Geometric Transitions and Quantum Invariance

Chin-Lung Wang
National Taiwan University
(Work in progress with H.-W. Lin and Y.-P. Lee)

July 18, 2013

Calabi-Yau manifolds

- A Calabi-Yau manifold X^{n} is a complex projective n-fold with $K_{X} \cong \mathscr{O}_{X}$ and $h^{i}\left(\mathscr{O}_{X}\right)=0$ for $1 \leq i \leq n-1$.
- Yau (1976): Ricci flat metrics on X are in one to one correspondence with (J, ω) where J is a complex structure on X and $\omega \in H^{1,1}(X)$ is a Kähler class.
- Bogomolov-Todorov-Tian (1987): The deformation theory is unobstructed, namely the Kuranishi space $\mathscr{M}_{X}=\operatorname{Def}(X)$ is smooth of dimension $h^{n-1,1}(X)=h^{1}\left(X, T_{X}\right)$.
- Namilawa (1994): BTT holds for Calabi-Yau 3-fold with at most terminal singularities.
Local analytically $(p \in X)=c D V / \mu_{r}$ with $c D V=f(x, y, z)+\operatorname{tg}(x, y, z, t)$ where f is an ADE equation.

Ried's fantesy: How to classify Calabi-Yau 3-folds?

- Finite topological type?
- Are Calabi-Yau 3-folds all "connected" through extremal transitions? Or even conifold (i.e. ODP) transitions?

where ψ is a projective crepant contraction and \mathfrak{X}_{t} is a projective smoothing of $\bar{X}=\mathfrak{X}_{0}$. (Denote $Y \searrow X, X \nearrow Y$.)
- If \bar{X} is a conifold with ODP p_{1}, \cdots, p_{k}, then Y contains k ϕ-exceptional curves $C_{i} \cong P^{1}$ with $N_{C_{i} / Y} \cong \mathscr{O}_{P^{1}}(-1)^{\oplus 2}, X$ contains k vanishing spheres $S_{i} \cong S^{3}$ with $N_{S_{i} / X} \cong T^{*} S^{3}$:

$$
\partial\left(S^{3} \times D^{3}\right)=S^{3} \times S^{2}=\partial\left(D^{4} \times S^{2}\right)
$$

- Irreducible family via non-projective Calabi-Yau's??

Main examples

Up to date, there are more than 10^{7} Calabi-Yau 3-folds found with different topological types!

- Complete intersections in toric varieties. E.g. (5) $\subset P^{4}$.
- H. Clemens 1983: Double solids. E.g. Branched double cover of P^{3} along a degree 8 surface.
- C. Schoen 1988: Fiber product of elliptic surfaces

$$
X=S_{1} \times{ }_{P^{1}} S_{2}
$$

where $r_{i}: S_{i} \rightarrow P^{1}$ is a relatively minimal elliptic surface with section and without reduced fibers.

- The singular fibers are of type $I_{n}: t=x y, I I: t=y^{2}-x^{3}$, III : $t=x\left(y^{2}-x\right), I V: t=x y(x+y)$. If A_{i} is the critical value of r_{i}, then X is singular over $A_{1} \cap A_{2}$. Any deformation of X is still of the form, hence smoothable.

Classical working problems

- E. Viehweg 1990-97: The moduli space \mathscr{M}_{h}^{c} of polarized Calabi-Yau varieties with at most canonical singularities (with a fixed Hilbert polynomial h) is quasi-projective.
- W- 1996: The Weil-Petersson metric (for Ω a section of n forms)

$$
\omega_{W P}:=-\partial \bar{\partial} \log \tilde{Q}(\Omega, \bar{\Omega})
$$

has finite distance towards the boundary point of \mathscr{M}_{h} which corresponds to CY with canonical singularities.

- W-2003: MMP \Rightarrow The converse holds for one dimensional moduli. Hence OK for Calabi-Yau 3-folds.
- T.-J. Lee, W-2013*: The WP metric completion of \mathscr{M}_{h} is precisely \mathscr{M}_{h}^{c}. (Small complex structure limits.)
- Reid: Is that possible to deform a terminal (or canonical) extremal transition $Y \searrow X$ into a conifold transition?
- R. Friedman 1986: The local contraction $(Y, C) \rightarrow(\bar{X}, p)$ can always be deformed into a ODP contraction $\left(Y^{\prime}, \amalg C_{i}\right) \rightarrow\left(\bar{X}^{\prime},\left\{p_{i}\right\}\right)$ with many ODP $p_{i}{ }^{\prime}$ s.
- Moreover, a ODP contraction $Y \rightarrow \bar{X}$ is globally smoothable if and only if there is a totally non-trivial relation $\sum a_{i}\left[C_{i}\right]=0$ with $a_{i} \neq 0$ for all i.
- Y. Namikawa 2002: If $\bar{X}=S_{1} \times{ }_{P 1} S_{2}$ has a type III $\times I I I$ singularity, then any extremal transition through \bar{X} is not deformable into conifold trasnaitions!
- S.-S. Wang 2012: OK if we allow deformations, decompositions and flops. In fact 2 steps conifold transitions are enough for C. Schoen's examples.

