K-equivalence in Birational Geometry

CHIN-LUNG WANG

December 18, 2001

1. A Brief History of Birational Geometry

- Minimal Models for Algebraic Surfaces
- Mori Theory: Minimal Model Program
- Three Dimensional Flops

2. K-equivalence and Cohomologies

- Volume Equivalent Kähler Manifolds
- The *p*-adic Measure and Hodge Numbers
- Application to the Filling-in Problem

3. Deformation/Decomposition Problem

- Symplectic Deformations of Flops
- Complex Elliptic Genera and Cobordism
- Main Conjectures
- Conclusion

Minimal Models for Algebraic Surfaces

Theorem 1 (Castelnuovo) Let X be a smooth projective surface and $C \subset X$ be an irreducible curve. Then there exists a birational morphism $\phi : X \to \overline{X}$ contracting exactly the curve C down to a smooth surface \overline{X} if and only if C is a (-1) curve. That is, $C \cong \mathbf{P}^1$ and $C^2 = -1$.

Definition 2 A smooth surface is called minimal if it contains no (-1) curves.

Definition 3 The Kodaira dimension $\kappa(X)$ of a proper smooth variety X is defined to be

 $\kappa(X) = \lim_{\ell \to \infty} \dim \operatorname{Im} \left[\Phi_{\ell} : X \cdots \to \mathbf{P} \left(H^{0}(X, K^{\ell}) \right) \right].$

Theorem 4 (Enrique) Any surface X admits birational minimal models and it is unique if $\kappa(X) \neq -\infty$. Moreover, $\kappa(X) = -\infty$ if and only if X is birationally ruled, i.e. $C \times \mathbf{P}^1$.

Mori Theory: Minimal Model Program

Definition 5 (Reid) A normal variety X is terminal if K_X is Q-Cartier and for some (hence any) resolution of singularities $\phi : Y \to X$, one has $K_Y =_{\mathbf{Q}} \phi^* K_X + \sum a_i E_i$ with $a_i \ge 0$.

Theorem 6 (Mori, Kawamata, Shokurov) Let X be a terminal variety. If K_X is not nef, each extremal ray $R \in \overline{NE}_{K<0}$ is spanned by a rational curve C. The extremal contraction ψ_R : $X \to \overline{X}$ defined by a supporting divisor D of R is a morphism such that $\psi_R(C') = pt \Leftrightarrow [C'] \in R$.

One end up with 3 possibilities on \bar{X} :

1. dim $\overline{X} < \dim X$: $X \to \overline{X}$ is a fiber space.

2. ψ_R is **divisorial**: dim $\text{Exc}(\phi_R) = n - 1$, OK. 3. ψ_R is **small**: dim $\text{Exc}(\phi_R) < n - 1$. In this case, \overline{X} is very singular, it is not Q-Gorenstein!

Definition 7 X is a **minimal model** if it is terminal and K_X is nef.

Three Dimensional Flips/Flops

Definition 8 A $(K_X + D)$ **log-flip** of a logextremal contraction ψ is a diagram

such that f is an isomorphism in codimension one and $K_{X^+} + D^+$ is ψ^+ -ample.

The case D = 0 is called a **flip**. The case K_X is ψ -trivial is called a D-**flop**.

Theorem 9 (Mori) 3D flips exist.

Theorem 10 (Reid, Mori) A 3D terminal singularity of index r has the form cDV/μ_r : cDV:= isolated singularity f(x, y, z) + tg(x, y, z, t) =0 in C⁴ where f is an ADE equation.

Theorem 11 (Kollár, Mori) 3D flops exist in families. Also 3D birational Q-factorial minimal models are related by a sequence of flops.

Summary of 3D Mori Theory

 $\infty.$ The MMP works. It ends up with a Q-factorial minimal model.

3. The minimal models are not unique, but any two Q-factorial minimal models X and X'are related by a sequence of flops and flops are completely classified.

2. $Def(X) \cong Def(X')$ canonically.

1. $H^*(X) \cong H^*(X')$, $IH^*(X) \cong IH^*(X')$ compatible with the mix (pure) Hodge structures. **0.** X' has the same singularity type as X.

What Can One expect in HD Theory?

" $\mathbf{0}$ " is wrong in general. " ∞ " is infinitely hard. But the remaining " $\mathbf{1}$ ", " $\mathbf{2}$ " and " $\mathbf{3}$ " do not depend on it. Notice even in 3D, the ring structures in " $\mathbf{1}$ " is usually different.

K-equivalence Relation

Definition 12 Two Q-Gorenstein varieties X and X' are K-equivalent, denoted by $X =_K X'$, if \exists smooth Y and birational morphisms ϕ , ϕ' :

such that $\phi^* K_X = \phi'^* K_{X'}$.

