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Calabi–Yau manifolds

I A Calabi–Yau manifold Xn is a complex projective n-fold
with KX ∼= OX and hi(OX) = 0 for 1 ≤ i ≤ n− 1.

I Yau (1976): Ricci flat metrics on X are in one to one
correspondence with (J, ω) where J is a complex structure
on X and ω ∈ H1,1(X) is a Kähler class.

I Bogomolov–Todorov–Tian (1987): The deformation theory
is unobstructed, namely the Kuranishi space MX = Def (X)
is smooth of dimension hn−1,1(X) = h1(X, TX).

I Namilawa (1994): BTT holds for Calabi-Yau 3-fold with at
most terminal singularities.
Local analytically (p ∈ X) = cDV/µr with
cDV = f (x, y, z) + tg(x, y, z, t) where f is an ADE equation.
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Ried’s fantesy: How to classify Calabi–Yau 3-folds?
I Finite topological type?
I Are Calabi-Yau 3-folds all “connected” through extremal

transitions? Or even conifold (i.e. ODP) transitions?

Y

ψ
��

X = Xt
t→0 // X̄

where ψ is a projective crepant contraction and Xt is a
projective smoothing of X̄ = X0. (Denote Y↘ X, X↗ Y.)

I If X̄ is a conifold with ODP p1, · · · , pk, then Y contains k
φ-exceptional curves Ci

∼= P1 with NCi/Y
∼= OP1(−1)⊕2, X

contains k vanishing spheres Si
∼= S3 with NSi/X

∼= T∗S3:

∂(S3 ×D3) = S3 × S2 = ∂(D4 × S2),

I Irreducible family via non-projective Calabi–Yau’s??
3 / 36



Main examples

Up to date, there are more than 107 Calabi–Yau 3-folds found
with different topological types!

I Complete intersections in toric varieties. E.g. (5) ⊂ P4.
I H. Clemens 1983: Double solids. E.g. Branched double

cover of P3 along a degree 8 surface.
I C. Schoen 1988: Fiber product of elliptic surfaces

X = S1 ×P1 S2,

where ri : Si → P1 is a relatively minimal elliptic surface
with section and without reduced fibers.

I The singular fibers are of type In : t = xy, II : t = y2 − x3,
III : t = x(y2 − x), IV : t = xy(x + y). If Ai is the critical
value of ri, then X is singular over A1 ∩A2. Any
deformation of X is still of the form, hence smoothable.
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Classical working problems

I E. Viehweg 1990-97: The moduli space M c
h of polarized

Calabi–Yau varieties with at most canonical singularities
(with a fixed Hilbert polynomial h) is quasi-projective.

I W- 1996: The Weil–Petersson metric (for Ω a section of n
forms)

ωWP := −∂∂̄ log Q̃(Ω, Ω̄)

has finite distance towards the boundary point of Mh
which corresponds to CY with canonical singularities.

I W- 2003: MMP⇒ The converse holds for one dimensional
moduli. Hence OK for Calabi–Yau 3-folds.

I T.-J. Lee, W- 2013*: The WP metric completion of Mh is
precisely M c

h . (Small complex structure limits.)
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I Reid: Is that possible to deform a terminal (or canonical)
extremal transition Y↘ X into a conifold transition?

I R. Friedman 1986: The local contraction (Y, C)→ (X̄, p)
can always be deformed into a ODP contraction
(Y′, ä Ci)→ (X̄′, {pi}) with many ODP pi’s.

I Moreover, a ODP contraction Y→ X̄ is globally
smoothable if and only if there is a totally non-trivial
relation ∑ ai[Ci] = 0 with ai 6= 0 for all i.

I Y. Namikawa 2002: If X̄ = S1 ×P1 S2 has a type III× III
singularity, then any extremal transition through X̄ is not
deformable into conifold trasnaitions!

I S.-S. Wang 2012: OK if we allow deformations,
decompositions and flops. In fact 2 steps conifold
transitions are enough for C. Schoen’s examples.
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Quantum aspects on projective conifold transitions

I The purpose of this talk is to give some observations on
the quantum A and B models under a projective conifold
transition Y↘ X of Calabi–Yau 3-folds. This is based on a
joint project with H.-W. Lin and Y.-P. Lee.

