Mean field equations, Lame equations, and modular forms

Chin-Lung Wang

TIMS/AS/NCTS Seminar on Modular Forms September 26, 2012

1/29

- This is a joint project with Chang-Shou Lin and Ching-Li Chai.
- The Green function G(z, w) on a flat torus T = C/Λ, Λ = Zω₁ + Zω₂ is the unique function on T × T which satisfies

$$-\triangle_z G(z,w) = \delta_w(z) - \frac{1}{|T|}$$

and $\int_T G(z, w) dA = 0$, where δ_w is the Dirac measure with singularity at z = w.

▶ Because of the translation invariance of \triangle_z , we have G(z, w) = G(z - w, 0) and it is enough to consider *the Green function* G(z) := G(z, 0). Asymptotically

$$G(z) = -\frac{1}{2\pi} \log |z| + O(|z|^2).$$

- Not surprisingly, G can be explicitly solved in terms of elliptic functions.
- Let z = x + iy, $\tau := \omega_2/\omega_1 = a + ib \in \mathbb{H}$ and $q = e^{\pi i \tau}$ with $|q| = e^{-\pi b} < 1$. Then

$$\vartheta_1(z;\tau) = -i \sum_{n=-\infty}^{\infty} (-1)^n q^{(n+\frac{1}{2})^2} e^{(2n+1)\pi i z}$$

• (Neron): $G(z) = -\frac{1}{2\pi} \log \left| \frac{\vartheta_1(z)}{\vartheta'_1(0)} \right| + \frac{1}{2b} y^2.$

► The structure of *G*, especially its critical points and critical values, will be the fundamental objects that interest us.
∇*G*(*z*) = 0 ⇐⇒

$$\frac{\partial G}{\partial z} \equiv \frac{-1}{4\pi} \left((\log \vartheta_1)_z + 2\pi i \frac{y}{b} \right) = 0.$$

• Recall $\wp(z) = 1/z^2 + \cdots$, $\zeta(z) = -\int^z \wp = 1/z + \cdots$ and $\sigma(z) = \exp \int^z \zeta(w) \, dw = z + \cdots$ is entire, odd with a simple zero on lattice points and

$$\sigma(z+\omega_i) = -e^{\eta_i(z+\frac{1}{2}\omega_i)}\sigma(z)$$

with $\eta_i = \zeta(z + \omega_i) - \zeta(z) = 2\zeta(\frac{1}{2}\omega_i)$ the quasi-periods.

Indeed

$$\sigma(z) = e^{\eta_1 z^2/2} \frac{\vartheta_1(z)}{\vartheta_1'(0)}.$$

Hence $\zeta(z) - \eta_1 z = (\log \vartheta_1(z))_z$.

• Let $z = t\omega_1 + s\omega_2$. By Legendre relation $\eta_1\omega_2 - \eta_2\omega_1 = 2\pi i$, $\nabla G(z) = 0$ if and only if

$$G_z = -rac{1}{4\pi} \Big(\zeta (t\omega_1 + s\omega_2) - (t\eta_1 + s\eta_2) \Big) = 0.$$

Question: How many critical points can G have in T?

The 3 half periods are trivial critical points. Indeed,

$$G(z) = G(-z) \Rightarrow \nabla G(z) = -\nabla G(-z).$$

Let $p = \frac{1}{2}\omega_i$ then p = -p in *T* and so $\nabla G(p) = -\nabla G(p) = 0$.

• Other critical points must appear in pair $\pm z \in T$.

Example (Maximal principle)

For rectangular tori *T*: $(\omega_1, \omega_2) = (1, \tau = bi), \frac{1}{2}\omega_i, i = 1, 2, 3$ are precisely all the critical points.

► Example (ℤ₃ symmetry)

For the torus *T* with $\tau = e^{\pi i/3}$, there are at least 5 critical points: 3 half periods $\frac{1}{2}\omega_i$ plus $\frac{1}{3}\omega_3$, $\frac{2}{3}\omega_3$.

• However, it is very difficult to study the critical points from the "simple equation" $\zeta(t\omega_1 + s\omega_2) = t\eta_1 + s\eta_2$ directly.