Theorem 13 If X and X' are birational terminal varieties such that K_X and $K_{X'}$ is nef along the exceptional loci then $X =_K X'$.

A Geometric Hueristic: For manifolds, this is the same as c_1 -equivalent. For ω (resp. ω') Kähler forms on X (resp. X'), we get

 $-\partial\bar{\partial}\log(\phi^*\omega)^n = -\partial\bar{\partial}\log(\phi'^*\omega')^n + \partial\bar{\partial}f.$

That is, $\phi^*\omega$ and $\phi'^*\omega'$ have quasi-equivalent volume forms. Can one **rotate** $\phi^*\omega$ to $\phi'^*\omega'$ through **Riemannian** metrics while keeping the quasi-equivalence class of degenerate volume forms?

6

p-adic Integral and Betti/Hodge Numbers

We will assume X and X' smooth from now on. Take an integral model of the K-equivalence diagram, e.g. $\mathcal{X} \to \text{SpecS}$ etc. For almost all prime P in S we have good reductions. In such cases, let $R = \hat{S}_P$. Let U_i 's be a Zariski open cover of X such that $K_X|_{U_i}$ is free. Then for a compact open subset $S \subset U_i(R) \subset X(R)$, we define its measure by $(R/P \cong \mathbf{F}_q, q = p^r.)$

$$m_X(S) \equiv \int_S |\Omega_i|_p$$

(Independent of Ω .) The *p*-adic measure of X(R) and X'(R) are the same by the **change** of variable formula and $X =_K X'$. But since

$$m_X(X(R)) = \frac{|\bar{X}(\mathbf{F}_q)|}{q^n},$$

we conclude that X and X' have the same local zeta factors for almost all P. This implies that $h^{p,q}(X) = h^{p,q}(X')$ by Faltings' p-adic Hodge Theory.

Application to The Filling-in Problem

Theorem 14 Let $\mathfrak{X} \to \Delta$ be a projective smoothing of a minimal Gorenstein 3-fold \mathfrak{X}_0 . Then $\mathfrak{X} \to \Delta$ is not birational to a projective smooth family $\mathfrak{X}' \to \Delta$.

If $\mathfrak{X}' \to \Delta$ exists then it must be terminal Gorenstein. So $\mathfrak{X} =_K \mathfrak{X}'$, in particular they are isomorphic in codimension one, so \mathfrak{X}_0 is birational to \mathfrak{X}'_0 . If \mathfrak{X}_0 is **Q**-factorial then it must be smooth and we already get a contradiction. Otherwise consider a projective small morphism $X \to \mathfrak{X}_0$ from a (**Q**-factorial) minimal model X to \mathfrak{X}_0 . $X \sim \mathfrak{X}_0 \sim \mathfrak{X}'_0$. Hence X is smooth and $H^*(X) \cong H^*(\mathfrak{X}'_0) \cong H^*(\mathfrak{X}_t)$. Consider the **contraction/smoothing** diagram:

$$\begin{array}{ccc} X \\ \downarrow \\ \chi_0 \\ \end{array} \subset \mathfrak{X} \supset \mathfrak{X}_t \end{array}$$

If \mathcal{X}_0 has only ODP, done by explicit formula for χ or b_i . For general cDV, use symplectic deformations to reduce to the ODP case.

Symplectic Deformation of 3D Flops

- Since index one terminal \equiv isolated cDV \equiv one parameter deformation of surface RDP's. By Friedman's result, if $p \in V$ is isolated cDV and $C \subset U$ is the corresponding germ of the exceptional curve contracted to p, then there is an inclusion $Def(C, U) \rightarrow Def(p, V)$ and both spaces are smooth.

- One can deform the complex structure of a nbd of C so that C decomposes into several \mathbf{P}^1 's and the contraction map deforms to nontrivial contractions of these \mathbf{P}^1 's to ODP's, while keeping a nbd of these ODP's to remain in Def(p, V).

- We can preform this analytic process for all C's and p's simultaneously in each corresponding small nbd and then patch them together smoothly or even **symplectically** (Wilson).

For flops, we may do this process for $X \to \overline{X}$ and $X' \to \overline{X}$ simultaneously to end up with several copies of classical \mathbf{P}^1 -flops.

Complex Elliptic Genera and Cobordism

For a commutative ring R, an R-genus φ is defined by $Q(x) \in R[x]$ through Hirzebruch's multiplicative sequence K_Q (or K_{φ}).

