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1. First Chern Class and the Minimal Model Theory

1.1 Chern Classes

Axioms:

1. For E → X a complex vector bundle of rank r ,
c(E ) = 1 + c1(E ) + c2(E ) + · · ·+ cr (E ), ci (E ) ∈ H2i (X ,Z)

2. Naturality. For f : Y → X , c(f ∗E ) = f ∗c(E ).

3. Whitney Sum. For 0 → E → F → G → 0, c(F ) = c(E ).c(G ).

4. Normalization. c(OCP1(−1)) = 1− h.

The top Chern class cr (E ) is called the Euler class e(E ). Its
Poincaré dual is the zero locus (σ) for a generic section σ : X → E .
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Chern-Weil Theory.

Given a connection 5 : A0(E ) → A1(E ) with curvature
R = 52 : A0(E ) → A2(E ), it is known that R ∈ A2(EndE ).

c(E ,5) := det

(
1 +

√
−1

2π
R

)
= 1+c1(E ,5)+c2(E ,5)+· · ·+cr (E ,5).

[ci (E ,5)] = ci (E ) via de Rham isomorphism.

When X is complex and (E , h) is holomorphic/hermitian, there is a
unique hermitian connection 5. Write h = (h(σi , σj))

r
i ,j=1, then

R = ∂̄(h−1∂h) ∈ A1,1(EndE ); TrR = ∂̄∂ log det h.

In particular, for E = TX , the Ricci form Ric = −∂∂̄ log det g .

Also [
√
−1
2π Ric] = c1(X ) = −c1(KX ). Where KX = ΛdimXT ∗X .
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Chern Classes in Algebraic Geometry

For E → X algebraic, say X is smooth, we have ci (E ) ∈ Ai (X ).
Example 1. Intersection product (Fulton):

f −1(X ) = W
� � j //

g

��

V

f

��
X

� � i // Y

where i is a regular imbedding of codimension d with normal
bundle NX/Y . V a k dimensional scheme, N := g∗NX/Y → W ,

X .V := {c(N) ∩ s(W ,V )}k−d ∈ Ak−d(W ).
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Example 2. c1 ≡ −K and birational geometry.

Two smooth projective varieties X and X ′ are birational if they
have a common Zariski open set f : U

∼→U ′. I.e. They are two
different compatifications. The exceptional loci of X and X ′ can
be compared using c1(X ) and c1(X

′)!

Ordinary (r , r ′)-flips.
F → S , F ′ → S : two vector bundles of rank r + 1, r ′ + 1.
ψ̄ : Z := PS(F ) → S , ψ̄′ : Z ′ := PS(F ′) → S .
E := PS(F )×S PS(F ′) with φ̄ : E → Z and φ̄′ : E → Z ′.
Let Y be the total space of N := φ̄∗OZ (−1)⊗ φ̄′∗OZ ′(−1)
E = zero section, NE/Y = N.
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X = the total space of OPS (F )(−1)⊗ ψ̄∗F ′ = NZ/X ,

X ′ = the total space of OPS (F ′)(−1)⊗ ψ̄′∗F = NZ ′/X ′ .

E

π1=φ̄

~~||
||

||
|| CC

C

φ̄′=π2

!!C
CC

� � j // Y

φ

}}{{
{{

{{
{{

φ′

!!C
CC

CC
CC

C

Z

ψ̄   A
AA

AA
AA

A
� � i // X

ψ

  B
BB

BB
BB

B Z ′

||
|
ψ̄′

~~||
|

� � i ′ // X ′

ψ′
}}{{

{{
{{

{{

S
� � j′ // X

(F ,F ′) ∼ (F1,F
′
1) ⇔ (F1,F

′
1) = (F ⊗ L,F ′ ⊗ L∗) for L ∈ Pic S .

KY = φ∗KX + r ′E = φ′∗K ′
X + rE . So X ≥K X ′ ⇔ r ≥ r ′.

