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Abstract

Throughout this talk, let

E = Eτ = C/Λτ , Λ = Λτ = Z + Zτ

be a flat tori, where τ ∈H.

I will discuss non-linear singular Liouville equation on Eτ of the form

4u + eu = 4π
n

∑
j=1

djδpj ,

where dj > 0, pj ∈ Eτ are distinct points and δpj is the delta measure
at pj. Let d := ∑n

j=1 dj be the total singular strength.

This is also the equation of conic metric with constant curvature
K = 1 outside pj’s.
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Under developing maps, it corresponds to the unitary monodromy
problem of generalized Lamé equations

w′′ =
( n

∑
j=1

ηj(ηj + 1)℘(z− pj) +
n

∑
j=1

Ajζ(z− pj) + B
)

w.

where ηj := dj/2.

Under the integrality assumption dj ∈N, the equation is an
algebraically integrable system and methods in algebraic geometry
and modular forms can be brought in to study the detailed structures
of the moduli spaces of solutions.

When the total strength d is odd, the structure behaves stably in τ.

When d is even, it depends on τ in a delicate manner.

In this talk, I will report only on the case n = 1.
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Green functions on tori

I The Green function G(z, w) on E = C/Λ, Λ = Zω1 + Zω2 is the
unique function on E× E which satisfies

−4zG(z, w) = δw(z)−
1
|E|

and
∫

E G(z, w) dA = 0.

I Translation invariance of4z implies G(z, w) = G(z−w, 0) and it
is enough to consider G(z) := G(z, 0). Asymptotically

G(z) = − 1
2π

log |z|+ O(|z|2).
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I G can be explicitly solved in terms of elliptic functions.

I Let z = x + iy, τ := ω2/ω1 = a + ib ∈H and q = eπiτ with
|q| = e−πb < 1. We have the odd theta function

ϑ1(z; τ) := −i
∞

∑
n=−∞

(−1)nq(n+
1
2 )

2
e(2n+1)πiz.

I (Neron): On Eτ (notice the τ dependence),

G(z; τ) = − 1
2π

log
∣∣∣∣ ϑ1(z; τ)

ϑ′1(0; τ)

∣∣∣∣+ 1
2b

y2 + C(τ).

I The structure of G is fundamental for us. E.g.

∇G(z) = 0⇐⇒ ∂G
∂z
≡ −1

4π

(
(log ϑ1)z + 2πi

y
b

)
= 0.
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I Recall the Weierstrass elliptic functions with periods Λ:

℘(z) :=
1
z2 + ∑

ω∈Λ×

( 1
(z−ω)2 −

1
ω2

)
,

ζ(z) := −
∫ z

℘ =
1
z
+ · · · , σ(z) := exp

∫ z
ζ(w) dw = z + · · · .

I σ is entire, odd with a simple zero on lattice points and

σ(z + ωi) = −eηi(z+ 1
2 ωi)σ(z),

where ηi = ζ(z + ωi)− ζ(z) = 2ζ( 1
2 ωi) are the quasi-periods.

I Indeed

σ(z) = eη1z2/2 ϑ1(z)
ϑ′1(0)

.

Hence (log ϑ1(z))z = ζ(z)− η1z.
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I We set ω1 = 1, ω2 = τ = a + bi, ω3 = ω1 + ω2, and
z = x + yi = rω1 + sω2 = (r + sa) + sbi.

I By Legendre’s relation η1ω2 − η2ω1 = 2πi,

(log ϑ1)z + 2πi
y
b
= (ζ(z)− η1z) + 2πis

= ζ(z)− η1r− η1sω2 + (η1ω2 − η2)s
= ζ(z)− rη1 − sη2.

I Hence ∇G(z) = 0 if and only if

−4πGz = ζ(rω1 + sω2)− (rη1 + sη2) = 0.

I Question: How many critical points can G have in E? What is
the dependence of it in τ ∈H?
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I The 3 half periods are trivial critical points. Indeed,

G(z) = G(−z)⇒ ∇G(z) = −∇G(−z).

Let p = 1
2 ωi then p = −p in E and so ∇G(p) = −∇G(p) = 0.

I Other critical points must appear in pair ±z ∈ E.

Example (Maximal principle)
For rectangular tori E: (ω1, ω2) = (1, τ = bi), 1

2 ωi, i = 1, 2, 3 are
precisely all the critical points.