Quantum aspects on projective conifold transitions

- The purpose of this talk is to give some observations on the quantum A and B models under a projective conifold transition $Y \searrow X$ of Calabi-Yau 3-folds. This is based on a joint project with H.-W. Lin and Y.-P. Lee.
- A model: Gromov-Witten theory.
- B model: Kodaira-Spencer theory (or VHS in the genus zero case).
- It is clear that $A(X)<A(Y)(Y$ has extremal rays) and $B(X)>B(Y)$ (X has vanishing cycles).
- But we expect that the full "TQFT" is "invariant" regardless the choices of CY's!
- Other aspects: Candelas, Strominger, Thomas-Yau, Tseng-Yau, Rong-Zhang, Xu, Lau (and many more ...).

Global constraint on conifold trsnaition $Y \searrow X$

- The Euler numbers satisfy

$$
\chi(X)-k \chi\left(S^{3}\right)=\chi(Y)-k \chi\left(S^{2}\right)
$$

That is, $\frac{1}{2}\left(h^{3}(X)-h^{3}(Y)\right)+\left(h^{2}(Y)-h^{2}(X)\right)=k$.

- Extremal transitions preserve $h^{3,0}=h^{0}(K)$, hence

$$
\mu:=\frac{1}{2}\left(h^{3}(X)-h^{3}(Y)\right)=h^{2,1}(X)-h^{2,1}(Y)
$$

is the lose of complex moduli, and

$$
\rho:=h^{2}(Y)-h^{2}(X)=h^{1,1}(Y)-h^{1,1}(X)
$$

is the gain of Kähler moduli.

- The relation then reads as

$$
\mu+\rho=k
$$

Factorization into two semi-stable reductions

- The transition $X \nearrow Y$ can be achieved as a composition of two semi-stable degenerations: $\mathscr{X} \rightarrow \Delta$ and $\mathscr{Y} \rightarrow \Delta$.
- The first one (complex degeneration) $f: \mathscr{X} \rightarrow \Delta$ is the semi-stable reduction

for $\mathfrak{X} \rightarrow \Delta$ obtained by a degree two base change $\mathfrak{X}^{\prime} \rightarrow \Delta$ followed by the blow-up $\mathscr{X} \rightarrow \mathfrak{X}^{\prime}$ of the 4 D nodes

$$
p_{i}^{\prime} \in \mathfrak{X}^{\prime}, \quad i=1, \ldots, k .
$$

- The special fiber

$$
\mathscr{X}_{0}=X_{0} \cup \coprod_{i=0}^{k} X_{i}
$$

is a SNC divisor with

$$
\tilde{\psi}: X_{0} \cong \tilde{Y} \rightarrow \bar{X}
$$

being the blow-up at all p_{i}^{\prime} s and $X_{i}=Q_{i} \cong Q \subset P^{4}$ is a quadric threefold for $i=1, \ldots, k$.

- Let $X^{[j]}$ be the disjoint union of $j+1$ intersections from $X_{i}{ }^{\prime}$ s. Then $X^{[0]}=\tilde{Y} \coprod_{i} Q_{i}$ and $X^{[1]}=\coprod_{i} E_{i}$ where

$$
E_{i}=\tilde{Y} \cap Q_{i} \cong P^{1} \times P^{1}
$$

are the $\tilde{\psi}$ exceptional divisors.

- The second one (Kähler degeneration) $g: \mathscr{Y} \rightarrow \Delta$ is simply the deformations to the normal cone

$$
\mathscr{Y}=\mathrm{Bl}_{\amalg C_{i} \times\{0\}} Y \times \Delta \rightarrow \Delta .
$$

- The special fiber

$$
\mathscr{Y}_{0}=Y_{0} \cup \coprod_{i=1}^{k} Y_{i}
$$

with $\phi: Y_{0} \cong \tilde{Y} \rightarrow Y$ being the blow-up along the curves C_{i} 's and

$$
Y_{i}=\tilde{E}_{i} \cong \tilde{E}=P_{P^{1}}\left(\mathscr{O}(-1)^{2} \oplus \mathscr{O}\right)
$$

for $i=1, \ldots, k$.

- Non-trivial terms for $Y^{[j]}$ are $Y^{[0]}=\tilde{Y} \coprod_{i} \tilde{E}_{i}$ and $Y^{[1]}=\coprod_{i} E_{i}$ where $E_{i}=\tilde{Y} \cap \tilde{E}_{i}$ is the ∞ divisor of $\pi_{i}: \tilde{E}_{i} \rightarrow C_{i} \cong P^{1}$.