An (r , r) flip is called an (ordinary) Pr flop.
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1.2 K -Partial Order and Minimal Model Theory

Minimal Model Program: A normal variety X is terminal if KX

is Q-Cartier and for some resolution φ : Y → X , one has
KY = φ∗KX +

∑
aiEi with ai > 0.

Theorem (Mori, Kawamata, Shokurov)

Let X be terminal. If KX is not nef, then each extremal ray
R ∈ NEK<0 is spanned by a rational curve. There exists
contraction ψR : X → X̄ such that ψR(C ′) = pt ⇔ [C ′] ∈ R.

One ends up with 3 possibilities on X̄ :

1. dim X̄ < dim X , so X → X̄ is a fiber space, OK.

2. ψR is divisorial, i.e. dim Exc(φR) = n − 1, OK.

3. ψR is small, i.e. dim Exc(φR) < n − 1. X̄ is not Q-Gorenstein!

X is a minimal model if it is terminal and KX is nef.
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Three Dimensional Flips/Flops

A (KX + D) log-flip of a log-extremal contraction ψ is a diagram

X

ψ ��?
??

??
??

f // X ′

ψ′
��~~

~~
~~

~~

X̄

st. f is isomorphic in codimension one and KX ′ + D ′ is ψ′-ample.

D = 0 is called a flip. KX is ψ-trivial is called a D-flop.

Theorem (Mori 1988, Kollár-Mori 1992, Shokurov 2002)

3D log-flips exist in families. Also 3D birational Q-factorial
minimal models are related by a sequence of flops.
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Summary of 3D Mori Theory

∞. The MMP ends up with a Q-factorial minimal model.

3. The minimal models are not unique, but any two are related
by a sequence of flops. Moreover, flops are classified.

2. Def (X ) ∼= Def (X ′) canonically.

1. H∗(X ) ∼= H∗(X ′), IH∗(X ) ∼= IH∗(X ′) which are compatible
with the mix (pure) Hodge structures.

0. X ′ has the same singularity type as X .

What should one expect in HD?

∞ is infinitely hard. But 1, 2 and 3 do not depend on it. Even in
3D, the ring structures in 1 is usually different. 0 is wrong.
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K -Partial Order and K -Equivalence

Two Q-Gorenstein varieties X and X ′ has X ≥K X ′ if

Y
φ

��~~
~~

~~
~

φ′

  A
AA

AA
AA

A

X
f // X ′

such that φ∗KX ≥ φ′∗KX ′ . Examples are divisorial contradictions
and flips. Flops satisfy X =K X ′.

Theorem

1. If X and X ′ are birational terminal varieties such that KX ′ is
nef along the exceptional loci then X ≥K X ′.

2. If X =K X ′ and dim X = 3, then f : X 99K X ′ can be
decomposed into a sequence of flops.
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Application to the filling in problem. Let X → ∆ be a
projective smoothing of a singular minimal Gorenstein 3-fold X0.
Then X → ∆ is not birational to a projective smooth family
X′ → ∆ up to any base change.

Sketch. Inversion of adjunction ⇒ X is terminal Gorenstein.
So X =K X′ and X0 is birational to X′0.
X0 is not Q-factorial since it is singular.
Consider the Q-factorialization X → X0. Then X ∼ X0 ∼ X′0,
hence X is smooth and H∗(X ) ∼= H∗(X′0)

∼= H∗(X′t)
∼= H∗(Xt).

If X0 has only ODP, we get a contradiction by formula for bi .
For general cDV, we use symplectic deformations to reduce it to
the ODP case.

X

φ

��
X0

� � // X oo ? _ Xt .
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Main Conjectures (on c1-equivalent manifolds)

Let X =K X ′ via f : X 99K X ′.

I. There exists a canonical correspondence
F = Γ̄f +

∑
i Fi ⊂ An(X × X ′), with Fi being degenerate

correspondences, which defines an isomorphism on Chow
motives. E.g. Q-Hodge structures.

II. Def(X ) ∼= Def(X ′) under F canonically.

III. X and X ′ have canonically isomorphic quantum cohomology
rings under F.

IV. Deformation/Decomposition: under generic symplectic
perturbations, the deformed f can be decomposed into
composite of ordinary Pr -flops for various r ’s.