Example (Z3 symmetry)
For the 60 degree torus E with τ = ρ := eπi/3, there are 2 more points

p = 1
3 ω3, −p = − 1

3 ω3 ≡ 2
3 ω3.
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Periodic singular Liouville equations

I The geometry of G plays a fundamental role in the non-linear
mean field equations. On a flat torus E it takes the form (ρ ∈ R+)

4u + eu = ρδ0.

I It is the mean field limit of Euler flow in statistic physics. It is
also related to the self-dual condensation of abelian
Chern-Simons-Higgs model (Nolasco and Tarantello 1999).

I When ρ 6∈ 8πN, it was been proved by C.-C. Chen and C.-S. Lin
(CPAM 2014) that the Leray-Schauder degree is

dρ = n + 1 for 8nπ < ρ < 8(n + 1)π,

which is independent of the shape (moduli) of E.
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I The first interesting case (critical value) is when ρ = 8π where
the degree theory fails completely.

Theorem (Lin–W, Existence criterion via ∇G for n = 1)
For ρ = 8π, the mean field equation on a flat torus E = C/Λ

4u + eu = 8πδ0

has solutions if and only if the G has more than 3 critical points.
Moreover, each extra pair of critical points ±p corresponds to an one
parameter family of solutions uλ, where limλ→∞ uλ(z) blows up precisely
at z ≡ ±p.
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I Structure of solutions.

I Liouville’s theorem says that any solution u of4u + eu = 0 in a
simply connected domain Ω ⊂ C must be of the form

u = log
8|f ′|2

(1 + |f |2)2 ,

where f , called a developing map of u, is meromorphic in Ω.

I It is straightforward to show that for ρ = 8πη ∈ R,

S(f ) ≡ f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

= uzz −
1
2

u2
z = −2η(η + 1)

1
z2 + O(1).

I.e., any developing map f of u has the same Schwartz derivative
S(f ), which is elliptic on E. Hence there is a B ∈ C such that

S(f ) = −2(η(η + 1)℘(z) + B).
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I By the theory of ODE, locally f = w1/w2 for two solutions wi of
the Lamé equation Lη,B y = 0:

y′′ +
1
2

S(f )y = y′′ − (η(η + 1)℘(z) + B)y = 0.

I Furthermore, for any two developing maps f and f̃ of u, there

exists S =

(
p −q̄
q p̄

)
∈ PSU(2) such that

f̃ = Sf :=
pf − q̄
qf + p̄

I So, solutions to the mean field equation correspond to Lamé
equations with unitary projective monodromy groups.
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I Geometrically the Liouville equation is simply the prescribing
Gauss curvature equation in the new metric g = ewg0 over D,
where w = u/2− log

√
2 and g0 is the Euclidean flat metric on C:

Kg = −e−u4u = 1. (1)

I It is then clear the inverse stereographic projection C→ S2

(X, Y, Z) =
( 2x

1 + x2 + y2 ,
2y

1 + x2 + y2 ,
−1 + x2 + y2

1 + x2 + y2

)
provides solutions to (1) with conformal factor

ew = e
1
2 u− 1

2 log 2 =
2

1 + |z|2 .
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I Starting from this special solution for D = ∆, the unit disk,
general solutions on simply connected domain D can be
obtained by using the Riemann mapping theorem via a
holomorphic map

f : D→ ∆.

I The conformal factor is then the one as expected:

eu =
8|f ′|2

(1 + |f |2)2 .

I The problem is to glue the local developing maps to a “global
one”. This is a monodromy problem on the once punctured
torus E× = E\{0}. Since it is homotopic to “8”, we have

π1(E×, x0) = Z ∗Z

being a free group of rank two.
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Lemma (Developing map for η = 1
2` ∈ 1

2Z)

Given Λ, for ρ = 4π`, ` ∈N, by analytic continuation across Λ, f is glued
into a meromorphic function on C. (Instead of on E = C/Λ.)

I First constraint from the double periodicity:

f (z + ω1) = S1f , f (z + ω2) = S2f

with S1S2 = ±S2S1 (abelian projective monodromy).

I Second constraint from the Dirac singularity:

(1) If f (z) has a zero/pole at z0 6∈ Λ then order r = 1.