Limiting mixed Hodge theory

- Consider the period map $\phi(t, s)$ of a variation of Hodge structures $F_{t, s}^{\bullet}$ with unipotent monodromy T_{i} around D_{i} in the SNC divisor $D=\bigcup_{i=1}^{\mu} D_{i}$: Let $N_{i}=\log T_{i}, \Phi(z, s)$ its lifting with $t_{i}=e^{2 \pi i z_{i}}$, and let $\Psi(z, s):=e^{-z N} \Phi(z, s)$ where $z N=\sum_{j=1}^{\mu} z_{j} N_{j}$. Then Ψ descends to $\psi:(t, s) \in \Delta^{*} \rightarrow D:$

$$
\mathbb{H}^{\mu} \times \Delta^{h-\mu} \xrightarrow{\downarrow} \stackrel{\Phi}{\Delta^{*}}:=\left(\Delta^{\times}\right)^{\mu} \times \Delta^{h-\mu} \xrightarrow{\phi} D /\left\langle T_{1}, \cdots, T_{\mu}\right\rangle
$$

- W. Schmid's nilpotent orbit theorem 1971:
$\phi(t, s)=e^{z N} \psi(t, s)$ where ψ is holomorphic over Δ^{h}. $\psi(0, s)=F_{\infty}^{\bullet}(s)$ is called the limiting Hodge filtration. The nilpotent orbit $e^{z N} \psi(0, s)$ approximates ϕ "nicely".
- Let $\mathbf{a}(t, s)$ be a section of $\psi(t, s)^{n}$.

$$
\mathbf{a}(t, s)=a_{0}(s)+\sum_{j=1}^{\mu} a_{1, j}(s) t_{j}+\cdots
$$

with $a_{0}(s) \in F_{\infty}^{n}(s)$. Then $z N=\sum\left(\log t_{j}\right) N_{j} / 2 \pi i$,

$$
\Omega(t, s)=e^{z N} \mathbf{a}(t, s)=e^{z N} a_{0}(s)+e^{z N} \sum a_{1, j}(s) t_{j}+\cdots
$$

- In the case of conifold degenerations of Calabi-Yau 3-folds, $N_{j} a_{0}(s)=0$ for all j and $N_{i} N_{j}=0$ for any i, j. This follows from the one parameter case since $N=\sum n_{j} N_{j}$ along the curve $u \mapsto\left(u^{n_{1}}, \cdots, u^{n_{\mu}}, s\right)$ for any fixed s.
- We first consider the one parameter case hence

$$
\Omega(t)=a_{0}+\frac{t \log t}{2 \pi i} N a_{1}+\cdots
$$

F_{∞}^{\bullet} and W_{N} defines a MHS. We will see that $N^{2}=0$ soon.

- Now we compare the MHS on $H\left(\mathscr{X}_{0}\right)$, computed from $E_{1}^{p, q}\left(\mathscr{X}_{0}\right)=H^{q}\left(X^{[p]}\right)$ with Čech $\delta: H^{q}\left(X^{[p]}\right) \rightarrow H^{q}\left(X^{[p+1]}\right)$, and the limiting MHS on $H(X)$ (also $H\left(\mathscr{Y}_{0}\right)$ and $H(Y)$):
- The Clemens-Schmid exact sequences for MHS's are

$$
\begin{aligned}
0 & \rightarrow H^{3}\left(\mathscr{X}_{0}\right) \rightarrow H^{3}(X) \xrightarrow{N} H^{3}(X) \rightarrow H_{3}\left(\mathscr{X}_{0}\right) \rightarrow 0 \\
0 \rightarrow H^{0}(X) \rightarrow H_{6}\left(\mathscr{X}_{0}\right) & \rightarrow H^{2}\left(\mathscr{X}_{0}\right) \rightarrow H^{2}(X) \xrightarrow{N} 0, \\
0 & \rightarrow H^{3}\left(\mathscr{Y}_{0}\right) \rightarrow H^{3}(Y) \xrightarrow{N} 0, \\
0 \rightarrow H^{0}(Y) \rightarrow H_{6}\left(\mathscr{Y}_{0}\right) & \rightarrow H^{2}\left(\mathscr{Y}_{0}\right) \rightarrow H^{2}(Y) \xrightarrow{N} 0,
\end{aligned}
$$

where N is trivial for $\mathscr{Y} \rightarrow \Delta$.

