Mean field equations, Lame equations, and modular forms

Chin-Lung Wang

TIMS/AS/NCTS
Seminar on Modular Forms
September 26, 2012

- This is a joint project with Chang-Shou Lin and Ching-Li Chai.
- The Green function $G(z, w)$ on a flat torus $T=\mathbb{C} / \Lambda$, $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ is the unique function on $T \times T$ which satisfies

$$
-\triangle_{z} G(z, w)=\delta_{w}(z)-\frac{1}{|T|}
$$

and $\int_{T} G(z, w) d A=0$, where δ_{w} is the Dirac measure with singularity at $z=w$.

- Because of the translation invariance of \triangle_{z}, we have $G(z, w)=G(z-w, 0)$ and it is enough to consider the Green function $G(z):=G(z, 0)$. Asymptotically

$$
G(z)=-\frac{1}{2 \pi} \log |z|+O\left(|z|^{2}\right) .
$$

- Not surprisingly, G can be explicitly solved in terms of elliptic functions.
- Let $z=x+i y, \tau:=\omega_{2} / \omega_{1}=a+i b \in \mathbb{H}$ and $q=e^{\pi i \tau}$ with $|q|=e^{-\pi b}<1$. Then

$$
\vartheta_{1}(z ; \tau)=-i \sum_{n=-\infty}^{\infty}(-1)^{n} q^{\left(n+\frac{1}{2}\right)^{2}} e^{(2 n+1) \pi i z}
$$

- (Neron):

$$
G(z)=-\frac{1}{2 \pi} \log \left|\frac{\vartheta_{1}(z)}{\vartheta_{1}^{\prime}(0)}\right|+\frac{1}{2 b} y^{2} .
$$

- The structure of G, especially its critical points and critical values, will be the fundamental objects that interest us. $\nabla G(z)=0 \Longleftrightarrow$

$$
\frac{\partial G}{\partial z} \equiv \frac{-1}{4 \pi}\left(\left(\log \vartheta_{1}\right)_{z}+2 \pi i \frac{y}{b}\right)=0
$$

- Recall $\wp(z)=1 / z^{2}+\cdots, \zeta(z)=-\int^{z} \wp=1 / z+\cdots$. and $\sigma(z)=\exp \int^{z} \zeta(w) d w=z+\cdots$ is entire, odd with a simple zero on lattice points and

$$
\sigma\left(z+\omega_{i}\right)=-e^{\eta_{i}\left(z+\frac{1}{2} \omega_{i}\right)} \sigma(z)
$$

with $\eta_{i}=\zeta\left(z+\omega_{i}\right)-\zeta(z)=2 \zeta\left(\frac{1}{2} \omega_{i}\right)$ the quasi-periods.

- Indeed

$$
\sigma(z)=e^{\eta_{1} z^{2} / 2} \frac{\vartheta_{1}(z)}{\vartheta_{1}^{\prime}(0)} .
$$

Hence $\zeta(z)-\eta_{1} z=\left(\log \vartheta_{1}(z)\right)_{z}$.

- Let $z=t \omega_{1}+s \omega_{2}$. By Legendre relation $\eta_{1} \omega_{2}-\eta_{2} \omega_{1}=2 \pi i$, $\nabla G(z)=0$ if and only if

$$
G_{z}=-\frac{1}{4 \pi}\left(\zeta\left(t \omega_{1}+s \omega_{2}\right)-\left(t \eta_{1}+s \eta_{2}\right)\right)=0 .
$$

- Question: How many critical points can G have in T ?
- The 3 half periods are trivial critical points. Indeed,

$$
G(z)=G(-z) \Rightarrow \nabla G(z)=-\nabla G(-z) .
$$

Let $p=\frac{1}{2} \omega_{i}$ then $p=-p$ in T and so $\nabla G(p)=-\nabla G(p)=0$.