(2) f (z) = a0 + a`+1(z− z0)
`+1 + · · · is regular at z0 ∈ Λ.
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I Type I (Topological) Solutions⇐⇒ ` = 2n + 1:

f (z + ω1) = −f (z), f (z + ω2) =
1

f (z)
.

Then g = (log f )′ = f ′/f takes the form

g(z) =
l

∑
i=1

(ζ(z− pi)− ζ(z− pi −ω2)) + c

which is elliptic on E′ = C/Λ′, Λ′ = Zω1 + Z2ω2 with the only
(highest order) zeros at z0 ≡ 0 (mod Λ) of order ` = 2n + 1.

I The equations 0 = g(0) = g′′(0) = g(4)(0) = · · · implies that f is
an even function (a non-trivial symmetric function argument).
So f has simple zeros at ±p1, . . . ,±pn and ω1/2.

I The remaining equations 0 = g′(0) = g′′′(0) = g(5)(0) = · · ·
leads to the polynomial system for ℘(pi)’s:

17 / 48



Theorem (Type I integrability, ρ = 4π(2n + 1))

(1) For ρ = 4π`, ` = 2n + 1. All solutions are of type I and even. f has
simple zeros at ω1/2 and ±pi for i = 1, . . . , n, and poles qi = pi + ω2.

(2) For xi := ℘(pi), x̃i := ℘(qi), and m = 1, . . . , n,

∑n
i=1 xm

i −∑n
i=1 x̃m

i = cm, (xm − e2)(x̃m − e2) = µ,

for some constants cm and µ = (e2 − e1)(e2 − e3).

(3) The corresponding Lamé equation Lη=n+1/2,B y = 0 has finite
monodromy group M (in fact PM = K4) hence there is a polynomial
pn of degree n + 1 such that pn(B) = 0. (Brioschi-Halphen 1894.)

This is far more precise than the degree counting.
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I Type II (Scaling Family) Solutions⇐⇒ η = n (` = 2n):

f (z + ω1) = e2iθ1 f (z), f (z + ω2) = e2iθ2 f (z).

I If f satisfies this, eλf also satisfies this for any λ ∈ R. Thus

uλ(z) = log
8e2λ|f ′(z)|2

(1 + e2λ|f (z)|2)2

is a scaling family of solutions with developing maps {eλf}.
I uλ is a blow-up sequence. The blow-up points for λ→ ∞

(resp. −∞) are precisely zeros (resp. poles) of f (z).

I g = (log f )′ is elliptic on E = C/Λ, with highest order zero at
z = 0 of order ` = 2n.
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I 0 = g′(0) = g′′′(0) = · · · = g(2n−1)(0) implies that g is even.

I Suppose that g(z) has zeros ±p1, · · · ,±pn. We may write

g(z) =
℘′(p1)

℘(z)− ℘(p1)
+ · · ·+ ℘′(pn)

℘(z)− ℘(pn)

constrained by 0 = g′′(0) = · · · = g(2n−2)(0). These give rise to
the first n− 1 equations on p1, . . . , pn. (g(0) = 0 is automatic.)

I And then
f (z) = f (0) exp

∫ z

0
g(ξ) dξ

should satisfy the n-th equation on monodromy∫
Li

g ∈
√
−1R, i = 1, 2.
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I Periods integrals. Let L1, L2 be the fundamental 1-cycles. Set

Fi(p) :=
∫

Li

Ω(ξ, p) dξ =
∫

Li

℘′(p)
℘(ξ)− ℘(p)

dξ,

where p 6∈ 1
2 Λ and ℘′(p)

℘(ξ)−℘(p) = 2ζ(p)− ζ(p + ξ)− ζ(p− ξ).

Lemma (Periods integrals and critical points)
Let p = rω1 + sω2, then (modulo 4πiN)

F1(p) = 2(ω1ζ(p)− η1p) = 2(ζ(p)− rη1 − sη2)ω1 − 4πis,
F2(p) = 2(ω2ζ(p)− η2p) = 2(ζ(p)− rη1 − sη2)ω2 + 4πir.

I Hence∫
Li

g dξ =
n

∑
j=1

Fi(pj) ∈
√
−1R, i = 1, 2⇐⇒

n

∑
j=1
∇G(pj) = 0.
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I When ρ = 8π (n = 1, ` = 2), p1 = p, p2 = −p, g(z) = Ω(z, p).

f (z) = f (0) exp
∫ z

0
g(ξ) dξ

leads to a solution⇐⇒ Fi(p) ∈
√
−1 R⇐⇒ ∇G(p) = 0.