- Since $H^{2}\left(\mathscr{X}_{0}\right)$ is of weight $2, N$ on $H^{2}(X)$ is also trivial and the Hodge structure does not degenerate at all.
- Let $K=\operatorname{ker}\left(N: H^{3}(X) \rightarrow H^{3}(X)\right) \cong H^{3}\left(\mathscr{X}_{0}\right)$. Then

$$
K \cong H^{3}(Y) \oplus \operatorname{coker}(\delta)
$$

- From the the limiting Hodge diamond,

we conclude that $G_{3}^{W} H^{3}(X) \cong H^{3}(Y)$ and

$$
\mu=h_{\infty}^{2,2} H^{3}=h_{\infty}^{1,1} H^{3}=\operatorname{dim} \operatorname{coker}(\delta) .
$$

- Lemma. $V^{*} \cong H_{\infty}^{2,2} H^{3}$ and $V \cong H_{\infty}^{1,1} H^{3}$.
- Proof: For any 3-fold isolated singularities,

$$
0 \rightarrow V \rightarrow H_{3}(X) \rightarrow H_{3}(\bar{X}) \rightarrow 0
$$

is exact. Dually $0 \rightarrow H^{3}(\bar{X}) \rightarrow H^{3}(X) \rightarrow V^{*} \rightarrow 0$.

- The invariant cycle theorem (c.f. BBD) implies that $H^{3}(\bar{X}) \cong \operatorname{ker} N=K \cong H^{3}\left(\mathscr{X}_{0}\right)$. Hence

$$
V^{*} \cong H_{\infty}^{2,2} H^{3}=F_{\infty}^{2} G_{4}^{W} H^{3}(X)
$$

The non-degeneracy of $Q(N \alpha, \beta)$ on $G_{4}^{W} H^{3}(X)$ implies that

$$
H_{\infty}^{1,1} H^{3}=N H_{\infty}^{2,2} H^{3} \cong\left(H_{\infty}^{2,2} H^{3}\right)^{*} \cong V^{* *} \cong V .
$$

- Theorem (Basic exact sequence)

The group of vanishing S^{2} cycles on Y and the group of vanishing S^{3} cycles on X are linked by the weight 2 exact sequence

$$
0 \rightarrow H^{2}(Y) / H^{2}(X) \xrightarrow{B} \bigoplus_{i=1}^{k} H^{2}\left(E_{i}\right) / H^{2}\left(Q_{i}\right) \xrightarrow{A^{t}} K / H^{3}(Y) \cong V \rightarrow 0 .
$$

Here $A \in M_{k \times \mu}(\mathbb{Z})$ is the relation matrix for C_{i} 's and $B \in M_{k \times \rho}(\mathbb{Z})$ is the relation matrix for S_{i} 's. In particular

$$
B=\operatorname{ker} A^{t} \quad \text { and } \quad A=\operatorname{ker} B^{t} .
$$

- Remark: This sequence in fact splits: $0 \rightarrow \mathbb{Z}^{\rho} \rightarrow \mathbb{Z}^{k} \rightarrow \mathbb{Z}^{\mu} \rightarrow 0$. We eventually want to have a \mathscr{D} module version (non-split) of this.

A key construction

- Consider the topological construction: For any non-trivial relation $\sum_{i=1}^{k} a_{i}\left[C_{i}\right]=0$, there is a 3-chain W in Y with

$$
\partial W=\sum_{i=1}^{k} a_{i} C_{i}
$$

- Under $\psi: Y \rightarrow \bar{X}, C_{i}$ collapses to the node p_{i} hence $\bar{W}:=\psi_{*} W \in H_{3}(\bar{X}, \mathbb{Z})$.
- As in Lemma, \bar{W} deformes (lifts) to $\gamma \in H_{3}(X, \mathbb{Z})$ in nearby fibers. Using the intersection pairing, we get

$$
P D(\gamma) \in H^{3}(X, \mathbb{Z})
$$

Restricting to the vanishing cycle space $V, P D(\gamma) \in V^{*}$.

- In the proof we establish the correspondence for each column vector $A_{j}=\left(a_{1 j}, \cdots, a_{k j}\right)^{t}$ with the element $P D\left(\gamma_{j}\right) \in V^{*}, 1 \leq j \leq \mu$, characterized by

$$
a_{i j}=\left(\gamma_{j} . S_{i}\right)
$$

- Dually, we denote by $T_{1}, \cdots, T_{\rho} \in H^{2}(Y) /$ tor those divisors which form an integral basis of the lattice in $H^{2}(Y)$ dual (othogonal) to $H_{2}(X) \subset H_{2}(Y)$. In particular they form an integral bases of $H^{2}(Y) / H^{2}(X)$.
- Notice that we may choose $T_{l}{ }^{\prime} \mathrm{s}, l=1, \ldots, \rho$, such that T_{l} corresponds to the l-th column vector of the matrix B via

$$
b_{i l}=\left(C_{i} \cdot T_{l}\right)
$$

The implication $(A(X), B(X)) \Rightarrow(A(Y), B(Y))$

Gromov-Witten and Dubrovin connections

Using the degeneration formula, we may relate the GW theory on X with that on Y by way of \tilde{Y}.

