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ABSTRACT. For ordinary flops over a smooth base, we determine the de-
fect of cup product under the canonical correspondence and show that it
is corrected by the small quantum product attached to the extremal ray.
If the flop is of splitting type, the big quantum cohomology ring is also
shown to be invariant after an analytic continuation in the Kähler moduli
space.

This is a joint work with Yuan-Pin Lee (U. of Utah) and Hui-Wen
Lin (Taiwan U.), which generalizes our previous similar result on sim-
ple flops [3].

0.1. Background. Two complex manifolds X and X′ are K-equivalent, de-
noted by X =K X′, if there are proper birational morphisms (φ, φ′) : Y →
X×X′ such that φ∗KX = φ′∗KX′ . Major examples come from birational mini-
mal models in Mori theory and especially from birational Calabi-Yau manifolds
in the mathematical study of string theory. K-equivalent projective mani-
folds share the same Betti and Hodge numbers. It has been conjectured
that a canonical correspondence T ∈ A(X× X′) exists which induces isomor-
phisms of cohomology groups and preserves the Poincaré pairing. For a
survey, see [7].

However, simple examples shows that the classical cup product is gen-
erally not preserved under F . Since cohomology product corresponds to
correlations of fields in quantum field theory, it is expected that quantum
product would be more natural than the cup product among K-equivalent
manifolds.

Flops are typical examples of K-equivalent birational maps:
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In fact they form the building blocks to connect birational minimal models.
The simplest flop is the simple P1 flop (Atiyah flop) in dimension 3. It is
known that up to deformations it generates, locally or symplectically, all K-
equivalent maps for threefolds. The quantum corrections by extremal ray
invariants to the cup product in the local 3D case was first noticed by Witten
[8] and later globalized by Li-Ruan through the degeneration formula [6].
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The higher dimensional generalizations are known as ordinary Pr flops
(also abbreviated as “ordinary flops” or “Pr flops”). The local geometry is
encoded by (S, F, F′) where S is a smooth variety and F, F′ are two rank
r + 1 vector bundles over S. If Z ⊂ X is the f -exceptional loci, then ψ̄ :
Z ∼= P(F) → S ⊂ X̄ with fibers spanned by the flopped curve C ∼= P1 and
NZ/X = ψ̄∗F′ ⊗OZ(−1). Similar structure holds for Z′ ⊂ X′.

The study of invariance of quantum product under ordinary flops in
higher dimensions was started in [3]. The canonical correspondence is
given by the graph closure T = [Γ̄ f ] and the quantum invariance under
F = T∗ : QH(X) → QH(X′) is proved for all simple Pr flops, i.e. with
S = pt. The crucial idea behind is to interpret F -invariance in terms of
analytic continuations in Gromov-Witten theory.

Let Mg,n(X, β) be the moduli space of stable maps from genus g nodal
curves with n marked points to X, and let ei : Mg,n(X, β) → X be the
evaluation maps. The Gromov-Witten potential

FX
g (t) = ∑

n,β

qβ

n!
〈tn〉Xg,n,β = ∑

n≥0, β∈NE(X)

qβ

n!

∫
[Mg,n(X,β)]vir

n

∏
i=1

e∗i t

is a formal function in t ∈ H(X) and Novikov variables qβ, with β ∈
NE(X), the Mori cone of effective classes of one cycles. Modulo convergence
issue, it is a function on the complexified Kähler cone ω ∈ KC

X := H1,1
R + iKX

via
qβ = e2πi(β.ω).

FX
g and FX′

g share the same variable t ∈ H ∼= H(X, C) ∼= H(X′, C) under
F , but different variables in NE(X) and NE(X′). In the formal level F qβ =
qF β. But for ` = [C] (resp. `′ = [C′]) being the flopped curve classes,

F ` = −`′

which is not effective. By duality this implies that KC
X ∩ KC

X′ = ∅ in H2
C,

hence FX
g and FX′

g have different domains and any comparison of them could

make sense only after analytic continuations over KC
X ∪KC

X′ ⊂ H2
C.

Let {Ti} be a basis of H with {Ti} being the dual basis with respect to the
Poincaré pairing. Denote by t = ∑ tiTi. The big quantum ring (QH(X), ∗)
uses only the genus zero potential with 3 or more marked points:

Ti ∗t Tj = ∑
k

∂3FX
0

∂ti∂tj∂tk (t)Tk = ∑
n≥0, β∈NE(X)

qβ

n!
〈Ti, Tj, Tk, tn〉X0,n+3,βTk.