I A model: Gromov–Witten theory.
I B model: Kodaira–Spencer theory (or VHS in the genus

zero case).
I It is clear that A(X) < A(Y) (Y has extremal rays) and

B(X) > B(Y) (X has vanishing cycles).
I But we expect that the full “TQFT” is “invariant”

regardless the choices of CY’s!
I Other aspects: Candelas, Strominger, Thomas–Yau,

Tseng–Yau, Rong–Zhang, Xu, Lau (and many more ...).
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Global constraint on conifold trsnaition Y↘ X
I The Euler numbers satisfy

χ(X)− kχ(S3) = χ(Y)− kχ(S2).

That is, 1
2 (h

3(X)− h3(Y)) + (h2(Y)− h2(X)) = k.
I Extremal transitions preserve h3,0 = h0(K), hence

µ := 1
2 (h

3(X)− h3(Y)) = h2,1(X)− h2,1(Y)

is the lose of complex moduli, and

ρ := h2(Y)− h2(X) = h1,1(Y)− h1,1(X)

is the gain of Kähler moduli.
I The relation then reads as

µ + ρ = k.
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Factorization into two semi-stable reductions

I The transition X↗ Y can be achieved as a composition of
two semi-stable degenerations: X → ∆ and Y → ∆.

I The first one (complex degeneration) f : X → ∆ is the
semi-stable reduction

X //

f

  

X′ //

��

X

��
∆ 2:1 // ∆

for X→ ∆ obtained by a degree two base change X′ → ∆
followed by the blow-up X → X′ of the 4D nodes

p′i ∈ X′, i = 1, . . . , k.
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I The special fiber

X0 = X0 ∪
k

ä
i=0

Xi

is a SNC divisor with

ψ̃ : X0 ∼= Ỹ→ X̄

being the blow-up at all pi’s and Xi = Qi
∼= Q ⊂ P4 is a

quadric threefold for i = 1, . . . , k.
I Let X[j] be the disjoint union of j + 1 intersections from

Xi’s. Then X[0] = Ỹ äi Qi and X[1] = äi Ei where

Ei = Ỹ ∩Qi
∼= P1 × P1

are the ψ̃ exceptional divisors.
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I The second one (Kähler degeneration) g : Y → ∆ is simply
the deformations to the normal cone

Y = Blä Ci×{0}Y× ∆→ ∆.

I The special fiber

Y0 = Y0 ∪
k

ä
i=1

Yi

with φ : Y0 ∼= Ỹ→ Y being the blow-up along the curves
Ci’s and

Yi = Ẽi
∼= Ẽ = PP1(O(−1)2 ⊕O)

for i = 1, . . . , k.
I Non-trivial terms for Y[j] are Y[0] = Ỹ äi Ẽi and Y[1] = äi Ei

where Ei = Ỹ ∩ Ẽi is the ∞ divisor of πi : Ẽi → Ci
∼= P1.
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Limiting mixed Hodge theory

I Consider the period map φ(t, s) of a variation of Hodge
structures F•t,s with unipotent monodromy Ti around Di in
the SNC divisor D =

⋃µ
i=1 Di: Let Ni = log Ti, Φ(z, s) its

lifting with ti = e2πizi , and let Ψ(z, s) := e−zNΦ(z, s) where
zN = ∑

µ
j=1 zjNj. Then Ψ descends to ψ : (t, s) ∈ ∆∗ → D:

Hµ × ∆h−µ

��

Φ // D

��
∆∗ := (∆×)µ × ∆h−µ φ //

ψ

55

D/〈T1, · · · , Tµ〉

I W. Schmid’s nilpotent orbit theorem 1971:
φ(t, s) = ezNψ(t, s) where ψ is holomorphic over ∆h.
ψ(0, s) = F•∞(s) is called the limiting Hodge filtration.
The nilpotent orbit ezNψ(0, s) approximates φ “nicely”.
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I Let a(t, s) be a section of ψ(t, s)n.

a(t, s) = a0(s) +
µ

∑
j=1

a1,j(s)tj + · · ·

with a0(s) ∈ Fn
∞(s). Then zN = ∑(log tj)Nj/2πi,

Ω(t, s) = ezNa(t, s) = ezNa0(s) + ezN ∑ a1,j(s)tj + · · ·

I In the case of conifold degenerations of Calabi–Yau 3-folds,
Nja0(s) = 0 for all j and NiNj = 0 for any i, j. This follows
from the one parameter case since N = ∑ njNj along the
curve u 7→ (un1 , · · · , unµ , s) for any fixed s.

