄, s) ∼= AX′(F t̄, F s).

Here a mixed insertion τkj ,l̄j
αj consists of descendents ψk

j and ancestors ψ̄l
j .

Given f : X 99K X′ with exceptional loci Z ⊂ X and Z′ ⊂ X′, a mixed invari-
ant is of f -special type if for every insertion τkj ,l̄j

αj with k j ≥ 1 we have αj.Z = 0.

3. DEGENERATION REDUCTION TO LOCAL MODELS

Given a pair (Y, E) with E ↪→ Y a smooth divisor, let Γ = (g, n, β, ρ, µ) with
µ = (µi) ∈ Nρ a partition of (β.E) = |µ| := ∑

ρ
i=1 µi. For A ∈ H∗(Y)⊕n, k, l ∈ Zn

+
and ε ∈ H∗(E)⊕ρ, we require that 2g + n + ρ ≥ 3 if l 6= 0, and then the mixed
relative invariant of stable maps with topological type Γ (i.e. with contact order µi
in E at the i-th contact point) is given by

〈τk,l̄ A | ε, µ〉(Y,E)
Γ =

∫
[MΓ(Y,E)]virt

( n

∏
j=1

ψ
kj
j ψ̄

lj
j e∗Y,j A

j
)
∪ e∗Eε,

where eY,j : MΓ(Y, E) → Y, eE : MΓ(Y, E) → Eρ are evaluation maps on marked
points and contact points respectively.

If Γ = äπ Γπ , the relative invariants with possibly disconnected domain curves
are defined by the product rule:

〈τk,l̄ A | ε, µ〉•(Y,E)
Γ = ∏π

〈(τk,l̄ A)π | επ , µπ〉(Y,E)
Γπ .
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It is set to be zero if some ancestor in the right hand side is undefined. This is the
case when there is a π with lΓπ 6= 0 but gΓπ = 0, nΓπ = ρΓπ = 1.

Consider a degeneration W → A1 of a trivial family with Wt ∼= X for t 6= 0 and
W0 = Y1 ∪ Y2 a simple normal crossing. All classes α ∈ H∗(X, Z)⊕n have global
lifting and for each lifting the restriction α(0) on W0 is defined. Let ji : Yi ↪→W0 be
the inclusion maps. The lifting is encoded by (α1, α2) with αi = j∗i α(0).

Let {εi} be a basis of H∗(E) with {εi} its dual basis. {ε I} forms a basis of H∗(Eρ)
with dual basis {εI} where |I| = ρ, ε I = εi1 ⊗ · · · ⊗ εiρ .

The degeneration formula expresses the absolute invariants of X in terms of the
relative invariants of the two smooth pairs (Y1, E) and (Y2, E):

Theorem 3.1 ([10]). Assume that 2g + n ≥ 3 if l 6= 0, then

(3.1) 〈τk,l̄ α〉Xg,n,β = ∑
I

∑
η∈Ωβ

Cη〈τ1
k,l̄ α1 | ε I , µ〉•(Y1,E)

Γ1
〈τ2

k,l̄ α2 | εI , µ〉•(Y2,E)
Γ2

.

Here η = (Γ1, Γ2, Iρ) is an admissible triple which consists of (possibly discon-

nected) topological types Γi = ä
|Γi |
π=1 Γπ

i with the same partition µ of contact order
under the identification Iρ of contact points. The constants Cη = m(µ)/|Aut η|,
where m(µ) = ∏ µi and Aut η = { σ ∈ Sρ | ησ = η }. Ωβ is the set of equivalence
classes of all admissible triples with fixed degree β.

The first step is to apply deformation to the normal cone

W = BlZ×{0}X×A1 → A1.

W0 = Y1 ∪ Y2, Y1 = Y = BlZX
φ→X and Y2 = Ẽ = PZ(NZ/X ⊕O)

p→ Z. E = Y ∩ Ẽ
is the φ exceptional divisor as well as the infinity divisor of Ẽ.

Similar construction applies to X′:

W ′ = BlZ′×{0}X
′ ×A1 → A1.