- For $\beta \in N E(X) \backslash\{0\}$ and $\vec{a} \in H_{\text {inv }}(X)^{\oplus n}$,

$$
\langle\vec{a}\rangle_{g, n, \beta}^{X}=\sum_{\psi_{*}(\gamma)=\beta}\langle j(\vec{a})\rangle_{g, n, \gamma}^{\gamma}
$$

where $j: H_{\text {inv }}(X) \rightarrow H(Y)$ is defined by $j(a)=\phi_{*}\left(a_{0}\right)$ with $\left(a_{i}\right)_{i=0}^{k} \in H\left(\tilde{Y} \amalg Q_{i}\right)$ being the admissible lifting of a with $a_{i}=0$ for all $i \neq 0$. The sum is indeed finite!

- For 3-fold conifold transitions and for even dimensional classes it was first derived by Li-Ruan using symplectic glueing formula and later reinterpreted by Liu-Yau using Jun Li's algebraic degeneration formula.
- Let $s=\sum_{\epsilon} s^{\epsilon} \bar{T}_{\epsilon} \in H^{2}(X)$ where \bar{T}_{ϵ} 's is a basis of $H^{2}(X)$. The pre-potential function is given by

$$
F_{0}^{X}(s)=\sum_{n=0}^{\infty} \sum_{\beta \in N E(X)}\left\langle s^{n}\right\rangle_{0, n, \beta} \frac{q^{\beta}}{n!}=\frac{s^{3}}{3!}+\sum_{\beta \neq 0} n_{\beta}^{X} q^{\beta} e^{(\beta . s)}
$$

where $n_{\beta}^{X}=\langle \rangle_{0,0, \beta}^{X}$, with formal variables $q^{\beta \prime}$ s.

- It is a function in the Kähler moduli via $q^{\beta}=\exp 2 \pi i(\beta . \omega)$, $\omega=B+i H$ in the complexified Kähler cone $\mathcal{K}_{\mathrm{C}}^{X}$ of X.
- Strictly speaking we need to consider $s \in H^{e v}(X)$. This will only change the topological part $s^{3} / 3$! with

$$
s=s^{0} \bar{T}_{0}+\sum_{\epsilon} s^{\epsilon} \bar{T}_{\epsilon}+\sum_{\zeta} s_{\zeta} \bar{T}^{\zeta}+s_{0} \bar{T}^{0}
$$

Notice: We use Greek indices for variables from $H(X)$.

- Similarly we have $F_{0}^{\Upsilon}(t)$ on $H^{2}(Y) \times \mathcal{K}_{\mathrm{C}}^{\Upsilon}$. Here

$$
t=s+u
$$

with respect to $H^{2}(Y)=j H^{2}(X) \oplus \bigoplus_{l=1}^{\rho} \mathbb{Z} T_{l}$ and write

$$
u=\sum_{l=1}^{\rho} u^{l} T_{l} .
$$

- For $C \cong P^{1}$ with twisted bundle $N=\mathscr{O}_{P^{1}}(-1)^{\oplus 2}$,

$$
E_{0}^{C}(t)=\sum_{d \in \mathbb{N}} n_{d}^{N} q^{d[C]} e^{d(C . t)}=\sum_{d \in \mathbb{N}} \frac{1}{d^{3}} q^{d[C]} e^{d(C . t)}
$$

- We also consider the total (global) extremal function

$$
E_{0}^{\Upsilon}(t):=\frac{t^{3}}{3!}+\sum_{i=1}^{k} E_{0}^{C_{i}}(t)
$$

where $E_{0}^{C_{i}}(t)$ depends only on u.

- Hence a splitting of variables

$$
F_{0}^{Y}(s+u)=F_{0}^{X}(s)+E_{0}^{Y}(u)+\frac{1}{3!}\left((s+u)^{3}-s^{3}-u^{3}\right) .
$$

The structural coefficients for $Q H^{e v}(Y)$ are $C_{P Q R}=\partial_{P Q R}^{3} F_{0}^{Y}$.

- The part $F_{0}^{X}(s)$ simply comes from $Q H^{e v}(X)$.
- For the part $E_{0}^{Y}(u)$,

$$
\begin{aligned}
C_{l m n} & =\left(T_{l} \cdot T_{m} \cdot T_{n}\right)+\sum_{i=1}^{k} \sum_{d \in \mathbb{N}}\left(C_{i} \cdot T_{l}\right)\left(C_{i} \cdot T_{m}\right)\left(C_{i} \cdot T_{n}\right) q^{d\left[C_{i}\right]} e^{d\left(C_{i} \cdot u\right)} \\
& =\left(T_{l} \cdot T_{m} \cdot T_{n}\right)+\sum_{i=1}^{k} b_{i l} b_{i m} b_{i n} \mathbf{f}\left(q^{\left[C_{i}\right]} \exp \sum_{p=1}^{\rho} b_{i p} u^{p}\right) .
\end{aligned}
$$

- Here

$$
\mathbf{f}(q)=\sum_{d \in \mathbb{N}} q^{d}=\frac{q}{1-q}=-1+\frac{-1}{q-1} .
$$

- The degeneration loci $E=\bigcup_{i=1}^{k} E_{i}$ of the GW theory consists of the k hyperplanes defined by

$$
E_{i}:=\left\{u \mid w_{i}:=\sum_{p=1}^{\rho} b_{i p} u^{p}=0\right\} .
$$

Whenever $\rho>1, E$ is not a normal crossing divisor.