I We first consider the one parameter case hence

Ω(t) = a0 +
t log t
2πi

Na1 + · · · .

F•∞ and WN defines a MHS. We will see that N2 = 0 soon.
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I Now we compare the MHS on H(X0), computed from
Ep,q

1 (X0) = Hq(X[p]) with Čech δ : Hq(X[p])→ Hq(X[p+1]),
and the limiting MHS on H(X) (also H(Y0) and H(Y)):

I The Clemens–Schmid exact sequences for MHS’s are

0→ H3(X0)→H3(X)
N−→H3(X)→ H3(X0)→ 0,

0→ H0(X)→ H6(X0)→ H2(X0)→H2(X)
N−→ 0,

0→ H3(Y0)→H3(Y) N−→ 0,

0→ H0(Y)→ H6(Y0)→ H2(Y0)→H2(Y) N−→ 0,

where N is trivial for Y → ∆.
I Since H2(X0) is of weight 2, N on H2(X) is also trivial and

the Hodge structure does not degenerate at all.
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I Let K = ker(N : H3(X)→ H3(X)) ∼= H3(X0). Then

K ∼= H3(Y)⊕ coker(δ).

I From the the limiting Hodge diamond,

H2,2
∞ H3

N∼

��

H3,0
∞ H3 H2,1

∞ H3 H1,2
∞ H3 H0,3

∞ H3

coker(δ)

we conclude that GW
3 H3(X) ∼= H3(Y) and

µ = h2,2
∞ H3 = h1,1

∞ H3 = dim coker(δ).
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I Lemma. V∗ ∼= H2,2
∞ H3 and V ∼= H1,1

∞ H3.
I Proof: For any 3-fold isolated singularities,

0→ V → H3(X)→ H3(X̄)→ 0

is exact. Dually 0→ H3(X̄)→ H3(X)→ V∗ → 0.
I The invariant cycle theorem (c.f. BBD) implies that

H3(X̄) ∼= ker N = K ∼= H3(X0). Hence

V∗ ∼= H2,2
∞ H3 = F2

∞GW
4 H3(X).

The non-degeneracy of Q(Nα, β) on GW
4 H3(X) implies that

H1,1
∞ H3 = NH2,2

∞ H3 ∼= (H2,2
∞ H3)∗ ∼= V∗∗ ∼= V.
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I Theorem (Basic exact sequence)
The group of vanishing S2 cycles on Y and the group of vanishing S3

cycles on X are linked by the weight 2 exact sequence

0→ H2(Y)/H2(X)
B−→

k⊕
i=1

H2(Ei)/H2(Qi)
At
−→K/H3(Y) ∼= V → 0.

Here A ∈ Mk×µ(Z) is the relation matrix for Ci’s and B ∈ Mk×ρ(Z)
is the relation matrix for Si’s. In particular

B = ker At and A = ker Bt.

I Remark: This sequence in fact splits:
0→ Zρ → Zk → Zµ → 0. We eventually want to have a D
module version (non-split) of this.
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A key construction

I Consider the topological construction: For any non-trivial
relation ∑k

i=1 ai[Ci] = 0, there is a 3-chain W in Y with

∂W =
k

∑
i=1

aiCi.

I Under ψ : Y→ X̄, Ci collapses to the node pi hence
W̄ := ψ∗W ∈ H3(X̄, Z).

I As in Lemma, W̄ deformes (lifts) to γ ∈ H3(X, Z) in nearby
fibers. Using the intersection pairing, we get

PD(γ) ∈ H3(X, Z).

Restricting to the vanishing cycle space V, PD(γ) ∈ V∗.
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I In the proof we establish the correspondence for each
column vector Aj = (a1j, · · · , akj)

t with the element
PD(γj) ∈ V∗, 1 ≤ j ≤ µ, characterized by

aij = (γj.Si).

I Dually, we denote by T1, · · · , Tρ ∈ H2(Y)/tor those
divisors which form an integral basis of the lattice in
H2(Y) dual (othogonal) to H2(X) ⊂ H2(Y). In particular
they form an integral bases of H2(Y)/H2(X).