CHIN-LUNG WANG National Central University TAIWAN The Role of Chern Classes in Birational Geometry



1. First Chern Class and the Minimal Model Theory
2. c1-Equivalence, Volume Equivalence and Motivic Theory
3. Chern Numbers, Complex Cobordism and Decomposition
4. Invariance of Quantum Ring under Simple Ordinary Flops

2.1 A Kähler Heuristic
2.2 A Motivic Approach

2.1 A Kähler Heuristic

For c1-equivalent manifolds, we may select arbitrary Kähler metrics
ω and ω′ with volume 1 on X and X ′ respectively. Then

−∂∂̄ log(φ∗ω)n = −∂∂̄ log(φ′∗ω′)n + ∂∂̄f ,

which simplifies to (φ′∗ω′)n = ef (φ∗ω)n. I.e. the two degenerate
metrics φ∗ω and φ′∗ω′ have quasi-equivalent volume forms (same
rate of degeneracy along the degenerate loci E ⊂ Y ).

Question: Can one rotate φ∗ω to φ′∗ω′ through (not-necessarily
Kähler) degenerate metrics gt while keeping the rate of volume
degeneracy stable? Notice that

Hk(X ) ∼= Lk
2(X , ω) = Lk

2(Y , φ∗ω).
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A Kähler Candidate for this rotation:

Solve a family of complex Monge-Amperè equations via Yau’s
solution to the Calabi conjecture:

(ω̃ + ∂∂̄ϕt)
n = et(f +c(t))(φ∗ω)n,

where ω̃ is an arbitrary Kähler metric with volume 1 on Y and c(t)
is a normalizing constant at time t to make the right hand side has
total integral 1 over Y . Let ω̃t = ω̃ + ∂∂̄ϕt .

Problem: Does Lk
2(Y , ω̃0) = Lk

2(Y , φ∗ω)?

Observation: c1-equivalent implies “volume” equivalent.
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2.2 A Motivic Approach

Let φ : Y = BlZX → X with Z ⊂ X smooth of codimension d ,
with exceptional divisor E = PZ (NZ/X ) → Z , then

[E ] = [Z ](1 + L + · · ·Ld−1) = [Z ][Pd−1].

Localizing at [Pd−1], we get on the Grothendieck group K0(VarC),

[X ] = [Y ]− [E ] + [Z ] = ([Y ]− [E ]) + [E ][Pd−1]−1.

For φ : Y → X a composite of blowing-ups along smooth centers
with KY = φ∗KX +

∑n
i=1 eiEi , E :=

⋃
i Ei a NCD, we get a good

CVF
[X ] =

∑
I⊂{1,...,n}

[E ◦I ]
∏

i∈I
[Pei ]−1,

where [E ◦I ] :=
⋂

i∈I Ei\
⋃

j 6∈I Ej .
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CVF for any birational morphism φ : Y → X implies

X =K X ′ =⇒ [X ] = [X ′] in S−1K0(VarC),

where S is the multiplicative set generated by Pr ’s. Equivalently,
[P][X ] = [P][X ′] for P a product of projective spaces.

Since χc(V ) :=
∑

p,q χ
p,q
c (V ) is not a zero divisor for smooth

projective V , by applying the functor χc we conclude that X and
X ′ have (non-canonically) isomorphic Q-Hodge structures.

• p-adic integral for Betti numbers: Batyrev, Wang (1997).
• Motivic Integration: Kontsevich (1996), Denef-Loeser (1997).
• Weak Factorization Theorem: Wlodarczyk et. al., Y. Hu (1999).
• p-adic Hodge theory: Wang (2000), Ito (2001).
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Chow motives:

Let M be category of motives. That is, smooth varieties with

HomM(X̂1, X̂2) = A∗(X1 × X2).

For U ∈ A∗(X1 × X2), V ∈ A∗(X2 × X3), let
pij : X1 × X2 × X3 → Xi × Xj . The composition law is given by

V ◦ U = p13∗(p
∗
12U.p

∗
23V ).