Let Q(x) = x/f(x). The CEG φ_{ell} is defined by

$$f(x) = e^{(k+\zeta(z))x} \frac{\sigma(x)\sigma(z)}{\sigma(x+z)},$$

Theorem 15 Let φ be the CEG. Then for any algebraic cycle D in X and birational morphism $\phi: Y \to X$ with $K_Y = \phi^* K_X + \sum e_i E_i$, we have $\int_D K_{\varphi}(c(T_X)) = \int_{\phi^* D} \prod_i A(E_i, e_i+1) K_{\varphi}(c(T_Y)).$ where the Jacobian factor is defined by $A(t,r) = e^{-(r-1)(k+\zeta(z))t} \frac{\sigma(t+rz)\sigma(z)}{\sigma(t+z)\sigma(rz)}.$

Idea of The Proof

(Residue Theorem) For any cycle D in X and for any blowing-up $\phi : Y \to X$ along smooth center Z with exceptional divisor E, one has for any power series $A(t) \in R[[t]]$:

$$\int_{\phi^* D} A(E) K_Q(c(T_Y)) = \int_D A(0) K_Q(c(T_X)) + \int_{Z.D} \operatorname{Res}_{t=0} \left(\frac{A(t)}{f(t) \prod_{i=1}^r f(n_i - t)} \right) K_Q(c(T_Z)).$$

Here n_i 's denote the formal chern roots of the normal bundle $N_{Z/X}$.

The proof makes use of **deformations to the normal cone** to reduce to the case that $X = P_Z(N \oplus 1)$, then apply

$$c(T_Y) = \phi^* c(T_X) \phi^* c(\mathcal{Q})^{-1} (1+E) c(\phi^* \mathcal{Q} \otimes \mathcal{O}(-E)).$$

$$\bar{\phi}_* e^k = 0 \quad \text{for} \quad 0 \le k \le r-2$$

$$\bar{\phi}_* e^{(r-1)+k} = (-1)^{(r-1)+k} s_k(N) \quad \text{for} \quad k \ge 0.$$

$$(s(N) = \sum s_k(N) \text{ such that } s(N)c(N) = 1.)$$

Main Conjectures

Fix a birational map $f : X \dots \to X'$ such that $X =_K X'$. $T := \phi'_* \circ \phi^*$ be the cohomology correspondence determined by $\overline{\Gamma}_f \subset X \times X'$. I (canonical isomorphism)

$$T: H^i(X, \mathbf{Q}) \xrightarrow{\sim} H^i(X', \mathbf{Q}),$$

and respects the rational Hodge structures.

II (quantum cohomology/Kähler moduli) *T* also induces an isomorphism on the quantum cohomology rings over the extended Kähler moduli spaces.

III (birational complex moduli)

X and X' have canonically isomorphic (at least local) complex moduli spaces.

IV (soft decomposition)

X and X' admit symplectic deformations such that the K-equivalence relation deformed into copies of classical flops.

Topological Evidences

Let Ω^U be the cobordism ring of **stably almost** complex manifolds. An *R*-valued complex genus is a ring homomorphism $\varphi : \Omega^U \to R$. The cobordism class is determined exactly by all the chern numbers of the stable tangent bundle, i.e. by all its complex genera.

Definition 16 (Classical \mathbf{P}^k Flops) Let $Z \cong \mathbf{P}^k$ inside an (n = 2k + 1)-D smooth variety X and $N_{Z/X} = \mathcal{O}_Z(-1)^{\oplus k+1}$. Then $E \cong \mathbf{P}^k \times \mathbf{P}^k$ and one may blow down E in another direction $\phi' : Y \to X'$ to get $j' : Z' = \phi'(E) \hookrightarrow X'$. Z' is also a \mathbf{P}^k with normal bundle $\mathcal{O}_{\mathbf{P}^k}(-1)^{\oplus k+1}$:

Let I_k be the ideal generated by all [X] - [X'].

Conclusion

Theorem 17 (Totaro) $\varphi_{\text{ell}} = (\Omega^U \to \Omega^U / I_1).$

Theorem 18 (W-) Let I_K be the ideal generated by X - X' for $X =_K X'$. Then $I_K = I_1$. So Conjecture IV is true up to complex cobordism.

Recently Huybrechts (supplementaed by a theorem of Demailly and Pann) has shown that birational hyperk" ahler manifolds X and X' admits deformations $\mathfrak{X} \to \Delta$ and $\mathfrak{X}' \to \Delta$ such that $\mathfrak{X}_t \cong \mathfrak{X}'$. This is the reason we do not need to consider Mukai flops in **IV**.

It is necessary to include (at least) all I_K to formulate **IV** by dimension reason. **END**