- Other critical points must appear in pair $\pm z \in T$.
- Example (Maximal principle)

For rectangular tori $T:\left(\omega_{1}, \omega_{2}\right)=(1, \tau=b i), \frac{1}{2} \omega_{i}, i=1,2,3$ are precisely all the critical points.

- Example $\left(\mathbb{Z}_{3}\right.$ symmetry)

For the torus T with $\tau=e^{\pi i / 3}$, there are at least 5 critical points: 3 half periods $\frac{1}{2} \omega_{i}$ plus $\frac{1}{3} \omega_{3}, \frac{2}{3} \omega_{3}$.

- However, it is very difficult to study the critical points from the "simple equation" $\zeta\left(t \omega_{1}+s \omega_{2}\right)=t \eta_{1}+s \eta_{2}$ directly.
- In PDE, the geometry of $G(z, w)$ plays fundamental role in the non-linear mean field equations (= Liouville equation with singular RHS): On a flat torus T it takes the form ($\rho \in \mathbb{R}_{+}$)

$$
\triangle u+\rho e^{u}=\rho \delta_{0} .
$$

- It is originated from the prescribed curvature problem (Nirenberg problem, constant K with cone metrics etc.).
- It is the mean field limit of Euler flow in statistic physics.
- It is related to the self-dual condensation of abelian Chern-Simons-Higgs model (Nolasco and Tarantello 1999).
- In Arithmetic Geometry, $G(z, w)$ also appears in the Arakelov geometry as the intersection number of two sections z and w of the arithmetic surface $\mathcal{T} \rightarrow \operatorname{Spec} \mathbb{Z} \cup\{\infty\}$ at the ∞ fiber $\mathcal{T}_{\infty}=$ Riemann surface T.
- When $\rho \notin 8 \pi \mathbb{N}$, it has been proved by C.-C. Chen and C.-S. Lin that the Leray-Schauder degree is

$$
d_{\rho}=n+1 \quad \text { for } \quad \rho \in(8 n \pi, 8(n+1) \pi)
$$

so the equation has solutions, regardless on the shape of T.

- The first interesting case is when $\rho=8 \pi$ where the degree theory fails completely.

Theorem (Existence criterion via ∇G for $n=1$)

For $\rho=8 \pi$, the mean field equation on a flat torus $T=\mathbb{C} / \Lambda$:

$$
\triangle u+\rho e^{u}=\rho \delta_{0}
$$

has solutions if and only if the G has more than 3 critical points. Moreover, each extra pair of critical points $\pm p$ corresponds to an one parameter family of solutions u_{λ}, where $\lim _{\lambda \rightarrow \infty} u_{\lambda}(z)$ blows up precisely at $z \equiv \pm p$.

- Structure of solutions.
- Liouville's theorem says that any solution u of $\triangle u+e^{u}=0$ in a simply connected domain $\Omega \subset \mathbb{C}$ must be of the form

$$
u=c_{1}+\log \frac{\left|f^{\prime}\right|^{2}}{\left(1+|f|^{2}\right)^{2}},
$$

where f, called a developing map of u, is meromorphic in Ω.

- It is straightforward to show that for $\rho=8 \pi \mu$,

$$
S(f) \equiv \frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}=u_{z z}-\frac{1}{2} u_{z}^{2}=-2 \mu(\mu+1) \frac{1}{z^{2}}+O(1) .
$$

I.e., any developing map f of u has the same Schwartz derivative $S(f)$, which is elliptic on T.

- By the theory of ODE, locally $f=w_{1} / w_{2}$ for two solutions w_{i} of the Lamé equation $L_{\eta, B} y=0$:

$$
y^{\prime \prime}+\frac{1}{2} S(f) y=y^{\prime \prime}-(\eta(\eta+1) \wp(z)+B) y=0
$$

for some $B \in \mathbb{C}$.