U has induced maps on Chow groups and T -points Hom(T̂ , X̂i ):

[U] : A∗(X1) → A∗(X2); a 7→ p2∗(U.p
∗
1a)

UT : A∗(T × X1)
U◦−→A∗(T × X2).

Identity Principle: U = V if and only if UT = VT for all T .
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Proposition (Joint with H.-W. Lin) For an ordinary (r , r ′) flip
f : X 99K X ′ with r ≤ r ′, the graph closure F := Γ̄f induces
X̂ ∼= (X̂ ′, p′) via F∗ ◦ F = ∆X , where p′ = F ◦ F∗ is a projector.

Proof. For any T , idT × f : T × X 99K T × X ′ is also an ordinary
(r , r ′) flip. To prove F∗ ◦ F = ∆X , we only need to prove
F∗F = id on A∗(X ) for any ordinary (r , r ′) flip. From

FW = p′∗(Γ̄f .p
∗W ) = φ′∗φ

∗W .

φ∗W = W̃ + j∗
(
c(E).φ̄∗s(W ∩ Z ,W )

)
dimW

,

where E is defined by 0 → NE/Y → φ∗NZ/X → E → 0.
key observation: the error term is lying over W ∩ Z .
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Let W ∈ Ak(X ). We may assume that W |∩ Z , so

` := dim W ∩ Z = k + (r + s)− (r + r ′ + s + 1) = k − r ′ − 1.

dimφ−1(W ∩ Z ) = `+ r ′ = k − 1, so φ∗W = W̃ and FW = W ′.

Let B be an irred. component of W ∩ Z and B̄ = ψ̄(B) ⊂ S with
dimension `B ≤ `. W ′ ∩ Z ′ has components {B ′ := ψ̄′−1(B̄)}B′ .

Let φ′∗W ′ = W̃ +
∑

B′ EB′ , where EB′ ⊂ φ̄′−1ψ̄−1(B̄), a Pr × Pr ′

bundle over B̄. For the generic point s ∈ ψ(φ(EB′)) ⊂ B̄, we have

dim EB′,s ≥ k − `B = r ′ + 1 + (`− `B) > r ′.

Since r ′ ≥ r , EB′,s contains positive dimensional fibers of φ. Hence
φ∗(EB) = 0 and F∗FW = W . The proof is completed.
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Corollary

Let f : X 99K X ′ be a (r , r ′) flip with r ≤ r ′. If
dimα+ dimβ = dim X, then F is an orthogonal imbedding:

(Fα.Fβ) = (α.β).

Proof. We may assume that α, β are transversal to Z . Then

(α.β) = (φ∗α.φ∗β) = ((φ′∗Fα− ξ).φ∗β)

= ((φ′∗Fα).φ∗β) = (Fα.(φ′∗φ
∗β)) = (Fα.Fβ).

Thus for ordinary flops, F−1 = F∗ in two senses.

Project: Do the similar argument on arc spaces L(X ).
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3. Chern Numbers, Complex Cobordism and the Weak
Decomposition Theorem

3.1 Chern Numbers and Complex Elliptic Genera

Milnor and Novikov:
The complex cobordism class [X ] ∈ ΩU of a stable almost complex
manifold X (i.e. TX ⊕RX is complex) is characterized by its Chern
numbers. (Modulo cobordism by such manifolds with boundaries.)

An R-genus is a ring homomorphism ϕ : ΩU → R. Equivalently, let
Q(x) ∈ R[[x ]]. If c(TX ) =

∏n
i=1(1 + xi ), then

ϕQ(X ) :=
∏n

i=1
Q(xi )[X ] =:

∫
X

KQ(c(TX ))

defines an R-genus.
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3.1 Chern Numbers and Complex Elliptic Genera
3.2 A Change of Variable Formula for Chern Numbers

Write Q(x) = x/f (x). The complex elliptic genera is defined by
the three parameter (k ∈ C, τ and a marked point z) power series

f (x) = ϕk,τ,z(x) := e(k+ζ(z))x σ(x)σ(z)

σ(x + z)
.