- The Dubrovin connection on $\mathrm{TH}^{e v}(Y)$

$$
\nabla^{z}=d-\frac{1}{z} \sum_{P} d t^{P} \otimes T_{P} *
$$

"restricts" to the Dubrovin connection on $\mathrm{TH}^{e v}(X)$.

- For the other part with basis T_{l} 's and T^{l} s, we have

$$
\begin{aligned}
& z \nabla_{\partial_{l}}^{z} T^{m}=-\delta_{l m} T^{0} \\
& z \nabla_{\partial_{l}}^{z} T_{m}=-\sum_{n=1}^{\rho} C_{l m n}(u) T^{n}-\sum_{\epsilon} C_{l m \epsilon} \bar{T}^{\epsilon}, \\
& z \nabla_{\partial_{\epsilon}}^{z} T_{m}=-\sum_{n=1}^{\rho} C_{\epsilon m n} T^{n} .
\end{aligned}
$$

- E.g. the nilpotent monodromy $N^{(i)}$ along E_{i} is given by

$$
N_{m n}^{(i)}=\frac{2 \pi i}{z} b_{i m} b_{i n} .
$$

- Unfortunately, for $\beta \neq 0$, in the finite sum

$$
\langle-\rangle_{\beta}^{X}=\sum_{d_{i}}\langle-\rangle_{j(\beta)+\sum_{i=1}^{k} d_{i}\left[C_{i}\right]}^{Y}
$$

we still need to extract the individual term to determine $Q H(Y)$ completely.

- WDVV equations can help to determine the off diagonal constants $C_{\epsilon m n}$'s, but give no further constraints.
- Indeed, the term with $\gamma=j(\beta)+\sum_{i=1}^{k} d_{i}\left[C_{i}\right]$ corresponds to those $C \subset X,[C]=\beta$, and the linking number $L\left(C, S_{i}\right)$ of C with S_{i} is d_{i} for $i=1, \ldots, k$.

The implication $(A(Y), B(Y)) \Rightarrow(A(X), B(X))$

Periods and Gauss-Manin connections

- Recall $\nabla^{G M}$ on $\mathscr{H}^{k}=R^{k} f_{*} \mathrm{C} \otimes \mathscr{O}_{S} \rightarrow S$ for a smooth family $f: \mathscr{X} \rightarrow S$ is a flat connection with flat sections $R^{k} f_{*} \mathbb{C}$.
- Let $\delta_{i} \in H_{k}(X, \mathbb{Z}) /$ tor be a homology basis for a fixed refernce fiber $X=\mathscr{X}_{s_{0}}$, with dual basis $\delta_{i}^{*} \in H^{k}(X, \mathbb{Z})$. Then δ_{i}^{*} can be extended to be (multi-valued) flat sections in $R^{k} f_{*} \mathbb{Z}$. For $\eta \in \Gamma\left(S, \mathscr{H}^{k}\right)$, we may write

$$
\eta=\sum_{i} \delta_{i}^{*} \int_{\delta_{i}} \eta
$$

with coefficients being the "multi-valued" period integrals.

- Let $\left(s_{j}\right)$ be a local coordinates system in S. Then

$$
\nabla_{\partial / \partial s_{j}}^{G M} \eta=\sum_{i} \delta_{i}^{*} \int_{\delta_{i}} \frac{\partial}{\partial s_{j}} \eta
$$

- When $f: \mathscr{X} \rightarrow S$ contains singular fibers, $\nabla^{G M}$ admits a logarithmic extension to the boundary.
- We need to investigate the local complex moduli space of X towards the conifold degeneration boundary D :

- By the BBT unobstructedness theorem, periods of vanishing cycles give rise to a natural coordinates system of the deformations of X in the transversal directions towards $D \ni[\bar{X}]$ with the same singularity type.
- The "invariant periods" then lift to the small resolution Y to give rise to the periods on Y.
- Let $A=\left(a_{i j}\right) \in M_{k \times \mu}(\mathbb{Z})$ be the relation matrix for C_{i} 's. Recall the basis $\left\{P D\left(\gamma_{j}\right)\right\}_{j=1}^{\mu}$ of vanishing cocycles V^{*} :

$$
P D\left(\gamma_{j}\right)\left(\left[S_{i}\right]\right) \equiv\left(\gamma_{j} . S_{i}\right):=a_{i j}, \quad 1 \leq j \leq \mu
$$

We may choose $\gamma_{j} \in H_{3}(X)$ so that $\gamma_{j} \in H_{3}(Y)^{\perp}$.