W ′0 = Y′1 ∪ Y′2, Y′1 = Y′ = BlZ′X′
φ′→X′, Y′2 = Ẽ′ = PZ′(NZ′/X′ ⊕ O)

p′→ Z′ and
E′ = Y′ ∩ Ẽ′. By the construction of Pr flops we have (Y, E) = (Y′, E′). For
simple Pr flops we even have Ẽ ∼= Ẽ′ as both are PPr (O(−1)⊕(r+1) ⊕O). However
W0 6∼= W ′0 since the gluing of Ẽ to Y along E ∼= Pr × Pr differs from the one of Ẽ′,
with the Pr factors switched.

In fact, the flop f induces floc : Xloc = Ẽ 99K X′loc = Ẽ′, the projective local
model of f , which is again a simple Pr flop.

Define the generating series for genus g (connected) relative invariants

(3.2) 〈A | ε, µ〉(Ẽ,E)
g := ∑

β2∈NE(Ẽ)

1
|Aut µ| 〈A | ε, µ〉(Ẽ,E)

g,β2
qβ2 .

Proposition 3.2 (Reduction to relative local models). To prove

F 〈τk,l̄ α〉Xg = 〈τk,l̄ F α〉X′g

for all α ∈ H∗(X)⊕n and k, l ∈ Zn
+, it suffices to show

F 〈τk,l̄ A | ε, µ〉(Ẽ,E)
g0 = 〈τk,l̄ F A | ε, µ〉(Ẽ′ ,E)

g0

for all A ∈ H∗(Ẽ)⊕n, k, l ∈ Zn
+, ε ∈ H∗(E)⊕ρ, contact type µ, and all g0 ≤ g.
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This follows form the degeneration formula by matching the data on the (Y, E)
side. Then we have further reductions to local absolute invariants:

Proposition 3.3 ([9], Proposition 4.8). For the local simple flop Ẽ 99K Ẽ′, to prove

F 〈τl̄ A | ε, µ〉(Ẽ,E)
g = 〈τl̄ F A | ε, µ〉(Ẽ′ ,E)

g

for all A ∈ H∗(Ẽ)⊕n, l ∈ Zn
+, and weighted partitions (ε, µ), it suffices to show for

mixed invariants of special type

F 〈τl̄ A, τk ε〉Ẽg0
= 〈τl̄ F A, τk ε〉Ẽ′g0

for all A, l, ε and k ∈ Z
ρ
+, and all g0 ≤ g.

The idea of proof is by induction on (g, |µ|, n, ρ) with ρ in the reverse ordering.
We degenerate a suitable absolute invariant of f -special type (with virtual dimen-
sion matches) so that the desired relative invariant appears as the main term:

〈τl̄ A, τµ1−1εi1 , . . . , τµρ−1εiρ〉
•Ẽ
g = ∑

µ′
m(µ′)×

∑
I′
〈τµ1−1εi1 , . . . , τµρ−1εiρ | εI′ , µ′〉•(Y1,E)

0 〈τl̄ A | ε I′ , µ′〉(Ẽ,E)
g + R,

where R denotes the remaining terms, and to show this is an invertible system.

4. SEMISIMPLE FROBENIUS MANIFOLDS AND QUANTIZATION

Let N = dim H(X). The quantum cohomology differential equation

(4.1) ∇zS = 0

has a fundamental solution at z = ∞: S = (Sµ,ν(s, z−1)), an N × N matrix-valued
function, in (formal) power series of z−1 satisfying the conditions

(4.2) S(s, z−1) = Id + O(z−1) and S∗(s,−z−1)S(s, z−1) = Id,

where ∗ denotes the adjoint with respect to (·, ·). S is essentially the big J function.
How about at z = 0? A point s ∈ H is called a semisimple point if the quantum

product on the tangent algebra (TsH, ∗s) at s ∈ H is isomorphic to
⊕N

1 C as an
algebra. (QH, ∗) is called semisimple if the semisimple points are (Zariski) dense
in H. If (QH, ∗) is semisimple, it has idempotents {εi}N

1

εi ∗ εj = δijεi.

defined up to SN permutations. The canonical coordinates {ui}N
1 is a local coordi-

nate system on H near s defined by ∂/∂ui = εi. When the Euler field is present,
the canonical coordinates are also uniquely defined up to signs and permutations.
We will often use the normalized form ε̃i = εi/