▶ In PDE, the geometry of G(z, w) plays fundamental role in the non-linear mean field equations (= Liouville equation with singular RHS): On a flat torus *T* it takes the form ($\rho \in \mathbb{R}_+$)

$$\triangle u + \rho e^u = \rho \delta_0.$$

- It is originated from the prescribed curvature problem (Nirenberg problem, constant K with cone metrics etc.).
- It is the mean field limit of Euler flow in statistic physics.
- It is related to the self-dual condensation of abelian Chern-Simons-Higgs model (Nolasco and Tarantello 1999).
- ▶ In Arithmetic Geometry, G(z, w) also appears in the Arakelov geometry as the intersection number of two sections z and w of the arithmetic surface $T \rightarrow \text{Spec } \mathbb{Z} \cup \{\infty\}$ at the ∞ fiber $T_{\infty} =$ Riemann surface T.

When ρ ∉ 8πN, it has been proved by C.-C. Chen and C.-S. Lin that the Leray-Schauder degree is

$$d_{\rho} = n+1$$
 for $\rho \in (8n\pi, 8(n+1)\pi)$,

so the equation has solutions, regardless on the shape of *T*.

The first interesting case is when ρ = 8π where the degree theory fails completely.

Theorem (Existence criterion via ∇G for n = 1)

For $\rho = 8\pi$ *, the mean field equation on a flat torus* $T = \mathbb{C}/\Lambda$ *:*

$$\triangle u + \rho e^u = \rho \delta_0$$

has solutions if and only if the G has more than 3 critical points. Moreover, each extra pair of critical points $\pm p$ corresponds to an one parameter family of solutions u_{λ} , where $\lim_{\lambda\to\infty} u_{\lambda}(z)$ blows up precisely at $z \equiv \pm p$.

- Structure of solutions.
- Liouville's theorem says that any solution *u* of △*u* + *e^u* = 0 in a simply connected domain Ω ⊂ C must be of the form

$$u = c_1 + \log \frac{|f'|^2}{(1+|f|^2)^2},$$

where *f* , called a developing map of *u*, is meromorphic in Ω .

• It is straightforward to show that for $\rho = 8\pi\mu$,

$$S(f) \equiv \frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'}\right)^2 = u_{zz} - \frac{1}{2}u_z^2 = -2\mu(\mu+1)\frac{1}{z^2} + O(1).$$

I.e., any developing map f of u has the same Schwartz derivative S(f), which is elliptic on T.

By the theory of ODE, locally f = w₁/w₂ for two solutions w_i of the Lamé equation L_{η,B} y = 0:

$$y'' + \frac{1}{2}S(f)y = y'' - (\eta(\eta + 1)\wp(z) + B)y = 0$$

for some $B \in \mathbb{C}$.

• Even more, for any two developing maps f and \tilde{f} of u, there exists $S = \begin{pmatrix} p & -\bar{q} \\ q & \bar{p} \end{pmatrix} \in PSU(2)$ such that $\tilde{f} = Sf := \frac{pf - \bar{q}}{qf + \bar{p}}$.

Lemma (Existence of developing map for $\mu \in \frac{1}{2}\mathbb{Z}$)

Given Λ , for $\rho = 4\pi\ell$, $\ell \in \mathbb{N}$, by analytic continuation across Λ , f is glued into a meromorphic function on \mathbb{C} . (Instead of on $T = \mathbb{C}/\Lambda$.)

First constraint from the double periodicity:

$$f(z + \omega_1) = S_1 f, \quad f(z + \omega_2) = S_2 f$$

with $S_1S_2 = \pm S_2S_1$.

Second constraint from the Dirac singularity:

(1) If f(z) has a zero/pole at $z_0 \notin \Lambda$ then order r = 1.

(2) $f(z) = a_0 + a_{\ell+1}(z - z_0)^{\ell+1} + \cdots$ be regular at $z_0 \in \Lambda$.

• Type I (Topological) Solutions $\iff \ell = 2n + 1$:

$$f(z + \omega_1) = -f(z), \qquad f(z + \omega_2) = \frac{1}{f(z)}.$$

Then

$$g = (\log f)' = \frac{f'}{f}$$

is elliptic on $T' = \mathbb{C}/\Lambda'$, $\Lambda' = \mathbb{Z}\omega_1 + \mathbb{Z}2\omega_2$ with the only (highest order) zeros at $z_0 \equiv 0 \pmod{\Lambda}$ of order $\ell = 2n + 1$.