The Witten-Dijgraff-Verlinde-Verlinde equation (WDVV) guarantees that ∗t
is a family of associative products on H parameterized by t ∈ H. This in
tern equips H a structure of formal linear Frobenius manifold HX with inte-
grable (= flat) Dubrovin connection

∇z = d− z−1 ∑
i

dti ⊗ Ti∗t
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on the tangent bundle TH = H × H with parameter z ∈ C×.
There is a natural embedding of KC

X in H. In suitable choice of coor-
dinates we have q` = e2πit` with the Kähler constraint Im t` > 0. Since
now F q` = q−`′ , {q`, q`′} serve as an atlas for P1, the compactification of
C/Z ∼= C×. This gives the formal H an analytic P1 direction. In [3], for
simple flops the structural constants ∂3

ijkFX
0 (t) for big quantum product are

shown to be analytic (in fact algebraic) in q`. Moreover, F identifies HX
and HX′ through analytic continuations over this P1. Bases on this, in [2]
the Frobenius structure is further exploited to conclude analytic continua-
tions from FX

g to FX′
g for all simple flops and for all g ≥ 0.

0.2. Main results. This current work studies Gromov-Witten theory, mostly
in g = 0, under flops over a non-trivial base. It inherits the basic structure
developed in [3] for the simple case, with various technical improvements
to handle the complexity arising from the geometry of (S, F, F′).

The major steps are: (1) Determination of the defect of cup product, (2)
Quantum corrections attached to the flopping extremal ray N`, (3) Reduc-
tion to local models Xloc = P(NZ/X ⊕ O) and X′loc = P(NZ′/X′ ⊕ O) by
degeneration analysis, (4) Further reduction to quasi-linearity via reconstruc-
tion and WDVV equation, and (5) Proof of quasi-linearity for split flops via
Birkhoff factorizations (BF) and the generalized mirror transform (GMT).

We now give a brief outline of ideas involved in these steps.

(1) Let {ti} be a basis of A(S) with dual {t̂i}. Let h = c1(OZ(1)) and
Hk = ck(QF) where QF → Z = P(F) is the universal quotient bundle.
Similarly we define h′ and H′k on the X′ side. The Hk’s are of fundamental
importance since

F Hk = (−1)r−k H′k
and the dual basis of {tihj} in A(Z) is given by {t̂i Hr−j}.

Theorem 0.1 (Topological defect). Let a1, a2, a3 ∈ A(X) with ∑ deg ai =
dim X. Then

(F a1.F a2.F a3)X′ − (a1.a2.a3)X

= (−1)r ×∑i∗,j∗
(a1.t̂i1 Hr−j1)

X(a2.t̂i2 Hr−j2)
X(a3.t̂i3 Hr−j3)

X

× (sj1+j2+j3−(2r+1)(F + F′∗)ti1 ti2 ti3)
S,

where si is the i-th Segre class.

(2) The stable map moduli for the extremal ray has a bundle structures
over S:

M0,n(Pr, d`) // M0,n(Z, d`)
ei //

Ψn

��

Z

ψ̄
zztttttttttttt

S
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In this case, the Gromov-Witten invariants on X are reduced to twisted
invariants on Z by certain obstruction bundles. We define the fiber integral〈

∏n
i=1 hji

〉/S

d
:= Ψn∗

(
∏n

i=1 e∗i hji
)
∈ Aµ(S)

as a ψ̄-relative invariant over S, a cycle of codimension µ := ∑ ji − (2r + 1 +
n− 3). The absolute invariant is obtained by the pairing on S:

〈t1hj1 , · · · , tnhjn〉Xd =
(
〈hj1 , · · · , hjn〉/S

d . ∏n
i=1 ti

)S
.

If µ = 0 then the invariant reduces to the simple case. This happens for
n = 2 since then j1 = j2 = r. Thus we may calculate extremal functions
based on the 2-point case by reconstruction. To state the result, let

f (q) :=
q

1− (−1)r+1q

which satisfies the functional equation f (q) + f (q−1) = (−1)r.
For 3-point functions, we show that Wµ := ∑d∈N〈hj1 , hj2 , hj3〉/Sqd with

1 ≤ ji ≤ r is in Aµ(S)[ f ] (polynomial in f ) and independent of the choices
of ji’s.

Theorem 0.2 (Quantum corrections). The function Wµ is the action on f by a
Chern classes valued polynomial in the operator δ = qd/dq. It satisfies

Wµ − (−1)µ+1W ′µ = (−1)rsµ(F + F′∗).

This implies that the topological defect is corrected by the 3-point ex-
tremal functions. The analytic continuation for n ≥ 4 points follows by
reconstruction.

(3) To compare GW invariants of non-extremal classes, the application
of degeneration formula and deformation to the normal cone is well suited for
ordinary flops with base S. It reduces the problem to local models p : Ẽ =
P(N ⊕O) → Z, p′ : Ẽ′ = P(N′ ⊕O) → Z with induced flop f : Ẽ 99K Ẽ′.
The reduction has two steps. The first reduces problems to relative local
invariants 〈A | ε, µ〉(Ẽ,E) where E ⊂ Ẽ is the infinity divisor. The second is a
further reduction back to absolute local invariants, with possibly descendent
insertions coupled to E ( f -special type).