I Theorem (Uniqueness, Lin–W 2006, Annals 2010)
For ρ = 8π, the mean field equation4u + eu = ρδ0 on a flat torus has at
most one solution up to scaling.

I Corollary (Number of critical points)
The Green function has either 3 or 5 critical points.

I New proof were found in 2016 by Eremenko et. al. using
anti-holomorphic dynamics.
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Geometry of critical points overM1

Theorem (Moduli dependence, Chen–Kuo–Lin–W, JDG)

(1) Let Ω3 ⊂M1 ∪ {∞} ∼= S2 (resp. Ω5) be the set of tori with 3 (resp.
5) critical points, then Ω3 ∪ {∞} is closed containing iR, Ω5 is open
containing the vertical line [eπi/3, i∞).

(2) Both Ω3 and Ω5 are simply connected with C := ∂Ω3 = ∂Ω5
homeomorphic to S1 containing ∞.

(3) Moreover, the extra critical points are split out from some half period
point when the tori move from Ω3 to Ω5 across C.

(4) (Strong uniqueness) The map Ω5 → [0, 1]2 by τ 7→ (t, s) for
p(τ) = rω1 + sω2 is a bijection onto

4 = [( 1
3 , 1

3 ), (
1
2 , 1

2 ), (0, 1
2 )].
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M1

0 1
2 1

i

1
2 (1 + i)

1
2 + b1i

Figure: Ω5 contains a neighborhood of eπi/3.

• On the line Re τ = 1/2 which are equivalent to the rhombuses
tori, the proof relies on functional equations of ϑ1.

• The general case uses modular forms of weight one.

Figure: Ω5 contains a neighborhood of eπi/3.

• On the line Re τ = 1/2 which are equivalent to the rhombuses
tori, the proof relies on functional equations of ϑ1.

• The general case uses modular forms of weight one.
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I Idea of proof:

Ψ(N) := #{ (k1, k2) | (N, k1, k2) = 1, 0 ≤ ki ≤ N− 1 }.

Consider the weight one modular function for Γ(N):

ZN,k1,k2(τ) := ζ
(k1ω1 + k2ω2

N
; τ
)
− k1η1 + k2η2

N
= −ZN,N−k1,N−k2(τ)

(first studied by Hecke (1926));

I and the weight Ψ(N) one for full modular group:

ZN(τ) := ∏
(N,k1,k2)=1

ZN,k1,k2(τ) ∈ MΨ(N)(SL(2, Z)).

I Each τ ∈H with ZN(τ) = 0 is (at least) a double zero.
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I For odd N ≥ 5, νi(ZN) = νρ(ZN) = 0,

I At ∞, Hecke calculated the asymptotic expansion:
ν∞(ZN) = φ(N/2) = 0,

I Then the degree formula for modular forms (Riemann–Roch):

(ZN)red =
1
2

deg ZN =
1
2 ∑

p
νp(ZN) =

Ψ(N)

24
.

I Take N prime, this suggests a 1-1 correspondence between Ω5
and

4 = [( 1
3 , 1

3 ), (
1
2 , 1

2 ), (0, 1
2 )]

under the map Ω5 → [0, 1]× [0, 1
2 ]:

τ 7→ (r, s), where p(τ) = rω1 + sω2.
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I The actual proof: Deformations in r, s 6∈ 1
2 Z.

I Let F ⊂H be the fundamental domain for Γ0(2) defined by

F := {τ ∈H | 0 ≤ Re τ ≤ 1, |τ − 1
2 | ≥ 1

2}.

We analyze solutions τ ∈ F for Zr,s(τ) = 0 by varying (r, s).

I For τ ∈ ∂F, E is a rectangle and the only critical points of G are
half periods. So Zr,s(τ) 6= 0 for τ ∈ ∂F.

I Based on this, we use of the argument principle along the curve
∂F to analyze the number of zeros of Zr,s in F.