Totaro (Ann. 2000) showed that the most general Chern numbers
invariant under P1-flops consists of the complex elliptic genera.

Hirzebruch reproved Totaro’s theorem using Atiyah-Bott
localization theorem. He showed that ϕQ is invariant under
P1-flops if and only if F (x) := 1/f (x) satisfies

F (x + y)(F (x)F (−x)− F (y)F (−y)) = F ′(x)F (y)− F ′(y)F (x)

and the solutions is given by the above ϕk,τ,z(x) exactly.
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Theorem (—, J. Alg. Geom. 2003)

Complex elliptic genera are invariant under K-equivalence.

Corollary (Weak Decomposition Theorem)

In ΩU , the ideal I1 = IK , where

I1 =
〈
[X ]− [X ′] |X and X ′ are related by a P1 flop

〉
,

IK =
〈
[X ]− [X ′] |X =K X ′〉 .

Remark. We expect symplectic deformations instead of complex
cobordism. Also it is clearly not enough to consider only P1 flops
for the general case.
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3.2 A Change of Variable Formula for Chern Numbers

The most important step is to develop a change of variable
formula for genera (or Chern numbers) under a single blowing-up
φ : Y → X along smooth center Z of codimension r .

Theorem (Residue Theorem)
For any f (t) = t + · · · , A(t) ∈ R[[t]]:∫

Y

A(E ) KQ(c(TY )) =

∫
X

A(0)KQ(c(TX ))

+

∫
Z

Res t=0

( A(t)

f (t)
∏r

i=1 f (ni − t)

)
KQ(c(TZ )).

Here c(NZ/X ) =
∏r

i=1(1 + ni ) and the residue stands for the
coefficient of the degree −1 term.
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The residue term = 0 implies the CVF for one blowing-up. With f
given, than for z not an r -torsion point we find the Jacobian factor

A(t, r) = e−(r−1)(k+ζ(z))t σ(t + rz)σ(z)

σ(t + z)σ(rz)
.

The r = 2 case corresponds to functional equation

1

f (x)f (y)
=

A(x)

f (x)f (y − x)
+

A(y)

f (y)f (x − y)

which also has solutions given by f (and A is determined by f ),
but with z not a 2-torsion points. Thus

Complex elliptic genera are precisely the universal Chern numbers
which admits a good CVF.
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Theorem (Change of Variable formula)

Let ϕ = ϕk,τ,z be the complex elliptic genera and write
dµX = Kϕ(c(TX )). Then for any algebraic cycle D in X and
birational morphism φ : Y → X with KY = φ∗KX +

∑
eiEi ,∫

D
dµX =

∫
φ∗D

∏
i
A(Ei , ei + 1) dµY .

Equivalently, φ∗
∏

i A(Ei , ei + 1) dµY = dµX .

The proof is reduced to the blowing-up case by applying the weak
factorization theorem.

The case k = 0 (elliptic genera) was also obtained by Borisov and
Libgober using similar methods.
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4. Invariance of Quantum Ring under Simple Ordinary Flops
(Joint with H-W. Lin, 2004)

4.1 Triple Product for Simple Flops

Let f : X 99K X ′ be a simple Pr flop. h ⊂ Z , h′ ⊂ Z ′ hyperplanes.
x = [h × Pr ], y = [Pr × h′] in E = Pr × Pr .

φ∗[hs ] = x sy r − x s+1y r−1 + · · ·+ (−1)r−sx ry s ,

F[hs ] = (−1)r−s [h′s ].

For transversal α ∈ Ai (X ): φ′∗α′ = φ∗α+ (α.hr−i )
x i − (−y)i

x + y
.

Lemma
For simple Pr -flops, α ∈ Ai (X ), β ∈ Aj(X ), γ ∈ Ak(X ) with
i ≤ j ≤ k ≤ r , i + j + k = dim X = 2r + 1,

Fα.Fβ.Fγ = α.β.γ + (−1)r (α.hr−i )(β.hr−j)(γ.hr−k).
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Quantum Corrections

The Poincaré pairing and the three point functions determine the
quantum product.