- Even more, for any two developing maps f and \tilde{f} of u, there exists $S=\left(\begin{array}{cc}p & -\bar{q} \\ q & \bar{p}\end{array}\right) \in \operatorname{PSU(2)}$ such that $\tilde{f}=S f:=\frac{p f-\bar{q}}{q f+\bar{p}}$.

Lemma (Existence of developing map for $\mu \in \frac{1}{2} \mathbb{Z}$)

Given Λ, for $\rho=4 \pi \ell, \ell \in \mathbb{N}$, by analytic continuation across Λ, f is glued into a meromorphic function on \mathbf{C}. (Instead of on $T=\mathbf{C} / \Lambda$.)

- First constraint from the double periodicity:

$$
f\left(z+\omega_{1}\right)=S_{1} f, \quad f\left(z+\omega_{2}\right)=S_{2} f
$$

with $S_{1} S_{2}= \pm S_{2} S_{1}$.

- Second constraint from the Dirac singularity:
(1) If $f(z)$ has a zero/pole at $z_{0} \notin \Lambda$ then order $r=1$.
(2) $f(z)=a_{0}+a_{\ell+1}\left(z-z_{0}\right)^{\ell+1}+\cdots$ be regular at $z_{0} \in \Lambda$.
- Type I (Topological) Solutions $\Longleftrightarrow \ell=2 n+1$:

$$
f\left(z+\omega_{1}\right)=-f(z), \quad f\left(z+\omega_{2}\right)=\frac{1}{f(z)} .
$$

Then

$$
g=(\log f)^{\prime}=\frac{f^{\prime}}{f}
$$

is elliptic on $T^{\prime}=\mathbb{C} / \Lambda^{\prime}, \Lambda^{\prime}=\mathbb{Z} \omega_{1}+\mathbb{Z} 2 \omega_{2}$ with the only (highest order) zeros at $z_{0} \equiv 0(\bmod \Lambda)$ of order $\ell=2 n+1$.

- The equations $0=g(0)=g^{\prime \prime}(0)=g^{(4)}(0)=\cdots$ implies that f is an even function. So f has simple zeros at $\pm p_{1}, \ldots, \pm p_{n}$ and $\omega_{1} / 2$.
- The remaining equations $0=g^{\prime}(0)=g^{\prime \prime \prime}(0)=g^{(5)}(0)=\cdots$ leads to the polynomial system for $\wp\left(p_{i}\right)$'s:

Theorem (Type I evenness and algebraic integrability)

(1) For $\rho=4 \pi \ell, \ell=2 n+1$. All type I solutions u are even. f has simple zeros at $\omega_{1} / 2$ and $\pm p_{i}$ for $i=1, \ldots, n$, and poles $q_{i}=p_{i}+\omega_{2}$.
(2) For $x_{i}:=\wp\left(p_{i}\right), \tilde{x}_{i}:=\wp\left(q_{i}\right)$, and $m=1, \ldots, n$,

$$
\sum_{i=1}^{n} x_{i}^{m}-\sum_{i=1}^{n} \tilde{x}_{i}^{m}=c_{m}, \quad\left(x_{m}-e_{2}\right)\left(\tilde{x}_{m}-e_{2}\right)=\mu,
$$

for some constants c_{m} and $\mu=\left(e_{2}-e_{1}\right)\left(e_{2}-e_{3}\right)$. This is a $2 n$ affine polynomial system in $\mathbb{C}^{2 n}$ of degree $2^{n} n!$.
(3) The corresponding Lamé equation $L_{\eta=n+1 / 2, B} y=0$ has finite monodromy group M (in fact $P M=V_{4}$) hence there is a polynomial p_{n} of degree $n+1$ such that $p_{n}(B)=0$. (Brioschi-Halphen 1894.)