The local model p̄ := ψ̄ ◦ p : Ẽ→ S and the flop f are all over S, with sim-
ple case as fibers. In particular, kernel of p̄∗ : N1(Ẽ) → N1(S) is spanned
by the p-fiber line class γ and ψ̄-fiber line class `. F is compatible with p̄.
Namely

N1(Ẽ) F //

p̄∗⊕d2 %%LLLLLLLLLL
N1(Ẽ′)

p̄′∗⊕d′2xxrrrrrrrrrr

N1(S)⊕Z
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is commutative. Thus functional equation of a generating series 〈A〉 is
equivalent to those of its various subseries (fiber series) 〈A〉βS,d2 labelled
by NE(S)⊕Z.

Theorem 0.3 (Degeneration reduction). To prove F 〈α〉X ∼= 〈F α〉X′ for all
α, it is enough to prove the local case f : Ẽ → Ẽ” for descendent invariants of
f -special type:

F 〈A, τk1 ε1, . . . , τkρ
ερ〉ẼβS,d2

∼= 〈F A, τk1 ε1, . . . , τkρ
ερ〉Ẽ

′
βS,d2

for any A ∈ H∗(Ẽ)⊕n, k j ∈N∪ {0}, ε j ∈ H∗(E), βS ∈ NE(S) and d2 ≥ 0.

(4) The degeneration reduction works for the higher genus case as well.
But for g = 0 more can be said. We assume now X = Xloc = Ẽ. Since
X → S is a double projective bundle, H(X) is generated by H(S) and the
relative hyperplane classes h for Z → S and ξ for X → Z. Applications
of the reconstruction [4], by moving all the divisors h, ξ as well as ψ classes
into the last insertion, reduces the problem to

〈t1, . . . , tn−1, tnτkhjξ i〉XβS,d2

with t∗ ∈ H(S), d2 ∈ Z, where k 6= 0 only if i 6= 0.
Since f is an isomorphism outside Z, the appearance of non-trivial ξ with

all other insertions from S seems to suggests the term-wise equality of such
series on X and X′. This is true for simple flops, but it tuns out to be too
näive for general S. The best we can hope is still up to analytic continuation:

Conjecture 0.4 (Quasi-linearity).

F 〈t1, . . . , tn−1, τkaξ〉XβS,d2
∼= 〈t1, . . . , tn−1, τkF aξ〉X′βS,d2

.

Ii is crucial that we may reduce all fiber series into the case with the last
insertion being τkaξ i with i 6= 0. For if d2 6= 0, by the divisor axiom we get

〈t1, . . . , tn−1, a〉XβS,d2
= 〈t1, . . . , tn−1, a, ξ〉XβS,d2

/d2.

If d2 = 0, the reduction is achieved by a series of delicate applications of
the WDVV equation.

(5) So far everything works for general bundles F and F′. In the last step
we work out the quasi-linearity for ordinary flops of splitting type, namely
F ∼=

⊕r
i=0 Li and F′ ∼=

⊕r
i=0 L′i for some line bundles Li and L′i on S.

Theorem 0.5 (Main theorem). The quasi-linearity holds for local ordinary flops
of splitting type. Hence the big quantum cohomology ring is invariant under or-
dinary flops of splitting type up to analytic contiunations.

The splitting assumption allows to apply the C× localizations technique
along the fibers of the toric bundle X → S. Recall that the big J function
JX(z−1; τ) = 1 + τ/z + O(z−2) with τ ∈ H(X), is the generating function
of all genus zero GW invariants with at most one descendent insertion.
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A recent result of Brown [1] says that certain localization data, the hyper-
geometric modification

IX(z, z−1; t1, t2, t) := ∑ e
t1h+t2ξ

z IX/S
β (z, z−1)ψ̄∗ JS

βS
(z−1; t)

with t ∈ H(S), lies in Givental’s Lagrangian cone generated by JX(z−1; τ).
Based on the fact that the fiber cohomology are generated by divisor

classes, we translate it (using big quantum differential equations) into

JX(z−1; τ) = B(z; ∂)IX(z, z−1; t1, t2, t),

where B(z; ∂) = 1 + O(z) is a differential operator in t1, t2 and t which
removes the z-polynomial part of IX in the NE(X)-adic topology. This pro-
cess is a modification of the usually known Birkhoff factorization, and the
change of variables

τ = t + t1h + t2ξ + · · ·
is the generalized mirror transform (GMT) which equates the z−1 term.

Our proof of the quasi-linearity is based on the explicit symmetry of IX/S
β

under F and through direct calculations via BF and GMT. Interesting renor-
malization phenomenon occurs in our proof. In this talk I will give explicit
examples to demonstrate the renormalization procedure on GMT.
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