I Notice that we may choose Tl’s, l = 1, . . . , ρ, such that Tl
corresponds to the l-th column vector of the matrix B via

bil = (Ci.Tl).
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The implication (A(X), B(X))⇒ (A(Y), B(Y))

Gromov–Witten and Dubrovin connections
Using the degeneration formula, we may relate the GW theory
on X with that on Y by way of Ỹ.

I For β ∈ NE(X)\{0} and~a ∈ Hinv(X)⊕n,

〈~a〉Xg,n,β = ∑
ψ∗(γ)=β

〈j(~a)〉Yg,n,γ

where j : Hinv(X)→ H(Y) is defined by j(a) = φ∗(a0) with
(ai)

k
i=0 ∈ H(Ỹ ä Qi) being the admissible lifting of a with

ai = 0 for all i 6= 0. The sum is indeed finite!
I For 3-fold conifold transitions and for even dimensional

classes it was first derived by Li–Ruan using symplectic
glueing formula and later reinterpreted by Liu–Yau using
Jun Li’s algebraic degeneration formula.
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I Let s = ∑ε sεT̄ε ∈ H2(X) where T̄ε’s is a basis of H2(X).
The pre-potential function is given by

FX
0 (s) =

∞

∑
n=0

∑
β∈NE(X)

〈sn〉0,n,β
qβ

n!
=

s3

3!
+ ∑

β 6=0
nX

β qβe(β.s),

where nX
β = 〈〉X0,0,β, with formal variables qβ’s.

I It is a function in the Kähler moduli via qβ = exp 2πi(β.ω),
ω = B + iH in the complexified Kähler cone KX

C of X.
I Strictly speaking we need to consider s ∈ Hev(X). This will

only change the topological part s3/3! with

s = s0T̄0 + ∑
ε

sεT̄ε + ∑
ζ

sζT̄ζ + s0T̄0.

Notice: We use Greek indices for variables from H(X).
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I Similarly we have FY
0 (t) on H2(Y)×KY

C. Here

t = s + u

with respect to H2(Y) = jH2(X)⊕⊕ρ
l=1 ZTl and write

u =
ρ

∑
l=1

ulTl.

I For C ∼= P1 with twisted bundle N = OP1(−1)⊕2,

EC
0 (t) = ∑

d∈N

nN
d qd[C]ed(C.t) = ∑

d∈N

1
d3 qd[C]ed(C.t).

I We also consider the total (global) extremal function

EY
0 (t) :=

t3

3!
+

k

∑
i=1

ECi
0 (t).

where ECi
0 (t) depends only on u.

22 / 36



I Hence a splitting of variables

FY
0 (s + u) = FX

0 (s) + EY
0 (u) +

1
3!
((s + u)3 − s3 − u3).

The structural coefficients for QHev(Y) are CPQR = ∂3
PQRFY

0 .

I The part FX
0 (s) simply comes from QHev(X).

I For the part EY
0 (u),

Clmn = (Tl.Tm.Tn) +
k

∑
i=1

∑
d∈N

(Ci.Tl)(Ci.Tm)(Ci.Tn) qd[Ci]ed(Ci.u)

= (Tl.Tm.Tn) +
k

∑
i=1

bilbimbinf(q[Ci] exp ∑ρ

p=1 bipup).

I Here
f(q) = ∑

d∈N

qd =
q

1− q
= −1 +

−1
q− 1

.
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I The degeneration loci E =
⋃k

i=1 Ei of the GW theory
consists of the k hyperplanes defined by

Ei :=
{

u | wi := ∑ρ

p=1 bipup = 0
}

.

Whenever ρ > 1, E is not a normal crossing divisor.
I The Dubrovin connection on THev(Y)

∇z = d− 1
z ∑

P
dtP ⊗ TP∗

“restricts” to the Dubrovin connection on THev(X).
I For the other part with basis Tl’s and Tl’s, we have

z∇z
∂l

Tm = −δlmT0,

z∇z
∂l

Tm = −∑ρ

n=1 Clmn(u)Tn −∑
ε

ClmεT̄ε,

z∇z
∂ε

Tm = −∑ρ

n=1 CεmnTn.
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I E.g. the nilpotent monodromy N(i) along Ei is given by

N(i)
mn =

2πi
z

bimbin.