- Type II (Scaling Family) Solutions $\Longleftrightarrow \eta=n(\ell=2 n)$:

$$
f\left(z+\omega_{1}\right)=e^{2 i \theta_{1}} f(z), \quad f\left(z+\omega_{2}\right)=e^{2 i \theta_{2}} f(z)
$$

- If f satisfies this, $e^{\lambda} f$ also satisfies this for any $\lambda \in \mathbb{R}$. Thus

$$
u_{\lambda}(z)=c_{1}+\log \frac{e^{2 \lambda}\left|f^{\prime}(z)\right|^{2}}{\left(1+e^{2 \lambda}|f(z)|^{2}\right)^{2}}
$$

is a scaling family of solutions with developing maps $\left\{e^{\lambda} f\right\}$.

- The blow-up points for $\lambda \rightarrow \infty$ (resp. $-\infty$) are precisely zeros (resp. poles) of $f(z)$.
- $g=(\log f)^{\prime}$ is elliptic on $T=\mathbb{C} / \Lambda$, with highest order zero at $z=0$ of order $\ell=2 n$.
- $0=g^{\prime}(0)=g^{\prime \prime \prime}(0)=\cdots=g^{(2 n-1)}(0)$ implies that g is even.
- We may write

$$
g(z)=\frac{\wp^{\prime}\left(p_{1}\right)}{\wp(z)-\wp\left(p_{1}\right)}+\cdots+\frac{\wp^{\prime}\left(p_{n}\right)}{\wp(z)-\wp\left(p_{n}\right)}
$$

constraint by $0=g(0)=g^{\prime \prime}(0)=\cdots=g^{(2 n-2)}(0)$. These give rise to $n-1$ equations on p_{1}, \ldots, p_{n}.

- And then

$$
f(z)=f(0) \exp \int_{0}^{z} g(\xi) d \xi
$$

which should satisfies (the n-th equation)

$$
\int_{L_{i}} g \in \sqrt{-1} \mathbb{R}, \quad i=1,2
$$

- Periods integrals. Let L_{1}, L_{2} be the fundamental 1-cycles. Then

$$
F_{i}(p):=\int_{L_{i}} \Omega(\xi, p) d \xi
$$

where $p \not \equiv \frac{1}{2} \omega_{i}(\bmod \Lambda)$ and

$$
\begin{aligned}
\Omega(\xi, p) & =A \frac{\sigma^{2}(\xi)}{\sigma(\xi-p) \sigma(\xi+p)}=\frac{\wp^{\prime}(p)}{\wp(\xi)-\wp(p)} \\
& =2 \zeta(p)-\zeta(p+\xi)-\zeta(p-\xi) .
\end{aligned}
$$

- Lemma (Periods integrals and critical points)

Let $p=t \omega_{1}+s \omega_{2}$, then up to $4 \pi i \mathbb{N}$,

$$
\begin{aligned}
& F_{1}(p)=2\left(\omega_{1} \zeta(p)-\eta_{1} p\right)=2\left(\zeta(p)-t \eta_{1}-s \eta_{2}\right) \omega_{1}-4 \pi i s, \\
& F_{2}(p)=2\left(\omega_{2} \zeta(p)-\eta_{2} p\right)=2\left(\zeta(p)-t \eta_{1}-s \eta_{2}\right) \omega_{2}+4 \pi i t .
\end{aligned}
$$

- E.g. when $\rho=8 \pi(\ell=2), p_{1}=p, p_{2}=-p, g(z)=\Omega(z, p)$ and

$$
f(z)=f(0) \exp \int_{0}^{z} g(\xi) d \xi
$$

gives rise to a type II solution $\Longleftrightarrow F_{i}(p) \in i \mathbb{R} \Longleftrightarrow \nabla G(p)=0$.

- Theorem (Uniqueness, Lin-W 2006, Annals 2010)

For $\rho=8 \pi$, the mean field equation $\triangle u+\rho e^{u}=\rho \delta_{0}$ on a flat torus has at most one solution up to scaling.

- Theorem (Number of critical points)

The Green function has either 3 or 5 critical points.