〈α, β, γ〉 =
∑

Γ∈A1(X )
〈α, β, γ〉0,3,Γ

= α.β.γ +
∑

d∈N
〈α, β, γ〉0,3,d` q

d`

+
∑

Γ 6∈Z`
〈α, β, γ〉0,3,Γ qΓ.

For simple ordinary flops, let Ud = R1π∗e
∗
4NZ/X , then

〈α, β, γ〉0,3,d =

∫
[M̄0,3(X ,d`)]virt

e∗1α.e
∗
2β.e

∗
3γ

=

∫
M̄0,3(Pr ,d)

e∗1α.e
∗
2β.e

∗
3γ.e(Ud).
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Deformations to the normal cone:

Φ : M → X = X × P1 be the blowing-up along Z × {∞}.
Mt

∼= X for t 6= ∞. M∞ = Y ∪ Ẽ where
Ẽ = PZ (NZ/X ⊕ O),
Y → X = X∞ is the blowing-up along Z and
Y ∩ Ẽ = E = PZ (NZ/X ).

Similarly Φ′ : M ′ → X′ = X ′ × P1 and M ′
∞ = Y ′ ∪ Ẽ ′.

By construction, Y = Y ′ and E = E ′.

The key point is, when S = pt, Ẽ ∼= Ẽ ′. A. Li and Y. Ruan’s
gluing formula or J. Li’s degeneration formula implies the
equivalence of 〈α, β, γ〉0,3,Γ and 〈Fα,Fβ,Fγ〉0,3,FΓ for Γ 6= d`.
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If dim X = 3, for simple P1-flops, the divisor axiom shows that∑
d
〈α, β, γ〉0,3,d` =

∑
d
(α.d`)(β.d`)(γ.d`) 〈−〉0,0,d` q

d`

= (α.`)(β.`)(γ.`)
q`

1− q`

via the multiple cover formula 〈−〉0,0,d` = 1/d3. Together with
(Fα, `′) = −(Fα,F`) = −(α, `), then

〈Fα,Fβ,Fγ〉−〈α, β, γ〉 = −(α.`)(β.`)(γ.`)

(
1 +

q`
′

1− q`′
+

q`

1− q`

)
.

Under the identification `′ = −`, this gives zero.
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Theorem (Generalized Multiple Cover Formula)

For all α ∈ Ai (X ), β ∈ Aj(X ), γ ∈ Ak(X ) with i + j + k = 2r + 1,

〈α, β, γ〉0,3,d` = (−1)(d−1)(r+1)(α.hr−i )(β.hr−j)(γ.hr−k).

Invariance of small quantum ring:

Since (Fα.h′(r−i)) = (−1)i (Fα.Fhr−i ) = (−1)i (α.hr−i ) etc.,

〈Fα,Fβ,Fγ〉 − 〈α, β, γ〉 = (−1)r (α.hr−i )(β.hr−j)(γ.hr−k)

− (α.hr−i )(β.hr−j)(γ.hr−k)

(
q`

′

1 + (−1)rq`′
+

q`

1 + (−1)rq`

)
.

Under `′ = −F`, this is −1 when r is odd and is 1 when r is even.
Hence the right hand side cancels out, and it’s done!

CHIN-LUNG WANG National Central University TAIWAN The Role of Chern Classes in Birational Geometry



1. First Chern Class and the Minimal Model Theory
2. c1-Equivalence, Volume Equivalence and Motivic Theory
3. Chern Numbers, Complex Cobordism and Decomposition
4. Invariance of Quantum Ring under Simple Ordinary Flops

4.1 Triple Product for Simple Flops
4.2 The Theory of Euler Data
4.3 Mukai Flops

4.2 The Theory of Euler Data (After Lian-Liu-Yau)

We may represent the virtual fundamental class by the Euler class
of the obstruction bundle

Ud = R1π∗e
∗
4N.

Here e4 is the evaluation map and π is the forgetting map in

M̄0,4(Pr , d)
e4 //

ρ

��

Pr

M̄0,3(Pr , d)

.