√
(εi, εi). It is easy to see that {εi}

and {ε̃i} form orthogonal bases: (εi, εj) = (εi ∗ εi, εj) = (εi, εi ∗ εj) = δij(εi, εi).
When the quantum cohomology is semisimple, (4.1) has a fundamental solution

at z = 0 of the following type

R(s, z) := Ψ(s)−1R(s, z) eu/z,

where (Ψµi) := (Tµ, ε̃i) is the transition matrix from {ε̃i} to {Tµ}; u is the diagonal
matrix (uij) = δijui. The main information of R is carried by R(s, z), which is a
(formal) power series in z. See [4] and Theorem 1 in Chapter 1 of [8].
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Let Hq := H[z], {Tµzk}∞
k=0 be a basis of Hq, and {qµ

k } the dual coordinates. We
define an affine isomorphism of Hq to Ht via a dilaton shift “t = q + z1”:

(4.3) tµ
k = qµ

k + δµ1δk1.

The cotangent bundle H := T∗Hq is naturally isomorphic to the H-valued Lau-
rent series in z−1, H[z][[z−1]]. It has a natural symplectic structure

Ω = ∑
k,µ,ν

gµν dpµ
k ∧ dqν

k

where {pµ
k } are the dual coordinates in the fiber direction of H in the natural basis

{Tµ(−z)−k−1}∞
k=0. In this way, Ω( f , g) = Resz=0( f (−z), g(z)).

To quantize an infinitesimal symplectic transformation on (H , Ω), or its corre-
sponding quadratic hamiltonians, we recall the standard Weyl quantization. An
identification H = T∗Hq of the symplectic vector space H as a cotangent bundle
of Hq is called a polarization. The “Fock space” will be a certain class of functions
f (h̄, q) on Hq (containing at least polynomial functions), with additional formal
variable h̄ (“Planck’s constant”). The classical observables are certain functions of
p, q. The quantization process is to find for the phase space of the “classical me-
chanical system” on (H , Ω) a “quantum system” on the Fock space such that the
classical observables, like the hamiltonians h(q, p) on H , are quantized to become
operators ĥ(q, ∂/∂q) on the Fock space.

Let A(z) be an End(H)-valued Laurent formal series in z satisfying

Ω(A f , g) + Ω( f , Ag) = 0,

for all f , g ∈ H . That is, A(z) defines an infinitesimal symplectic transformation.
A(z) corresponds to a quadratic “polynomial” hamiltonian P(A) in p, q

P(A)( f ) :=
1
2

Ω(A f , f ).

Choose a Darboux coordinate system {qi
k, pi

k} so that Ω = ∑ dpi
k ∧ dqi

k. The quan-
tization P 7→ P̂ assigns

(4.4) 1̂ = 1, p̂i
k =
√

h̄
∂

∂qi
k

, q̂i
k = qi

k/
√

h̄

which extends multiplicatively to quadratic polynomials. In summary, the quan-
tization is the process

A 7→ P(A) 7→ P̂(A)
inf. sympl. transf. 7→ quadr. hamilt. 7→ operator on Fock sp..

The first map is a Lie algebra isomorphism: The Lie bracket on the left is defined by
[A1, A2] = A1 A2 − A2 A1 and the Lie bracket in the middle is the Poisson bracket.
The second map is close to be a Lie algebra homomorphism.

For example, let dim H = 1 and A(z) = z−1×. Then A(z) is infinitesimally
symplectic and

(4.5) P(z−1) = −
q2

0
2
−

∞

∑
m=0

qm+1pm; P̂(z−1) = −
q2

0
2
−

∞

∑
m=0

qm+1
∂

∂qm
.
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One often has to quantize symplectic transformations. We define êA(z) := eÂ(z)

for A(z) an infinitesimal symplectic transformation.
Let DN(t) = ∏N

i=1 Dpt(ti) be the descendent potential of N points, where

Dpt(ti) ≡ Apt(ti) := exp
∞

∑
g=0

h̄g−1Fpt
g (ti)

is the total descendent potential of a point and ti = ∑k ti
kzk.