- We were unable to prove it from the critical point equation.
- It remains to study the geometry of critical points over \mathcal{M}_{1}, which relies on methods of deformations and the degeneracy analysis of half periods.

Theorem (Moduli dependence, Lin-W 2011)

(1) Let $\Omega_{3} \subset \mathcal{M}_{1} \cup\{\infty\} \cong S^{2}\left(\right.$ resp. $\left.\Omega_{5}\right)$ be the set of tori with 3 (resp. 5) critical points, then $\Omega_{3} \cup\{\infty\}$ is closed containing $i \mathbb{R}, \Omega_{5}$ is open containing the vertical line $\left[e^{\pi i / 3}, i \infty\right)$.
(2) Both Ω_{3} and Ω_{5} are simply connected with $C:=\partial \Omega_{3}=\partial \Omega_{5}$ homeomorphic to S^{1} containing ∞.
(3) Moreover, the extra critical points are split out from some half period point when the tori move from Ω_{3} to Ω_{5} across C.
(4) (Strong uniqueness) The map $\Omega_{5} \rightarrow[0,1]^{2}$ by $\tau \mapsto(t, s)$ for $p(\tau)=t \omega_{1}+s \omega_{2}$ is a bijection onto $\triangle=\left[\left(\frac{1}{3}, \frac{1}{3}\right),\left(\frac{1}{2}, \frac{1}{2}\right),\left(0, \frac{1}{2}\right)\right]$.

Figure: Ω_{5} contains a neighborhood of $e^{\pi i / 3}$.

- On the line $\operatorname{Re} \tau=1 / 2$ which are equivalent to the rhombuses tori, the proof relies on functional equations of ϑ_{1}.
- The general case uses modular forms of weight one.
- Idea of proof: Hecke (1926):

$$
\Psi(N):=\#\left\{\left(k_{1}, k_{2}\right) \mid\left(N, k_{1}, k_{2}\right)=1,0 \leq k_{i} \leq N-1\right\}
$$

Consider the weight one modular function for $\Gamma(N)$:

$$
\begin{aligned}
Z_{N, k_{1}, k_{2}}(\tau) & :=\zeta\left(\frac{k_{1} \omega_{1}+k_{2} \omega_{2}}{N} ; \tau\right)-\frac{k_{1} \omega_{1}+k_{2} \omega_{2}}{N} \\
& =-Z_{N, N-k_{1}, N-k_{2}}(\tau) ;
\end{aligned}
$$

- and the weight $\Psi(N)$ one for full modular group:

$$
Z(\tau) \equiv Z_{N}(\tau):=\prod_{\left(N, k_{1}, k_{2}\right)=1} Z_{N, k_{1}, k_{2}}(\tau) \in M_{\Psi(N)}(\mathrm{SL}(2, \mathbb{Z})) .
$$

- Each $\tau \in \mathbb{H}$ with $\mathrm{Z}(\tau)=0$ is (at least) a double zero.
- For odd $N \geq 5, v_{i}(Z)=v_{\rho}(Z)=0$,
- At ∞, Hecke calculated the asymptotic expansion: $v_{\infty}=\phi(N / 2)=0$,
- Then the RR:

$$
(Z)_{\mathrm{red}}=\frac{1}{2} \operatorname{deg} Z=\frac{1}{2} \sum_{p} v_{p}(Z)=\frac{\Psi(N)}{24} .
$$

- Take N prime, this suggests a 1-1 correspondence between Ω_{5} and

$$
\triangle=\left[\left(\frac{1}{3}, \frac{1}{3}\right),\left(\frac{1}{2}, \frac{1}{2}\right),\left(0, \frac{1}{2}\right)\right]
$$

under the map $\Omega_{5} \rightarrow[0,1]^{2}$:

$$
\tau \mapsto(t, s), \quad \text { where } \quad p(\tau)=t \omega_{1}+s \omega_{2} .
$$

Theorem (Periods integrals and type II evenness)