I We deduce from the Jacobi triple product formula that

Zr,s(τ) = 2πi(s− 1
2 )− πi

2e2πiz

1− e2πiz

− 2πi
∞

∑
n=1

(
e2πizqn

1− e2πizqn −
e−2πizqn

1− e−2πizqn

)
,

where z = r + sτ.
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I Lemma (Asymptotic behavior of Zr,s on cusps)
We have Zt,s(−1/τ) = τZ−s,t(τ), and for t ∈ (0, 1),

Zr,s(τ) =
−1
τ

Z−s,r(−1/τ) =
2πi
τ

( 1
2 − r + o(1)

)
as τ → 0.
Similarly, Zr,s(τ + 1) = Zr+s,r(τ), and for r + s ∈ (0, 1),

Zr,s(τ) = Zr+s,s(τ − 1) =
2πi

τ − 1
( 1

2 − (r + s) + o(1)
)
.
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I Lemma (Non-Vanishing)
For any τ ∈H, the addition law implies that

(i) ζ( 3
4 ω1 +

1
4 ω2)) 6= 3

4 η1 +
1
4 η2.

(ii) ζ( 1
6 ω1 +

1
6 ω2)) 6= 1

6 η1 +
1
6 η2.

I For (ii), we choose z = 1
6 (ω1 + ω2) =

1
6 ω3 and u = 1

3 ω3. Then

0 6= ℘′(z)
℘(z)− ℘(u)

= ζ( 1
2 ω3) + ζ(− 1

6 ω3)− 2ζ( 1
6 ω3)

= −3(ζ( 1
6 ω1 +

1
6 ω2)− 1

6 η1 − 1
6 η2).
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I Claim: Suppose that

(r, s) ∈ [0, 1]× [0, 1
2 ]\{(0, 0), ( 1

2 , 0), (0, 1
2 ), (

1
2 , 1

2 )}.

Then Zr,s(τ) = 0 has a solution τ ∈H if and only if that

(r, s) ∈ 4 := {(r, s) | 0 < r, s < 1
2 , r + s > 1

2}.

Moreover, the solution τ ∈ F is unique for any (r, s) ∈ 4.

I Proof: The cases (t, s) 6∈ 4 are excluded by the Lammas. From

ν∞(Z3) +
1
2

νi(Z3) +
1
3

νρ(Z3) + ∑
p 6=∞,i,ρ

νp(Z3) =
8

12
,

Z 1
3 , 1

3
(ρ) = Z 2

3 , 2
3
(ρ) = 0 =⇒ νρ(Z(3)) = 2 and other terms = 0.

Thus τ = ρ is a simple root to Z 1
3 , 1

3
(τ) = 0.

QED
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Hyperelliptic geometry and Lamé curves

Theorem (Periods integrals and type II solutions)
Consider the mean field equation4u + eu = ρδ0 on E = C/Λ.

I If solutions exist for ρ = 8nπ, then there is a unique even solution
within each type II scaling family. (` = 2n, an+i = −ai.)

I The solution u is determined by the zeros a1, . . . , an of f . In fact

g(z) =
n

∑
i=1

℘′(ai)

℘(z)− ℘(ai)
, f (z) = f (0) exp

∫ z
g(ξ) dξ.

I ordz=0 g(z) = 2n leads to n− 1 equations for a = {a1, . . . , an}.
I The n-th equation is given by

∫
Li

g ∈
√
−1R, which is equivalent to

n

∑
i=1
∇G(ai) = 0.
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I The n− 1 algebraic equations:

I Under the notations (w, xj, yj) = (℘(z),℘(aj),℘′(aj)),

g(z) =
n

∑
j=1

1
w

yj

1− xj/w

=
n

∑
j=1

yj

w
+

n

∑
j=1

yjxj

w2 + · · ·+
n

∑
j=1

yjxr
j

wr+1 + · · · .

I Since g(z) has a zero at z = 0 of order 2n and 1/w has a zero at
z = 0 of order two, we get

n

∑
j=1

yjxr
j =

n

∑
j=1

℘′(aj)℘(aj)
r = 0, 0 ≤ r ≤ n− 2.
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Theorem (Green/polynomial system)
For ρ = 8nπ, n ∈N, the n equations for a = {a1, . . . , an} are precisely

℘′(a1)℘
r(a1) + · · ·+ ℘′(an)℘

r(an) = 0,

where r = 0, . . . , n− 2, and ∇G(a1) + · · ·+∇G(an) = 0.