Suppose that (QH, ∗) is semisimple and N = dim H. Since {ε̃i} defines an
orthonormal basis for Ts H ∼= H (for s a semisimple point), the dual coordinates
(pi

k, qi
k) of the basis {ε̃izk}k∈Z for H form a Darboux coordinate system. The

coordinate system {ti
k} is related to {qi

k} by the dilaton shift (4.3). Note that
∂/∂qi

k = ∂/∂ti
k. The following beautiful formula was formulated by Givental [4]

and recently established by C. Teleman in a preprint [11].

Theorem 4.1. For X a smooth variety with semisimple (QH(X), ∗),

(4.6) AX(t̄, s) = ec̄(s)Ψ−1(s)R̂X(s, z)eû/z(s)DN(t),

where c̄(s) = 1
48 log det(εi, εj). The term in u can be removed by the string equation.

In particular, for semisimple quantum cohomology the higher genus theory is
determined by the genus zero theory and the case of points.

5. SEMI-FANO/SEMI-SIMPLE TORIC LOCAL MODEL

To proceed to the idea of proof of Theorem 2.3, it is crucial to think about ana-
lytic continuations, or F -invariance, in a more algebraic manner. Let NE f be the
F -effective cone of classes β ∈ NE(X) with F β ∈ NE(X′). Define the ring

R = Ĉ[NE f ][f],

which can be regarded as certain algebraization of N(X) in the q` variable. R

is canonically identified with its counterpart R ′ = Ĉ[NE′f ][f
′] under F since

F NE f = NE′f and F f(q`) = (−1)r − f(q`′). In general, the analytic continua-
tion is understood as an identity in R ∼= R ′.

We start with g = 0 without ancestors. Since Ẽ = PPr (O(−1)r+1⊕O), H∗(Ẽ) =
Z[h, ξ]/〈hr+1, (ξ− h)r+1ξ〉 is generated by divisors where ξ = [E]. NE(Ẽ) = Z`⊕
Zγ with γ being the fiber line of Ẽ → Z. Write β = d` + d2γ. By a dimension
count, for each α ∈ τ•H∗(Ẽ)⊕n, 〈α〉Ẽβ 6= 0 for at most one d2. Then the process
in [9] via the reconstruction theorem and induction on d2 ≥ 0 shows that there are
indeed only two relations which generate all the analytic continuations.

The first is E(q) = 0, which is the origin of analytic continuation: For d2 = 0,
this is essentially the quantum corrections discussed in §2. Another relation comes
from the quasi-linearity F 〈τkξa〉X = 〈τkξ ′F a〉X′ for one point f -special invariants.
This is an identity of small J functions in C[NE′f ]: F JẼ.ξa = JẼ′ .ξ ′F a, where no
analytic continuation is needed by the semi-Fano mirror theorem .

The proof also shows that the analytic continuations arise from finite C[NE f ]-
linear combinations of δmf’s with m ≥ 0. Moreover, δmf is a polynomial in f. This
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follows from δf = f + (−1)r+1f2 and δ(f1f2) = (δf1)f2 + f1δf2. Hence all the
corresponding generating functions in q` and q`′ are identified in R.

Now we consider g ≥ 0 with ancestors. Denote by q1 = q` and q2 = qγ, then

QH∗small(X) ∼= C[h, ξ][q1, q2]/(hr+1 − q1(ξ − h)r+1, (ξ − h)r+1ξ − q2).

Solving the relations, we get the eigenvalues of h∗ and ξ∗ are

(5.1) h = η jωiq
1

r+1
1 q

1
r+2
2 (1 + ωiq

1
r+1
1 )−

1
r+2 , ξ = η jq

1
r+2
2 (1 + ωiq

1
r+1
1 )

r+1
r+2

for i = 0, 1, · · · , r and j = 0, 1, · · · , r + 1, where ω and η are the (r + 1)-th and the
(r + 2)-th root of unity respectively. As these eigenvalues are all different, we see
that h∗ and ξ∗ are semisimple operators, hence QH∗small(X) is semisimple.

This proves that (QH∗, ∗) is semisimple at the origin s = 0. Since semisimplicity
is an open condition, the formal Frobenius manifold QH∗(X) is also semisimple.

Now we apply the quantization formula (Theorem 4.1) over the ring R and
conclude the F invariance of pure ancestor invariants. To handle mixed invariants
of f -special type, we apply Proposition 1.1 and reduce the problem to one-point
descendant of f -special type with g = 0, a case which has already been solved.
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