- If solutions exist for $\rho=8 n \pi$, then there is a unique even solution within each type II scaling family. $\left(\ell=2 n, a_{n+i}=-a_{i}\right.$.)
- The solution u is determined by the zeros a_{1}, \ldots, a_{n} off. In fact

$$
\begin{aligned}
& g(z)=\sum_{i=1}^{n} \frac{\wp^{\prime}\left(a_{i}\right)}{\wp(z)-\wp\left(a_{i}\right)}=\sum_{i=1}^{n} \Omega\left(z, a_{i}\right) \\
& f(z)=f(0) \exp \int^{z} g(\xi) d \xi=f(0) \prod_{i=1}^{n} \exp \int^{z} \Omega\left(\xi, a_{i}\right) d \xi
\end{aligned}
$$

The condition $\operatorname{ord}_{z=0} g(z)=2 n$ leads to equations for a_{1}, \ldots, a_{n} :

Theorem (Green/polynomial system)
For $\rho=8 n \pi, n \in \mathbb{N}$, the n equations for a_{1}, \ldots, a_{n} are precisely

$$
\wp^{\prime}\left(a_{1}\right) \wp^{r}\left(a_{1}\right)+\cdots+\wp^{\prime}\left(a_{n}\right) \wp^{r}\left(a_{n}\right)=0,
$$

where $r=0, \ldots, n-2$, and

$$
\nabla G\left(a_{1}\right)+\cdots+\nabla G\left(a_{n}\right)=0 .
$$

Theorem (Hyperelliptic geometry/Lamé curve)
For $x_{i}:=\wp\left(a_{i}\right), y_{i}:=\wp^{\prime}\left(a_{i}\right)$, the first $n-1$ algebraic equations

$$
\sum y_{i} x_{i}^{r}=0, \quad r=0, \ldots, n-2,
$$

defines a hyperelliptic curve under the 2 to 1 map $a \mapsto \sum \wp\left(a_{i}\right)$:

$$
X_{n}:=\left\{\left(x_{i}, y_{i}\right)\right\} \subset \operatorname{Sym}^{n} T \longrightarrow\left(x_{1}+\cdots+x_{n}\right) \in \mathbb{P}^{1}
$$

- The proof relies on its relation to Lamé equations:

$$
\begin{aligned}
& \qquad \begin{array}{l}
f=\exp \int g d z=\exp \int \sum_{i=1}^{n}\left(2 \zeta\left(a_{i}\right)-\zeta\left(a_{i}-z\right)-\zeta\left(a_{i}+z\right)\right) d z \\
\quad=e^{2 \sum_{i=1}^{n} \zeta\left(a_{i}\right) z} \prod_{i=1}^{n} \frac{\sigma\left(z-a_{i}\right)}{\sigma\left(z+a_{i}\right)}=\frac{w_{a}}{w_{-a}} \\
\text { where } w(z)=w_{a}(z):=e^{z \sum \zeta\left(a_{i}\right)} \prod_{i=1}^{n} \frac{\sigma\left(z-a_{i}\right)}{\sigma(z)}
\end{array} .
\end{aligned}
$$

- Theorem (Explicit map $a \mapsto B_{a}$)
$a \in X_{n}$ if and only if w_{a} and w_{-a} are solutions of the Lamé equation

$$
\frac{d^{2} w}{d z^{2}}-\left(n(n+1) \wp(z)+(2 n-1) \sum_{i=1}^{n} \wp\left(a_{i}\right)\right) w=0 .
$$