Theorem (Hyperelliptic geometry/Lamé curve)
For xi := ℘(ai), yi := ℘′(ai), the first n− 1 algebraic equations

∑ yixr
i = 0, r = 0, . . . , n− 2,

defines an affine hyperelliptic curve under the 2 to 1 map a 7→ ∑℘(ai):

Xn := {(xi, yi)} ⊂ SymnE −→ (x1 + · · ·+ xn) ∈ P1.
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I The proof relies on its relation to Lamé equations:

f = exp
∫

g dz = exp
∫ n

∑
i=1

(2ζ(ai)− ζ(ai − z)− ζ(ai + z)) dz

= e2 ∑n
i=1 ζ(ai)z

n

∏
i=1

σ(z− ai)

σ(z + ai)
= (−1)n wa

w−a
,

where wa(z) := ez ∑ ζ(ai)
n

∏
i=1

σ(z− ai)

σ(z)σ(ai)
is the basic element.

I Theorem (Explicit map a 7→ Ba = (2n− 1)∑℘(ai))
a ∈ Xn if and only if wa and w−a are two solutions of the Lamé equation

d2w
dz2 −

(
n(n + 1)℘(z) + (2n− 1)∑n

i=1 ℘(ai)
)

w = 0.

I This is a long calculation via the polynomial system (omitted).
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I Idea of proof on the hyperelliptic structure on Xn.

I Consider y2 = p(x) = 4x3 − g2x− g3, where
(x, y) = (℘(z),℘′(z)), and we set (xi, yi) = (℘(ai),℘′(ai)).
Consider a basis of solutions to the Lamé equation

w′′ = (n(n + 1)℘(z) + B)w

(for some B) given by wa(z) and w−a(z).

I Let X(z) = wa(z)w−a(z). By the addition theorem,

X(z) = (−1)n
n

∏
i=1

σ(z + ai)σ(z− ai)

σ(z)2σ(ai)2 = (−1)n
n

∏
i=1

(℘(z)− ℘(ai)).

That is, X(x) = (−1)n ∏n
i=1(x− xi) is a polynomial in x.
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I Key: X(z) satisfies the second symmetric power of the Lamé
equation:

d3X
dz3 − 4(n(n + 1)℘+ B)

dX
dz
− 2n(n + 1)℘′X = 0.

I Hence X(x) is a polynomial solution, in variable x, to

p(x)X′′′ + 3
2 p′(x)X′′ − 4((n2 + n− 3)x + B)X′ − 2n(n + 1)X = 0.

I X is determined by B and certain initial conditions.
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I Write X(x) = (−1)n(xn − s1xn−1 + · · ·+ (−1)nsn), this translates
to a linear recursive relation for µ = 0, · · · , n− 1:

0 = 2(n− µ)(2µ + 1)(n + µ + 1)sn−µ

− 4(µ + 1)Bsn−µ−1

+ 1
2 g2(µ + 1)(µ + 2)(2µ + 3)sn−µ−2

− g3(µ + 1)(µ + 2)(µ + 3)sn−µ−3.

I We set s0 = 1.

I For µ = n− 1 we get B = (2n− 1)s1 as expected.

I Thus all s2, · · · , sn, X(z), are determined by s1, i.e. by B, alone.

I In fact, a slightly more work shows that the set a = {ai} is also
determined by B up to sign. Hence a 7→ Ba is 2 to 1.

QED
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Theorem (Chai-Lin-W 2012, CJM 2015)

I There is a natural projective compactification X̄n ⊂ SymnE as a,
possibly singular, hyperelliptic curve defined by

C2 = `n(B, g2, g3) = 4Bs2
n + 4g3sn−2sn − g2sn−1sn − g3s2

n−1,

in affine coordinates (B, C), where

sk = sk(B, g2, g3) = rkBk + · · · ∈ Q[B, g2, g3]

is an universal polynomial of homogeneous degree k with deg g2 = 2,
deg g3 = 3, and B = (2n− 1)s1.

I Thus deg `n = 2n + 1 and X̄n has arithmetic genus g = n.

I The curve X̄n is smooth except for a finite number of τ, namely the
discriminant loci of `n(B, g2, g3), so that `n(B) has multiple roots. In
particular X̄n is smooth for rectangular tori.
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I The second technique used in ρ = 8π is to use the method of
continuity to connect to the known case ρ = 4π by establishing
the non-degeneracy of linearized equations.