- Vanishing cycles: Let $\Gamma_{j} \in V$ be the dual basis, $\left(\Gamma_{j} \cdot \gamma_{l}\right)=\delta_{j l}$.
- We may construct a symplectic basis of $H_{3}(X, \mathbb{Z})$:

$$
\alpha_{0}, \alpha_{1}, \cdots, \alpha_{h}, \beta_{0}, \beta_{1}, \cdots, \beta_{h}, \quad\left(\alpha_{j} \cdot \beta_{k}\right)=\delta_{j k}
$$

where $h=h^{2,1}(X)$, with $\alpha_{j}=\Gamma_{j}$ for $1 \leq j \leq \mu$.

- Then any $\eta \in H^{3}(X, \mathbb{C}) \cong \mathbb{C}^{2(h+1)}$ is identified with

$$
\eta=\sum_{i=0}^{h} \alpha_{i}^{*} \int_{\alpha_{i}} \eta+\beta_{i}^{*} \int_{\beta_{i}} \eta
$$

- The symplectic basis property implies that

$$
\alpha_{i}^{*}(\Gamma)=\left(\Gamma \cdot \beta_{i}\right) \quad \beta_{i}^{*}(\Gamma)=-\left(\Gamma \cdot \alpha_{i}\right)=\left(\alpha_{i} \cdot \Gamma\right) .
$$

- This leads to the important observation that we may modify γ_{j} by vanishing cycles to get

$$
\gamma_{j}=\beta_{j} .
$$

So, $\left(\gamma_{j} \cdot \gamma_{l}\right)=0$ for $1 \leq j, l \leq \mu$ and $\left(\alpha_{j}^{*} \cdot S_{i}\right)=\left(S_{i} \cdot \beta_{j}\right)=-a_{i j}$.

- Bryant-Griffiths: $w_{i}=\int_{\alpha_{i}} \Omega$ form the coordinates of the image of the period map in $P\left(H^{3}\right) \cong P^{2 h-1}$ as a Legendre submanifold of the holomorphic contact structure.
- By the flatness of $\nabla^{G M}$, there is a holomorphic pre-potential function $u\left(w_{0}, \cdots, w_{h}\right)$ such that

$$
u_{i}=\frac{\partial u}{\partial w_{i}}=\int_{\beta_{i}} \Omega
$$

and hence

$$
\Omega=\sum_{i=0}^{h} w_{i} \alpha_{i}^{*}+u_{i} \beta_{i}^{*}
$$

- In particular,

$$
\partial_{i} \Omega=\alpha_{i}^{*}+\sum_{j=1}^{h} u_{i j} \beta_{j}^{*}, \quad \partial_{i j}^{2} \Omega=\sum_{k=1}^{h} u_{i j k} \beta_{k}^{*} .
$$

- By the Griffiths transversality, $\partial_{i} \Omega \in F^{2}, \partial_{i j} \Omega \in F^{1}$, and all are orthogonal to F^{3}. Hence we have the cubic form

$$
u_{i j k}=\left(\partial_{k} \Omega \cdot \partial_{i j}^{2} \Omega\right)=\partial_{k}\left(\Omega \cdot \partial_{i j}^{2} \Omega\right)-\left(\Omega \cdot \partial_{i j k}^{3} \Omega\right)=-\left(\Omega \cdot \partial_{i j k}^{3} \Omega\right)
$$

This is known as the Yukawa coupling.

- We will write down the extension of the Yukawa coupling across the degenerate loci $D \subset \mathscr{M}_{\overline{\mathrm{X}}}$.
- Recall Friedman's result on partial smoothing of ODP's in the following form: Let $A=\left[A^{1}, \cdots, A^{\mu}\right]$ be the relation matrix. For any $r \in \mathbb{C}^{\mu}$, the relation vector

$$
A_{r}:=\sum_{j=1}^{\mu} r_{j} A^{j}
$$

gives rise to a (germ of) partial smoothing of those ODP's $p_{i} \in \bar{X}$ with $A_{r, i} \neq 0$.

- Thus for $1 \leq i \leq k$, the linear equation

$$
w_{i}:=\pi_{i}\left(A_{r}\right)=r_{1} a_{i 1}+\cdots+r_{\mu} a_{i \mu}=0
$$

defines a codimension one hyperplane $D^{i} \subset \mathbb{C}^{\mu}$.