- Idea of the Analytic Proof. Consider $y^{2}=p(x)=4 x^{3}-g_{2} x-g_{3}$, where $(x, y)=\left(\wp(z), \wp^{\prime}(z)\right)$, and we set $\left(x_{i}, y_{i}\right)=\left(\wp\left(a_{i}\right), \wp^{\prime}\left(a_{i}\right)\right)$. Consider a basis of solutions to the Lamé equation by $\Lambda_{a}(z), \Lambda_{-a}(z)$, where

$$
\begin{equation*}
\Lambda_{a}(z):=\frac{w_{a}(z)}{\prod_{i=1}^{n} \sigma\left(a_{i}\right)}=e^{z \sum \zeta\left(a_{i}\right)} \prod_{i=1}^{n} \frac{\sigma\left(z-a_{i}\right)}{\sigma(z) \sigma\left(a_{i}\right)} . \tag{1}
\end{equation*}
$$

- Let $X=\Lambda_{a} \Lambda_{-a}$. By the addition theorem,

$$
X(z)=(-1)^{n} \prod_{i=1}^{n} \frac{\sigma\left(z+a_{i}\right) \sigma\left(z-a_{i}\right)}{\sigma(z)^{2} \sigma\left(a_{i}\right)^{2}}=(-1)^{n} \prod_{i=1}^{n}\left(\wp(z)-\wp\left(a_{i}\right)\right) .
$$

That is, $X(x)=(-1)^{n} \prod_{i=1}^{n}\left(x-x_{i}\right)$ is a polynomial in x.

- Key: $X(z)$ satisfies the second symmetric power:

$$
\frac{d^{3} X}{d z^{3}}-4(n(n+1) \wp+B) \frac{d X}{d z}-2 n(n+1) \wp^{\prime} X=0
$$

hence a polynomial solution, in variable x, to
$p(x) X^{\prime \prime \prime}+\frac{3}{2} p^{\prime}(x) X^{\prime \prime}-4\left(\left(n^{2}+n-3\right) x+B\right) X^{\prime}-2 n(n+1) X=0$.
X is determined by B and certain initial conditions.

- Write $X(x)=(-1)^{n}\left(x^{n}-s_{1} x^{n-1}+\cdots+(-1)^{n} s_{n}\right)$, (2) translates to a linear recursive relation for $\mu=0, \cdots, n-1$ (we set $s_{0}=1$):

$$
\begin{aligned}
& 0=2(n-\mu)(2 \mu+1)(n+\mu+1) s_{n-\mu}-4(\mu+1) B s_{n-\mu-1} \\
& +\frac{1}{2} g_{2}(\mu+1)(\mu+2)(2 \mu+3) s_{n-\mu-2}-g_{3}(\mu+1)(\mu+2)(\mu+3) s_{n-\mu-3} .
\end{aligned}
$$

- Since $B=(2 n-1) s_{1}$, the initial relation for $\mu=n-1$ is automatic. Thus all $s_{i}{ }^{\prime} s, X$, and $\pm a$, are determined by B alone.
C.-L. Chai offered a purely algebraic proof without Lamé equations: Theorem (Chai-Lin-W 2012)
- There is a natural projective compactification \bar{X}_{n} as a, possibly singular, hyperelliptic curve defined by

$$
\begin{align*}
C^{2} & =\ell_{n}\left(B, g_{2}, g_{3}\right) \\
& =4 B s_{n}^{2}+4 g_{3} s_{n-2} s_{n}-g_{2} s_{n-1} s_{n}-g_{3} s_{n-1}^{2} \tag{3}
\end{align*}
$$

in (B, C), where $s_{k}=s_{k}\left(B, g_{2}, g_{3}\right)=r_{k} B^{k}+\cdots \in \mathbb{Q}\left[B, g_{2}, g_{3}\right]$, is an universal polynomial of homogeneous degree k with $\operatorname{deg} g_{2}=2$, $\operatorname{deg} g_{3}=3$, and $B=(2 n-1) s_{1}$.