I For general ρ, such a non-degeneracy statement is out of reach.
However, since solutions uη always exist for ρ = 8πη, η 6∈N, it
is natural to study the limiting behavior of uη as η → n. If the
limit does not blow up, it converges to a solution u for ρ = 8πn.

I For the blow-up case, we have the connection between the
blow-up set and the hyperelliptic geometry of Yn → P1:

I Theorem (Chai–Lin–W, CJM 2015)
Suppose that S = {a1, · · · , an} is the blow-up set of a sequence of solutions
uk to with ρk → 8πn as k→ ∞, then S ∈ Yn := X̄n \ {∞}. Moreover,

(1) If ρk 6= 8πn then S is a branch point (a = −a) of Yn → C.
(2) If ρk = 8πn for all k, then S is not a branch point of Yn.
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Pre-modular forms

I Now we study the last equation on X̄n:

0 = −4π ∑n
i=1∇G(ai) = ∑n

i=1 Z(ai). (2)

I Consider the rational function on En:

zn(a1, . . . , an) := ζ(a1 + · · ·+ an)−∑n
i=1 ζ(ai).

I Let ai = riω1 + siω2, then

−4π ∑∇G(ai) = ∑(ζ(ai)− riη1 − siη2)

= ζ(∑ ai)− (∑ ri)η1 − (∑ si)η2 − zn(a)

= Z(∑ ai)− zn(a).

Hence (2) is equivalent to

zn(a) = Z(∑ ai). (3)
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I It is thus crucial to study the branched covering map

σ : X̄n → E, a 7→ σ(a) :=
n

∑
i=1

ai.

Theorem (Lin–W 2013, JEP 2017)

(1) deg σ = 1
2 n(n + 1).

(2) There is a universal (weighted homogeneous) polynomial
Wn(x) ∈ C[g2, g3,℘(σ),℘′(σ)][x] of degree 1

2 n(n + 1) with

Wn(zn) = 0.

Moreover, zn ∈ K(X̄n) is a primitive generator for the field
extension K(X̄n) over K(E).

(3) The function Zn(σ; τ) := Wn(Z) is pre-modular of weight
1
2 n(n + 1). That is, it is Γ(N)-modular if σ ∈ Eτ [N].
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I Idea of proof for (1): Apply Theorem of the Cube: For any three
morphisms f , g, h : Vn −→ E and L ∈ Pic E,

(f + g + h)∗L ∼= (f + g)∗L⊗ (g + h)∗L⊗ (h + f )∗L

⊗ f ∗L−1 ⊗ g∗L−1 ⊗ h∗L−1.

I Apply to the case Vn ⊂ En which is the ordered n-tuples so that
Vn/Sn = X̄n, and deg L = 1. We prove inductively that the map

fk(a) := a1 + · · ·+ ak

has degree 1
2 k(k + 1)n!. This is NOT HARD to check for k = 1, 2.

I From k to k + 1, we let f = fk−1, g(a) = ak, and h(a) = ak+1.

I Then fk+1 has degree n! times

1
2 k(k + 1) + 3 + 1

2 k(k + 1)− 1
2 (k− 1)k− 1− 1 = 1

2 (k + 1)(k + 2).
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I Idea of proof of (2): Major tool: tensor product of two Lamé
equations w′′ = I1w and w′ = I2w, where I = n(n + 1)℘(z),
I1 = I + Ba and I2 = I + Bb.

I For X̄n(τ) smooth, and a general point σ0 ∈ E, we need to show
that the 1

2 n(n + 1) points on the fiber of X̄n → E above σ0 has
distinct zn values. It is enough to show that for σ(a) = σ(b) = σ0,
the condition ∑ ζ(ai) = ∑ ζ(bi) implies Ba = Bb (and then a = b).

I If w′′1 = I1w1 and w′′2 = I2w2, then the product q = w1w2 satisfies

q′′′′ − 2(I1 + I2)q′′ − 6I′q′ + ((Ba − Bb)
2 − 2I′′)q = 0.

I If a 6= b, by addition law we find that Q = waw−b + w−awb is an
even elliptic function solution, namely a polynomial in x = ℘(z).
This leads to strong constraints on the corresponding 4-th order
ODE in variable x, and eventually leads to a contradiction for
generic choices of σ0.
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Indeed,

p(x)2....
q + 3p(x)ṗ(x)

...
q

+
( 3

4 ṗ(x)2 − 2(2(n2 + n− 12)x + Ba + Bb)p(x)
)
q̈

−
(
(2(n2 + n− 3)x + Ba + Bb)ṗ(x) + 6(n2 + n− 2)p(x)

)
q̇

+
(
(Ba − Bb)

2 − n(n + 1)ṗ(x)
)
q = 0.