I Unfortunately, for β 6= 0, in the finite sum

〈−〉Xβ = ∑
di

〈−〉Yj(β)+∑k
i=1 di[Ci]

we still need to extract the individual term to determine
QH(Y) completely.

I WDVV equations can help to determine the off diagonal
constants Cεmn’s, but give no further constraints.

I Indeed, the term with γ = j(β) + ∑k
i=1 di[Ci] corresponds to

those C ⊂ X, [C] = β, and the linking number L(C, Si) of C
with Si is di for i = 1, . . . , k.
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The implication (A(Y), B(Y))⇒ (A(X), B(X))
Periods and Gauss–Manin connections

I Recall ∇GM on H k = Rkf∗C⊗OS → S for a smooth family
f : X → S is a flat connection with flat sections Rkf∗C.

I Let δi ∈ Hk(X, Z)/tor be a homology basis for a fixed
refernce fiber X = Xs0 , with dual basis δ∗i ∈ Hk(X, Z).
Then δ∗i can be extended to be (multi-valued) flat sections
in Rkf∗Z. For η ∈ Γ(S, H k), we may write

η = ∑
i

δ∗i

∫
δi

η,

with coefficients being the “multi-valued” period integrals.
I Let (sj) be a local coordinates system in S. Then

∇GM
∂/∂sj

η = ∑
i

δ∗i

∫
δi

∂

∂sj
η.
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I When f : X → S contains singular fibers, ∇GM admits a
logarithmic extension to the boundary.

I We need to investigate the local complex moduli space of
X towards the conifold degeneration boundary D:

MY

π
��

MX
∼//MX̄ ⊃ D ⊃ π(MY)

I By the BBT unobstructedness theorem, periods of
vanishing cycles give rise to a natural coordinates system
of the deformations of X in the transversal directions
towards D 3 [X̄] with the same singularity type.

I The “invariant periods” then lift to the small resolution Y
to give rise to the periods on Y.
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I Let A = (aij) ∈ Mk×µ(Z) be the relation matrix for Ci’s.
Recall the basis {PD(γj)}

µ
j=1 of vanishing cocycles V∗:

PD(γj)([Si]) ≡ (γj.Si) := aij, 1 ≤ j ≤ µ.

We may choose γj ∈ H3(X) so that γj ∈ H3(Y)⊥.
I Vanishing cycles: Let Γj ∈ V be the dual basis, (Γj.γl) = δjl.
I We may construct a symplectic basis of H3(X, Z):

α0, α1, · · · , αh, β0, β1, · · · , βh, (αj.βk) = δjk,

where h = h2,1(X), with αj = Γj for 1 ≤ j ≤ µ.

I Then any η ∈ H3(X, C) ∼= C2(h+1) is identified with

η =
h

∑
i=0

α∗i

∫
αi

η + β∗i

∫
βi

η.
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I The symplectic basis property implies that

α∗i (Γ) = (Γ.βi) β∗i (Γ) = −(Γ.αi) = (αi.Γ).

I This leads to the important observation that we may
modify γj by vanishing cycles to get

γj = βj.

So, (γj.γl) = 0 for 1 ≤ j, l ≤ µ and (α∗j .Si) = (Si.βj) = −aij.
I Bryant–Griffiths: wi =

∫
αi

Ω form the coordinates of the
image of the period map in P(H3) ∼= P2h−1 as a Legendre
submanifold of the holomorphic contact structure.

I By the flatness of ∇GM, there is a holomorphic
pre-potential function u(w0, · · · , wh) such that

ui =
∂u
∂wi

=
∫

βi

Ω,

and hence

Ω =
h

∑
i=0

wiα
∗
i + uiβ

∗
i .
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I In particular,

∂iΩ = α∗i +
h

∑
j=1

uijβ
∗
j , ∂2

ijΩ =
h

∑
k=1

uijkβ∗k .

I By the Griffiths transversality, ∂iΩ ∈ F2, ∂ijΩ ∈ F1, and all
are orthogonal to F3. Hence we have the cubic form

uijk = (∂kΩ.∂2
ijΩ) = ∂k(Ω.∂2

ijΩ)− (Ω.∂3
ijkΩ) = −(Ω.∂3

ijkΩ).