- ► The equations $0 = g(0) = g''(0) = g^{(4)}(0) = \cdots$ implies that *f* is an even function. So *f* has simple zeros at $\pm p_1, \ldots, \pm p_n$ and $\omega_1/2$.
- The remaining equations 0 = g'(0) = g'''(0) = g⁽⁵⁾(0) = · · · leads to the polynomial system for ℘(p_i)'s:

Theorem (Type I evenness and algebraic integrability)

- (1) For $\rho = 4\pi\ell$, $\ell = 2n + 1$. All type I solutions u are even. f has simple zeros at $\omega_1/2$ and $\pm p_i$ for i = 1, ..., n, and poles $q_i = p_i + \omega_2$.
- (2) For $x_i := \wp(p_i)$, $\tilde{x}_i := \wp(q_i)$, and m = 1, ..., n,

$$\sum_{i=1}^{n} x_{i}^{m} - \sum_{i=1}^{n} \tilde{x}_{i}^{m} = c_{m}, \quad (x_{m} - e_{2})(\tilde{x}_{m} - e_{2}) = \mu,$$

for some constants c_m and $\mu = (e_2 - e_1)(e_2 - e_3)$. This is a 2n affine polynomial system in \mathbb{C}^{2n} of degree $2^n n!$.

(3) The corresponding Lamé equation L_{η=n+1/2,B} y = 0 has finite monodromy group M (in fact PM = V₄) hence there is a polynomial p_n of degree n + 1 such that p_n(B) = 0. (Brioschi-Halphen 1894.)

► Type II (Scaling Family) Solutions $\iff \eta = n$ ($\ell = 2n$): $f(z + \omega_1) = e^{2i\theta_1}f(z), \qquad f(z + \omega_2) = e^{2i\theta_2}f(z).$

• If *f* satisfies this, $e^{\lambda}f$ also satisfies this for any $\lambda \in \mathbb{R}$. Thus

$$u_{\lambda}(z) = c_1 + \log \frac{e^{2\lambda} |f'(z)|^2}{(1 + e^{2\lambda} |f(z)|^2)^2}$$

is a scaling family of solutions with developing maps $\{e^{\lambda}f\}$.

- The blow-up points for λ → ∞ (resp. −∞) are precisely zeros (resp. poles) of f(z).
- ► $g = (\log f)'$ is elliptic on $T = \mathbb{C}/\Lambda$, with highest order zero at z = 0 of order $\ell = 2n$.

• $0 = g'(0) = g'''(0) = \dots = g^{(2n-1)}(0)$ implies that g is even.

We may write

$$g(z) = \frac{\wp'(p_1)}{\wp(z) - \wp(p_1)} + \dots + \frac{\wp'(p_n)}{\wp(z) - \wp(p_n)}$$

constraint by $0 = g(0) = g''(0) = \cdots = g^{(2n-2)}(0)$. These give rise to n - 1 equations on p_1, \ldots, p_n .

And then

$$f(z) = f(0) \exp \int_0^z g(\xi) \, d\xi$$

which should satisfies (the *n*-th equation)

$$\int_{L_i} g \in \sqrt{-1} \mathbb{R}, \qquad i = 1, 2.$$

▲□▶▲□▶▲□▶▲□▶ = の(

14/29

▶ **Periods integrals.** Let *L*₁, *L*₂ be the fundamental 1-cycles. Then

$$F_i(p) := \int_{L_i} \Omega(\xi, p) \, d\xi,$$

where $p \not\equiv \frac{1}{2}\omega_i \pmod{\Lambda}$ and

$$\Omega(\xi, p) = A \frac{\sigma^2(\xi)}{\sigma(\xi - p)\sigma(\xi + p)} = \frac{\wp'(p)}{\wp(\xi) - \wp(p)}$$
$$= 2\zeta(p) - \zeta(p + \xi) - \zeta(p - \xi).$$

Lemma (Periods integrals and critical points)

Let $p = t\omega_1 + s\omega_2$ *, then up to* $4\pi i\mathbb{N}$ *,*

$$F_1(p) = 2(\omega_1 \zeta(p) - \eta_1 p) = 2(\zeta(p) - t\eta_1 - s\eta_2)\omega_1 - 4\pi is,$$

$$F_2(p) = 2(\omega_2 \zeta(p) - \eta_2 p) = 2(\zeta(p) - t\eta_1 - s\eta_2)\omega_2 + 4\pi it.$$

• E.g. when $\rho = 8\pi$ ($\ell = 2$), $p_1 = p$, $p_2 = -p$, $g(z) = \Omega(z, p)$ and $f(z) = f(0) \exp \int_0^z g(\xi) d\xi$

gives rise to a type II solution $\iff F_i(p) \in i \mathbb{R} \iff \nabla G(p) = 0.$

► Theorem (Uniqueness, Lin-W 2006, Annals 2010)

For $\rho = 8\pi$, the mean field equation $\Delta u + \rho e^u = \rho \delta_0$ on a flat torus has at most one solution **up to scaling**.