(4)

As an even elliptic function, Q takes the form

Q(x) = C
n

∏
i=1

(℘(z)− ℘(ci)) =: C
n

∏
i=1

(x− xi)

= C(xn − s1xn−1 + s2xn−2 − · · ·+ (−1)nsn),

The xn+2 terms agree automatically. The xn+1 degree gives

∑℘(ci) = s1 = 1
2

Ba + Bb
2n− 1

= 1
2 (∑℘(ai) + ∑℘(bi)).
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I Inductively the xn+2−i coefficient in (4) gives recursive relations
to solve si interns of Ba + Bb, (Ba − Bb)

2 and g2, g3 for i = 1, . . . , n.

I Indeed

si = si(Ba + Bb, (Ba − Bb)
2, g2, g3) = Ci(Ba + Bb)

i + · · ·

is homogeneous of degree i if we assign deg Ba = deg Bb = 1
and deg g2 = 2, deg g3 = 3.

I There are two remaining consistency equations F1 = 0, F0 = 0
coming from the x1 and x0 coefficients in (4).

I In fact (Ba − Bb)
2 is a factor of both equations and we may write

F1(Ba, Bb) = (Ba − Bb)
2d1G1(Ba, Bb) and

F0(Ba, Bb) = (Ba − Bb)
2d0G0(Ba, Bb).

I If Ba 6= Bb (i.e ∑℘(ai) 6= ∑℘(bi)), then

G1(Ba, Bb) = 0, G0(Ba, Bb) = 0,

which has only a finite number of solutions (Ba, Bb)’s, i.e. Eτ’s.
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Example (of compatibility equations for n = 2)
For n = 2 we have s1 = 1

6 (Ba + Bb) and

s2 = 1
36 (Ba + Bb)

2 + 1
72 (Ba − Bb)

2 − 1
4 g2.

The first compatibility equation from x1 is (after substituting s1)

1
6 (Ba − Bb)

2(Ba + Bb) = 0.

The second compatibility equation from x0 is

(Ba − Bb)
2( 1

36 (Ba + Bb)
2 + 1

72 (Ba − Bb)
2 − 1

6 g2) = 0.

If Ba 6= Bb then Bb = −Ba and then we can solve Ba, Bb:

B2
a = 3g2 =⇒ ℘(a1) + ℘(a2) = ±

√
g2/3.

Such a ∈ X̄2 indeed lies at the branch loci of the Lamé curve.
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Example (n = 2)
For z2(a1, a2) = ζ(a1 + a2)− ζ(a1)− ζ(a2), on X2:

z3
2(a)− 3℘(a1 + a2)z2(a)− ℘′(a1 + a2) = 0.

On E2 it has one more term − 1
2 (℘

′(a1) + ℘′(a2)). Thus,

Z2(σ; τ) = W2(Z) = Z3 − 3℘(σ)Z− ℘′(σ).

Example (n = 3)
For z = z3(a) = ζ(a1 + a2 + a3)− ζ(a1)− ζ(a2)− ζ(a3), on X3:

z6 − 15℘z4 − 20℘′z3 + ( 27
4 g2 − 45℘2)z2 − 12℘′℘z− 5

4℘
′2 = 0.

Thus, Z3(σ; τ) = W3(Z).
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I Key point: Z1 ≡ Z = −4π∇G is the Hecke modular function.
The critical point equation (⇐⇒ type II solutions of MFE) is
transformed into zero of pre-modular forms.

I For general n ≥ 1, we have the equivalences:

• Solution u to MFE for ρ = 8πn.

• Periods integral
∫

Lj

g ∈
√
−1R (= ωj coordinates of ∑ ai.)

• Green equation
n

∑
i=1
∇G(ai) = 0 on Xn.

• zn(a) = Z(σ(a)).
• Non-trivial zero of Zn(σ; τ) := Wn(Z).

I Remark on the last one: the branch point a ∈ Yn\Xn (a 6= −a)
satisfies the Green equation trivially.

END
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