- Thus $\operatorname{deg} \ell_{n}=2 n+1$ and \bar{X}_{n} has arithmetic genus $g=n$.
- The curve \bar{X}_{n} is smooth except for a finite number of τ, namely the discriminant loci of $\ell_{n}\left(B, g_{2}, g_{3}\right)$, so that $\ell_{n}(B)$ has multiple roots.
- Now we study the last equation on \bar{X}_{n} :

$$
\begin{equation*}
0=-4 \pi \sum_{i=1}^{n} \nabla G\left(a_{i}\right)=\sum_{i=1}^{n} \zeta\left(a_{i}\right)-\sum_{i=1}^{n}\left(t_{i} \eta_{1}+s_{i} \eta_{2}\right), \tag{4}
\end{equation*}
$$

where $a_{i}=t_{i} \omega_{1}+s_{i} \omega_{2}$.

- Then for the rational function on T^{n} :

$$
E_{n}\left(a_{1}, \ldots, a_{n}\right):=\zeta\left(a_{1}+\cdots+a_{n}\right)-\sum_{i=1}^{n} \zeta\left(a_{i}\right)
$$

we get, by assuming (4),

$$
\begin{aligned}
E_{n}(a) & =\zeta\left(\sum a_{i}\right)-\left(\sum t_{i}\right) \eta_{1}-\left(\sum s_{i}\right) \eta_{2} \\
& =Z\left(\sum a_{i}\right) \\
& =-4 \pi \nabla G\left(\sum a_{i}\right) .
\end{aligned}
$$

- It is thus crucial to study the branched covering map

$$
\sigma: \bar{X}_{n} \rightarrow T, \quad a \mapsto \sigma(a):=\sum_{i=1}^{n} a_{i}
$$

Theorem (New modular functions)
(1) The map σ has degree equals $\frac{1}{2} n(n+1)$.
(2) There is a universal (weighted homogeneous) polynomial $W_{n}(x) \in \mathbb{C}\left[g_{2}, g_{3}, \wp\left(\sum a_{i}\right), \wp^{\prime}\left(\sum a_{i}\right)\right][x]$ of degree $\frac{1}{2} n(n+1)$ such that

$$
W_{n}\left(E_{n}\right)=0 .
$$

(3) The function $Z_{n}:=W_{n}(Z)$ is modular of weight $\frac{1}{2} n(n+1)$.

- Idea of proof for (1): Apply Theorem of the Cube: For any three morphisms $f, g, h: V_{n} \longrightarrow T$ and $L \in \operatorname{Pic} T$,

$$
\begin{gathered}
(f+g+h)^{*} L \cong(f+g)^{*} L \otimes(g+h)^{*} L \otimes(h+f)^{*} L \\
\otimes f^{*} L^{-1} \otimes g^{*} L^{-1} \otimes h^{*} L^{-1}
\end{gathered}
$$

- Apply to the case $V_{n} \subset T^{n}$ which is the ordered n-tuples so that $V_{n} / S_{n}=\bar{X}_{n}$. We prove inductively that the map

$$
f_{k}(a):=a_{1}+\cdots+a_{k}
$$

has degree $\frac{1}{2} k(k+1) n$!. It is easy to check for $k=1,2$. From k to $k+1$, we let $f=f_{k-1}, g(a)=a_{k}$, and $h(a)=a_{k+1}$.

- Then f_{k+1} has degree n ! times

$$
\frac{1}{2} k(k+1)+3+\frac{1}{2} k(k+1)-\frac{1}{2}(k-1) k-1-1=\frac{1}{2}(k+1)(k+2) .
$$

Example ($n=2$)
For $E_{2}\left(a_{1}, a_{2}\right)=\zeta\left(a_{1}+a_{2}\right)-\zeta\left(a_{1}\right)-\zeta\left(a_{2}\right)$,

$$
E_{2}^{3}(a)-3 \wp\left(a_{1}+a_{2}\right) E_{2}(a)-\wp^{\prime}\left(a_{1}+a_{2}\right)=0
$$

on X_{n}. The equation on T^{n} has one more term $-\frac{1}{2}\left(\wp^{\prime}\left(a_{1}\right)+\wp^{\prime}\left(a_{2}\right)\right)$.