- $D=\bigcup_{i=1}^{k} D^{i} \subset \mathbb{C}^{\mu}$ is NOT a SNC.
- Now the small resolution $\psi: Y \rightarrow \bar{X}$ leads to an embedding $\mathscr{M}_{Y} \subset \mathscr{M}_{\bar{X}}$ of co-dimension μ. As germs of analytic spaces we thus have

$$
\mathscr{M}_{\bar{X}} \cong \Delta^{\mu} \times \mathscr{M}_{Y} \ni(r, s)
$$

- Along each hyperplane D^{i} there is a monodromy operator T_{i} with associated nilpotent monodromy $N_{i}=\log T_{i}$.
- A degeneration from X to X_{i} with $\left[X_{i}\right] \in D^{i}$ a general point ($\notin D^{i_{1}}$ with $i_{1} \neq i$) contains only one vanishing cycle

$$
\left[S_{i}^{3}\right] \mapsto p_{i}
$$

- The Picard-Lefschetz formula says that for any $\sigma \in H^{3}(X)$,

$$
N_{i} \sigma=\left(\sigma \cdot P D\left(\left[S_{i}^{3}\right]\right)\right) P D\left(\left[S_{i}^{3}\right]\right)
$$

- If a period on a vanishing cycle Γ is single valued then it admits continuous extensions to Δ^{h}, hence is holomorphic on Δ^{h}. This is equivalent to that for all $i=1, \ldots, k$

$$
\int_{\Gamma} N_{i} \mathbf{a}(r, s)=0
$$

- By a holomorphic change of coordinates, and by shirking the neighborhood if necessary, we may assume that $\theta_{j}(r, s):=\int_{\Gamma_{j}} \Omega(r, s)=r_{j}$ for $1 \leq j \leq \mu$. In particular,

$$
\Omega(r, s) \equiv \mathbf{a}(r, s) \equiv \sum_{j=1}^{\mu} \Gamma_{j}^{*} r_{j} \quad\left(\bmod V^{\perp}\right)
$$

Proposition

In such parameters $\Omega(r, s)$ takes a simple form

$$
\Omega=a_{0}(s)+\sum_{j=1}^{\mu} \Gamma_{j}^{*} r_{j}+\text { h.o.t. }-\sum_{i=1}^{k} \frac{w_{i} \log w_{i}}{2 \pi i} P D\left(\left[S_{i}\right]\right)
$$

Here h.o.t. denotes terms in V^{\perp} which are at least quadratic in r_{1}, \cdots, r_{μ}.

- Indeed, by embedded resolution and the nilpotent orbit theorem we have

$$
\Omega=a_{0}(s)+\sum_{j=1}^{\mu} \Gamma_{j}^{*} r_{j}+\text { h.o.t. }+\sum_{i=1}^{k} \sum_{j=1}^{\mu} \frac{\log w_{i}}{2 \pi i} N_{i} \Gamma_{j}^{*} r_{j} .
$$

Then

$$
\sum_{j=1}^{\mu} N_{i} \Gamma_{j}^{*} r_{j}=-\sum_{j=1}^{\mu} a_{i j} P D\left(\left[S_{i}\right]\right) r_{j}=w_{i} P D\left(\left[S_{i}\right]\right)
$$

- Since $\Omega(s)=a_{0}(s)$ for $s \in \mathscr{M}_{Y}$,

$$
u_{p}(r, s)=\int_{\beta_{p}} \Omega=u_{p}(s)+\text { h.o.t. }-\sum_{i=1}^{k} \frac{w_{i} \log w_{i}}{2 \pi i} \int_{\beta_{p}} P D\left(\left[S_{i}\right]\right) .
$$

- For $1 \leq p \leq \mu$ we get

$$
u_{p}(r, s)=\int_{\beta_{p}} \Omega=u_{p}(s)+\text { h.o.t. }+\sum_{i=1}^{k} \frac{w_{i} \log w_{i}}{2 \pi i} a_{i p}
$$

- Otherwise we get simply $u_{p}(r, s)=u_{p}(s)+$ h.o.t..
- The asymptotic of the Yukawa coupling is determined:

$$
\begin{gathered}
u_{p m}=\text { h.o.t }+\sum_{i=1}^{k} \frac{\log w_{i}+1}{2 \pi i} a_{i p} a_{i m} \\
u_{p m n}=\text { h.o.t. }+\sum_{i=1}^{k} \frac{1}{2 \pi i} \frac{1}{w_{i}} a_{i p} a_{i m} a_{i n} .
\end{gathered}
$$

Conclusion:

- We still don't know how to connect two Calabi-Yau 3-folds of different topological types through extremal transitions.
- If there is indeed an extremal transition $Y \searrow X$, then it is reasonable to expect that it can be decomposed/deformed into conifold transitions up to flops.
- For a conifold transition $X \nearrow Y,(A(X), B(X))$ determines $(A(Y), B(Y))$ up to knowledge of linking numbers $L\left(C, S_{i}\right)$. While $\mathscr{M}_{Y} \subset \mathscr{M}_{X}, A(Y)$ is only partially determined by $A(X)$ and the relation matrix B of vanishing spheres S_{i} 's.
- $(A(Y), B(Y))$ determines $(A(X), B(X))$ up to regular terms of the Gauss-Manin connection on $\mathscr{M}_{\bar{X}} \cdot \nabla^{G M}$ on \mathscr{M}_{Y} gives the boundary Yukawa coupling, the log part is determined by the relation matrix A of the extremal curves C_{i} 's.