Theorem (Number of critical points)

The Green function has either 3 or 5 critical points.

• We were unable to prove it from the critical point equation.

• It remains to study the geometry of critical points over \mathcal{M}_1 , which relies on methods of deformations and the degeneracy analysis of half periods.

Theorem (Moduli dependence, Lin-W 2011)

- Let Ω₃ ⊂ M₁ ∪ {∞} ≅ S² (resp. Ω₅) be the set of tori with 3 (resp. 5) critical points, then Ω₃ ∪ {∞} is closed containing iℝ, Ω₅ is open containing the vertical line [e^{πi/3}, i∞).
- Both Ω₃ and Ω₅ are simply connected with C := ∂Ω₃ = ∂Ω₅ homeomorphic to S¹ containing ∞.
- (3) Moreover, the extra critical points are split out from some half period point when the tori move from Ω_3 to Ω_5 across C.
- (4) (Strong uniqueness) The map $\Omega_5 \rightarrow [0,1]^2$ by $\tau \mapsto (t,s)$ for $p(\tau) = t\omega_1 + s\omega_2$ is a bijection onto $\Delta = [(\frac{1}{3}, \frac{1}{3}), (\frac{1}{2}, \frac{1}{2}), (0, \frac{1}{2})].$

Figure: Ω_5 contains a neighborhood of $e^{\pi i/3}$.

- On the line Re $\tau = 1/2$ which are equivalent to the rhombuses tori, the proof relies on *functional equations* of ϑ_1 .
- The general case uses modular forms of weight one.

Idea of proof: Hecke (1926):

 $\Psi(N) := \#\{ (k_1, k_2) \mid (N, k_1, k_2) = 1, 0 \le k_i \le N - 1 \}.$

Consider the weight one modular function for $\Gamma(N)$:

$$Z_{N,k_1,k_2}(\tau) := \zeta \left(\frac{k_1 \omega_1 + k_2 \omega_2}{N}; \tau \right) - \frac{k_1 \omega_1 + k_2 \omega_2}{N} = -Z_{N,N-k_1,N-k_2}(\tau);$$

• and the weight $\Psi(N)$ one for full modular group:

$$Z(\tau) \equiv Z_N(\tau) := \prod_{(N,k_1,k_2)=1} Z_{N,k_1,k_2}(\tau) \in M_{\Psi(N)}(SL(2,\mathbb{Z})).$$

• Each $\tau \in \mathbb{H}$ with $Z(\tau) = 0$ is (at least) a double zero.

- For odd $N \ge 5$, $\nu_i(Z) = \nu_\rho(Z) = 0$,
- At ∞ , Hecke calculated the asymptotic expansion: $\nu_{\infty} = \phi(N/2) = 0$,
- Then the RR:

$$(Z)_{\rm red} = \frac{1}{2} \deg Z = \frac{1}{2} \sum_{p} \nu_p(Z) = \frac{\Psi(N)}{24}.$$

 Take N prime, this suggests a 1-1 correspondence between Ω₅ and

$$\triangle = [(\frac{1}{3}, \frac{1}{3}), (\frac{1}{2}, \frac{1}{2}), (0, \frac{1}{2})]$$

under the map $\Omega_5 \rightarrow [0,1]^2$:

 $\tau \mapsto (t,s)$, where $p(\tau) = t\omega_1 + s\omega_2$.