This is known as the Yukawa coupling.
I We will write down the extension of the Yukawa coupling

across the degenerate loci D ⊂MX̄.
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I Recall Friedman’s result on partial smoothing of ODP’s in
the following form: Let A = [A1, · · · , Aµ] be the relation
matrix. For any r ∈ Cµ, the relation vector

Ar :=
µ

∑
j=1

rjAj

gives rise to a (germ of) partial smoothing of those ODP’s
pi ∈ X̄ with Ar,i 6= 0.

I Thus for 1 ≤ i ≤ k, the linear equation

wi := πi(Ar) = r1ai1 + · · ·+ rµaiµ = 0

defines a codimension one hyperplane Di ⊂ Cµ.
I D =

⋃k
i=1 Di ⊂ Cµ is NOT a SNC.
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I Now the small resolution ψ : Y→ X̄ leads to an
embedding MY ⊂MX̄ of co-dimension µ. As germs of
analytic spaces we thus have

MX̄
∼= ∆µ ×MY 3 (r, s).

I Along each hyperplane Di there is a monodromy operator
Ti with associated nilpotent monodromy Ni = log Ti.

I A degeneration from X to Xi with [Xi] ∈ Di a general point
( 6∈ Di1 with i1 6= i) contains only one vanishing cycle

[S3
i ] 7→ pi.

I The Picard–Lefschetz formula says that for any σ ∈ H3(X),

Niσ = (σ.PD([S3
i ]))PD([S3

i ]).
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I If a period on a vanishing cycle Γ is single valued then it
admits continuous extensions to ∆h, hence is holomorphic
on ∆h. This is equivalent to that for all i = 1, . . . , k∫

Γ
Nia(r, s) = 0.

I By a holomorphic change of coordinates, and by shirking
the neighborhood if necessary, we may assume that
θj(r, s) :=

∫
Γj

Ω(r, s) = rj for 1 ≤ j ≤ µ. In particular,

Ω(r, s) ≡ a(r, s) ≡
µ

∑
j=1

Γ∗j rj (mod V⊥).
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Proposition
In such parameters Ω(r, s) takes a simple form

Ω = a0(s) +
µ

∑
j=1

Γ∗j rj + h.o.t.−
k

∑
i=1

wi log wi

2πi
PD([Si]).

Here h.o.t. denotes terms in V⊥ which are at least quadratic in
r1, · · · , rµ.

I Indeed, by embedded resolution and the nilpotent orbit
theorem we have

Ω = a0(s) +
µ

∑
j=1

Γ∗j rj + h.o.t. +
k

∑
i=1

µ

∑
j=1

log wi

2πi
NiΓ∗j rj.

Then
µ

∑
j=1

NiΓ∗j rj = −
µ

∑
j=1

aijPD([Si])rj = wiPD([Si]).
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I Since Ω(s) = a0(s) for s ∈MY,

up(r, s) =
∫

βp

Ω = up(s) + h.o.t.−
k

∑
i=1

wi log wi

2πi

∫
βp

PD([Si]).

I For 1 ≤ p ≤ µ we get

up(r, s) =
∫

βp

Ω = up(s) + h.o.t. +
k

∑
i=1

wi log wi

2πi
aip.

I Otherwise we get simply up(r, s) = up(s) + h.o.t..
I The asymptotic of the Yukawa coupling is determined:

upm = h.o.t +
k

∑
i=1

log wi + 1
2πi

aipaim,

upmn = h.o.t. +
k

∑
i=1

1
2πi

1
wi

aipaimain.
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Conclusion:

I We still don’t know how to connect two Calabi–Yau 3-folds
of different topological types through extremal transitions.

I If there is indeed an extremal transition Y↘ X, then it is
reasonable to expect that it can be decomposed/deformed
into conifold transitions up to flops.

I For a conifold transition X↗ Y, (A(X), B(X)) determines
(A(Y), B(Y)) up to knowledge of linking numbers L(C, Si).
While MY ⊂MX, A(Y) is only partially determined by
A(X) and the relation matrix B of vanishing spheres Si’s.

I (A(Y), B(Y)) determines (A(X), B(X)) up to regular terms
of the Gauss–Manin connection on MX̄. ∇GM on MY gives
the boundary Yukawa coupling, the log part is determined
by the relation matrix A of the extremal curves Ci’s.
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