Then it is equivalent to proving that for all d ∈ N,
i + j + k = 2r + 1,∫

M̄0,3(Pr ,d)
e∗1hi .e∗2hj .e∗3hk .e(Ud) = (−1)(d−1)(r+1).
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Ud is constructed on every M̄0,k(Pr , d) and is compatible under
forgetting maps. rkUd = (r + 1)h1(P1,O(−d)) = (r + 1)(d − 1).
dim M0,k(Pr , d) = (r + 1)d + r + k − 3. We may ask for∫

M̄0,k (Pr ,d)
e∗1hi1 . . . e∗khik .e(Ud)

where i1 + · · ·+ ik = 2r + 1 + (k − 3) = 2(r − 1) + k.

Let φ =
∑r

i=0 tih
i , ek(φ) = e∗1φ . . . e

∗
kφ. Consider gluing sequence

bk
d = ek(φ)e(Ud).

Let Nd
∼= P(r+1)(d+1)−1 be the linear sigma model,

Mk
d = M̄0,k(P1 × Pr , (1, d)) the non-linear sigma model and

π : Mk
d → M̄0,k(Pr , d) and ζk : Mk

d → M0
d ≡ Md → Nd .

Qk
d = ζk

∗ π
∗(bk

d).
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Consider the G = C× × (C×)r+1 = C× × T action with weights
α, λ0, . . . , λr . Then the weights on Nd is λi + sα in coordinate

pis = (0, . . . , 0, zisw
s
0wd−s

1 , 0, . . . , 0).

Then Qk
d ∈ H∗

G (Nd) = Q[α, λ][κ]/f (κ), where f (κ) is the Chern
polynomial of Pr

G → BG = (P∞)r+1. For iis : pis → Nd ,

i∗pis
ω = ω(λi + sα).

Consider Qd :=
∑∞

k=0
Qk

d

T k

k!
∈ R−1H∗

G (Nd)[t1, . . . , tr ][[T ]].

Theorem
{Qd} is an Ω = eT (N)−1-Euler data. That is,

i∗pi
(Ω) i∗pis

(Qd) = i∗pi0
(Qs) i∗pi0

(Qd−s)

for s = 0, . . . , d, i = 0, . . . , r .
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M3
d ρ

//

ζ3

��

M̄0,3(Pr , d)

π

��

ψ

����
��
��
��
��
��
��
��
��
��
��
��
�

ei

��*
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*

M2
d ρ

//

ζ2

��

M̄0,2(Pr , d)

π

��
M1

d ρ
//

ζ1

��

M̄0,1(Pr , d)

π

��
Md ρ

//

ϕ

��

M̄0,0(Pr , d)

Nd
ei //___________ Pr

ψ and ϕ are isomorphisms over smooth domain curves, M̄0,3(Pr , d)
is the model making e1, e2 and e3 becoming morphisms.
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Recall that two Ω-Euler data {Pd}, {Qd} are linked if

i∗pj0
Pd = i∗pj0

Qd

at α = (λj − λi )/d for all i 6= j and d > 0.

To evaluate i∗pj0
Q ′

d :=
∑3

k=0 i∗pj0
Qk

d T k/k! at α = (λj − λi )/d , we

notice Qk
d (λj , (λj − λi )/d) is the restriction of Qk

d (κ, α) to the
smooth point Pij = (0, . . . ,wd

0 , . . . ,w
d
1 , . . . , 0) ∈ Nd .

The uniqueness theorem in LLY says that two linked Ω-Euler data
are indeed equal if for all i and d the following degree bound holds:

degα i∗pi0
(Pd − Qd) ≤ (r + 1)d − 2.
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Theorem
Q ′

d := Qd (mod T 4) is linked to, in fact equal to

P ′d =
∑3

k=0
(
∑r

i=1
tiκ

i )k
T k

k!

∏d−1

m=1
(−κ+ mα)r+1

≡ exp(
∑r

i=1
tiκ

iT )
∏d−1

m=1
(−κ+ mα)r+1 (mod T 4).