20/29

Theorem (Periods integrals and type II evenness)

- If solutions exist for ρ = 8nπ, then there is a unique even solution within each type II scaling family. (ℓ = 2n, a_{n+i} = −a_i.)
- The solution u is determined by the zeros a_1, \ldots, a_n of f. In fact

$$g(z) = \sum_{i=1}^{n} \frac{\wp'(a_i)}{\wp(z) - \wp(a_i)} = \sum_{i=1}^{n} \Omega(z, a_i),$$

$$f(z) = f(0) \exp \int^{z} g(\xi) d\xi = f(0) \prod_{i=1}^{n} \exp \int^{z} \Omega(\xi, a_i) d\xi.$$

The condition $\operatorname{ord}_{z=0} g(z) = 2n$ leads to equations for a_1, \ldots, a_n :

Theorem (Green/polynomial system)

For $\rho = 8n\pi$, $n \in \mathbb{N}$, *the n equations for a*₁,..., *a*_n *are precisely*

$$\wp'(a_1)\wp^r(a_1)+\cdots+\wp'(a_n)\wp^r(a_n)=0,$$

where r = 0, ..., n - 2*, and*

$$\nabla G(a_1) + \dots + \nabla G(a_n) = 0.$$

Theorem (Hyperelliptic geometry/Lamé curve) For $x_i := \wp(a_i)$, $y_i := \wp'(a_i)$, the first n - 1 algebraic equations $\sum y_i x_i^r = 0$, $r = 0, \dots, n - 2$,

defines a hyperelliptic curve under the 2 *to* 1 *map* $a \mapsto \sum \wp(a_i)$ *:*

$$X_n := \{(x_i, y_i)\} \subset \operatorname{Sym}^n T \longrightarrow (x_1 + \dots + x_n) \in \mathbb{P}^1.$$

The proof relies on its relation to Lamé equations:

$$f = \exp \int g \, dz = \exp \int \sum_{i=1}^{n} (2\zeta(a_i) - \zeta(a_i - z) - \zeta(a_i + z)) \, dz$$
$$= e^{2\sum_{i=1}^{n} \zeta(a_i)z} \prod_{i=1}^{n} \frac{\sigma(z - a_i)}{\sigma(z + a_i)} = \frac{w_a}{w_{-a}},$$

where
$$w(z) = w_a(z) := e^{z \sum \zeta(a_i)} \prod_{i=1}^n \frac{\sigma(z-a_i)}{\sigma(z)}.$$

• Theorem (Explicit map $a \mapsto B_a$)

 $a \in X_n$ if and only if w_a and w_{-a} are solutions of the Lamé equation

$$\frac{d^2w}{dz^2} - \left(n(n+1)\wp(z) + (2n-1)\sum_{i=1}^n \wp(a_i)\right)w = 0.$$

ペロト < 部 → < 書 → < 書 → 書 の Q ペ 23 / 29 ► Idea of the Analytic Proof. Consider $y^2 = p(x) = 4x^3 - g_2x - g_3$, where $(x, y) = (\wp(z), \wp'(z))$, and we set $(x_i, y_i) = (\wp(a_i), \wp'(a_i))$. Consider a basis of solutions to the Lamé equation by $\Lambda_a(z), \Lambda_{-a}(z)$, where

$$\Lambda_a(z) := \frac{w_a(z)}{\prod_{i=1}^n \sigma(a_i)} = e^{z \sum \zeta(a_i)} \prod_{i=1}^n \frac{\sigma(z-a_i)}{\sigma(z)\sigma(a_i)}.$$
 (1)

• Let $X = \Lambda_a \Lambda_{-a}$. By the addition theorem,

$$X(z) = (-1)^n \prod_{i=1}^n \frac{\sigma(z+a_i)\sigma(z-a_i)}{\sigma(z)^2 \sigma(a_i)^2} = (-1)^n \prod_{i=1}^n (\wp(z) - \wp(a_i)).$$

That is, $X(x) = (-1)^n \prod_{i=1}^n (x - x_i)$ is a polynomial in x.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 少 Q @ 24 / 29 ► **Key:** *X*(*z*) satisfies the second symmetric power:

$$\frac{d^{3}X}{dz^{3}} - 4(n(n+1)\wp + B)\frac{dX}{dz} - 2n(n+1)\wp' X = 0,$$

hence a polynomial solution, in variable *x*, to

$$p(x)X''' + \frac{3}{2}p'(x)X'' - 4((n^2 + n - 3)x + B)X' - 2n(n + 1)X = 0.$$
(2)

X is determined by *B* and certain initial conditions.

▶ Write $X(x) = (-1)^n (x^n - s_1 x^{n-1} + \dots + (-1)^n s_n)$, (2) translates to a linear recursive relation for $\mu = 0, \dots, n-1$ (we set $s_0 = 1$):

$$0 = 2(n - \mu)(2\mu + 1)(n + \mu + 1)s_{n-\mu} - 4(\mu + 1)Bs_{n-\mu-1} + \frac{1}{2}g_2(\mu + 1)(\mu + 2)(2\mu + 3)s_{n-\mu-2} - g_3(\mu + 1)(\mu + 2)(\mu + 3)s_{n-\mu-3}.$$

Since $B = (2n - 1)s_1$, the initial relation for $\mu = n - 1$ is automatic. Thus all s_i 's, X, and $\pm a$, are determined by B alone.

C.-L. Chai offered a purely algebraic proof without Lamé equations: Theorem (Chai-Lin-W 2012)

There is a natural projective compactification X_n as a, possibly singular, hyperelliptic curve defined by

$$C^{2} = \ell_{n}(B, g_{2}, g_{3})$$

= $4Bs_{n}^{2} + 4g_{3}s_{n-2}s_{n} - g_{2}s_{n-1}s_{n} - g_{3}s_{n-1}^{2}$, (3)

in (B, C), where $s_k = s_k(B, g_2, g_3) = r_k B^k + \cdots \in \mathbb{Q}[B, g_2, g_3]$, is an universal polynomial of homogeneous degree k with deg $g_2 = 2$, deg $g_3 = 3$, and $B = (2n - 1)s_1$.

• Thus deg $\ell_n = 2n + 1$ and \bar{X}_n has arithmetic genus g = n.

The curve X
_n is smooth except for a finite number of τ, namely the discriminant loci of l_n(B, g₂, g₃), so that l_n(B) has multiple roots.

Now we study the last equation on \bar{X}_n :

$$0 = -4\pi \sum_{i=1}^{n} \nabla G(a_i) = \sum_{i=1}^{n} \zeta(a_i) - \sum_{i=1}^{n} (t_i \eta_1 + s_i \eta_2), \qquad (4)$$

where $a_i = t_i \omega_1 + s_i \omega_2$.

▶ Then for the rational function on *T*^{*n*}:

$$E_n(a_1,\ldots,a_n):=\zeta(a_1+\cdots+a_n)-\sum_{i=1}^n\zeta(a_i),$$

we get, by assuming (4),

$$E_n(a) = \zeta(\sum a_i) - (\sum t_i)\eta_1 - (\sum s_i)\eta_2$$

= $Z(\sum a_i)$
= $-4\pi\nabla G(\sum a_i).$

It is thus crucial to study the branched covering map

$$\sigma: \bar{X}_n \to T, \qquad a \mapsto \sigma(a):=\sum_{i=1}^n a_i.$$

Theorem (New modular functions)

- (1) The map σ has degree equals $\frac{1}{2}n(n+1)$.
- (2) There is a universal (weighted homogeneous) polynomial W_n(x) ∈ C[g₂, g₃, ℘(∑a_i), ℘'(∑a_i)][x] of degree ½n(n+1) such that

$$W_n(E_n)=0.$$

(3) The function $Z_n := W_n(Z)$ is modular of weight $\frac{1}{2}n(n+1)$.

▶ **Idea of proof for (1):** Apply *Theorem of the Cube*: For any three morphisms $f, g, h : V_n \longrightarrow T$ and $L \in \text{Pic } T$,

$$(f+g+h)^*L \cong (f+g)^*L \otimes (g+h)^*L \otimes (h+f)^*L$$

 $\otimes f^*L^{-1} \otimes g^*L^{-1} \otimes h^*L^{-1}.$

Apply to the case $V_n \subset T^n$ which is the ordered *n*-tuples so that $V_n/S_n = \bar{X}_n$. We prove inductively that the map

$$f_k(a) := a_1 + \cdots + a_k$$

has degree $\frac{1}{2}k(k+1)n!$. It is easy to check for k = 1, 2. From k to k+1, we let $f = f_{k-1}, g(a) = a_k$, and $h(a) = a_{k+1}$.

• Then f_{k+1} has degree n! times

$$\frac{1}{2}k(k+1) + 3 + \frac{1}{2}k(k+1) - \frac{1}{2}(k-1)k - 1 - 1 = \frac{1}{2}(k+1)(k+2).$$

Example
$$(n = 2)$$

For $E_2(a_1, a_2) = \zeta(a_1 + a_2) - \zeta(a_1) - \zeta(a_2)$,
 $E_2^3(a) - 3\wp(a_1 + a_2)E_2(a) - \wp'(a_1 + a_2) = 0$

on X_n . The equation on T^n has one more term $-\frac{1}{2}(\wp'(a_1) + \wp'(a_2))$.