In particular, in the non-equivariant limit we get

Q ′
d |α=0 = (−1)(r+1)(d+1)e

P
tiκ

iTκ(r+1)(d−1) (mod T 4).

Pick out the coefficient of ti tj tkT 3 by

∂3Q ′
d

∂ti∂tj∂tk

∣∣∣
α=0,T=0

= (−1)(r+1)(d−1)κi+j+kκ(r+1)(d−1)

and notice that κ(r+1)(d+1)−1 = 1, we get the result.
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4.3 Mukai Flops

Flopping contraction of Mukai type:
ψ : (X ,Z ) → (X̄ ,S) with NZ/X = T ∗

Z/S ⊗ L for some L ∈ Pic S .
Will construct the local model as a slice of ordinary flops with
F ′ = F ∗ ⊗ L.

E = PS(F )×S PS(F ′) ⊂ Y

Φ

ttjjjjjjjjjjjjjjjj
Φ′

**UUUUUUUUUUUUUUUU

g

��

Z = PS(F ) ⊂ X

Ψ
**UUUUUUUUUUUUUUUUU

Z ′ = PS(F ′) ⊂ X′

Ψ′

ttiiiiiiiiiiiiiiiiii

S ⊂ X̄
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Suppose ∃ bi-linear map F ×S F ′ → ηS , ηS ∈ Pic(S).
OP(F )(−1) → ψ̄∗F pulls back to φ̄∗OP(F )(−1) → ḡ∗F , hence

Y = φ̄∗OZ (−1)⊗E φ̄
′∗OZ ′(−1) → ḡ∗(F ⊗S F ′) → ḡ∗ηS .

Y := inverse image of the zero section of ḡ∗ηS in Y.
X = Φ(Y ) ⊃ Z , X ′ = Φ′(Y ) ⊃ Z ′, X̄ = g(Y ) ⊃ S with restriction
maps φ, φ′, ψ, ψ′.

By tensoring the Euler sequence

0 → OZ (−1) → ψ̄∗F → Q→ 0

with S∗ = OZ (1) and notice that S∗ ⊗Q ∼= TZ/S ,
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we get by dualization

0 → T ∗
Z/S → OZ (−1)⊗ ψ̄∗F ∗ → OZ → 0.

The inclusion maps Z ↪→ X ↪→ X leads to

0 → NZ/X → NZ/X → NX/X|Z → 0.

NX/X|Z = O(X )|Z = ψ̄∗O(X̄ )|S . Denote O(X̄ )|S by L. Recall

NZ/X
∼= OPS (F )(−1)⊗ ψ̄∗F ′. By tensoring with ψ̄∗L∗, we get

0 → NZ/X ⊗ ψ̄∗L∗ → OPS (F )(−1)⊗ ψ̄∗(F ′ ⊗ L∗) → OZ → 0.

So F ′ = F ∗ ⊗ L if and only if NZ/X
∼= T ∗

Z/S ⊗ ψ̄∗L.
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For Mukai flops, namely L ∼= OS , F ′ = F ∗ with duality pairing
F ×S F ∗ → OS . Consider π : Y → C via

Y → ḡ∗OS = OE
∼= E× C π2−→C.

We get a fibration with Yt := π−1(t), being smooth for t 6= 0 and
Y0 = Y ∪ E. E = Y ∩ E restricts to the degree (1, 1) hypersurface
over each fiber along E → S . Let Xt , X′t and X̄t be the proper
transforms of Yt in X, X′ and X̄.
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For t 6= 0, all maps in the diagram

Yt

~~||
||

||
||

  B
BB

BB
BB

B

Xt

  A
AA

AA
AA

A X′
t

~~}}
}}

}}
}}

X̄t

are all isomorphisms. For t = 0 this is the Mukai flop. Thus Mukai
flops are limits of isomorphisms. They preserve all interesting
invariants like diffeomorphism type, Hodge type (Chow motive via
[Y ] + [E]) and quantum rings etc. In fact all quantum corrections
are zero. END
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