Aspects on Calabi-Yau moduli

Chin-Lung Wang
National Taiwan University

The 90th Anniversary of Tsinghua Math. April 23, 2017

Contents

- Distance
- Curvature
- Singularities
- Transitions
- Invariance

Distance

For a polarized family of Calabi-Yau n-folds $\pi: \mathfrak{X} \rightarrow S$,

$$
\omega_{W P}=c_{1}\left(F^{n},\langle,\rangle\right)=-\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \langle\Omega, \Omega\rangle
$$

where Ω is any local holomorphic section of $F^{n}=\pi_{*} K_{\mathfrak{X} / S}$
Theorem (W-1996)
Let $\mathscr{H} \rightarrow \Delta^{\times}$be a polarized VHS of weight n with $\operatorname{rank} F^{n}=1$. Then $0 \in \Delta$ is at finite distance if and only if

$$
N F_{\infty}^{n}=0
$$

Here F_{∞}^{\bullet} is the limiting Hodge filtration and N is the nilpotent part of the monodromy operator.

Assume that $S=\left(\Delta^{\times}\right)^{r} \times \Delta^{m}, 0 \in \bar{S}=\Delta^{r+m}$, and

$$
D=\bar{S} \backslash S=D_{1} \cup \cdots \cup D_{r}
$$

a NCD with nilpotent monodromy N_{j} along $D_{j}=\left(t_{j}\right)$.
Conjecture
The point $0 \in \bar{S}$ is at finite $g_{W P}$ distance if and only if

$$
N_{j} F_{\infty}^{n}=0, \quad j=1, \ldots, r
$$

Here F_{∞}^{\bullet} is the limiting Hodge filtration with respect to $N=\sum_{j=1}^{r} N_{j}$.
\Leftarrow is easy: for $\gamma(t)=\left(t^{d_{1}}, \ldots, t^{d_{r}}, c_{1}, \ldots, c_{m}\right), d_{j}>0$,

$$
N_{\vec{d}}=\sum_{j=1}^{r} d_{j} N_{j}
$$

all define the same weight filtration W_{\bullet}.

Approach I: VMHS

By the nilpotent orbit theorem, we may pick

$$
\Omega(t)=e^{\frac{1}{2 \pi \sqrt{-1}} \sum\left(\log t_{j}\right) N_{j}} a(t) \in F_{t}^{n}
$$

where $a(t)$ is holomorphic in t with $a(0) \in F_{\infty}^{n}$.
Theorem (T.-J. Lee 2016)
Let $\pi: \mathfrak{X} \rightarrow S=\left(\Delta^{\times}\right)^{2} \times \Delta^{m}$ be a polarized family of Calabi-Yau 3-folds. Then the distance measured by the dominant term of the Weil-Petersson potential is infinite if $N_{j} F_{\infty}^{3} \neq 0$ for some $j \in\{1,2\}$.

Question

Is there a geodesic $\gamma \subset S$ towards $0 \in \bar{S}$ which lies in a holomorphic curve $C \subset S$? Is there a geodesic which fails this property?

Approach II: Hessian geometry

Given $d s^{2}=\sum h_{i j} d y_{i} \otimes d y_{j}, h=-\log p$, i.e. $h_{i j}=p^{-2} p_{i} p_{j}-p^{-1} p_{i j}$. Assume that $\left(p_{i j}\right)=D^{2} p$ is invertible, $(d p)^{2}:=\sum p^{i j} p_{i} p_{j}$, then

$$
\begin{gathered}
h^{i j}=-p\left(p^{i j}-\frac{p^{i} p^{j}}{(d p)^{2}-p}\right), \\
0<\|\nabla h\|^{2}=\sum h^{i j} h_{i} h_{j}=-\frac{1}{p}\left((d p)^{2}-\frac{\left((d p)^{2}\right)^{2}}{(d p)^{2}-p}\right)=\frac{(d p)^{2}}{(d p)^{2}-p} .
\end{gathered}
$$

Hence $(d p)^{2}>p$, and $\|\nabla h\| \leq f \Longleftrightarrow p \leq\left(1-f^{-2}\right)(d p)^{2}$. Then

$$
|\gamma|=\int_{\gamma}\left\|\gamma^{\prime}\right\| d s \geq \int_{\gamma} \frac{1}{f}\left|\nabla h \cdot \gamma^{\prime}\right| d s \geq\left|\int_{\gamma} \frac{d h}{f}\right| .
$$

Then $|\gamma|=\infty$ if $f=c$, or $f=c|h| \log |h| \log (\log |h|)$ etc..

Curvature

Let $\mathscr{H} \rightarrow S$ be an effective polarized VHS of weight n with $h^{n, 0}=1$. Let $g_{W P}=\sum g_{i j} d t_{i} \otimes d \bar{t}_{j}$ on S.
Theorem (W-1997, see also Schumacher 1993)
The full curvature tensor of $g_{W P}$ is given by

$$
R_{i j k \bar{\ell}}=-\left(g_{i \bar{j}} g_{k \bar{\ell}}+g_{i \bar{\ell}} g_{k \bar{j}}\right)+\frac{\left\langle\sigma_{i} \sigma_{k} \Omega, \sigma_{j} \sigma_{\ell} \Omega\right\rangle}{\langle\Omega, \Omega\rangle}
$$

where $\sigma_{i}=\sigma\left(\partial / \partial t_{i}\right)$ is the infinitesimal period map.
For $n=3$, it is equivalent to Strominger's formula

$$
R_{i j \bar{k} \bar{\ell}}=-\left(g_{i \bar{j}} g_{k \bar{\ell}}+g_{i \bar{\ell}} g_{k \bar{j}}\right)+\sum_{p, q} g^{p \bar{q}} F_{p i k} \overline{F_{q j \ell}}
$$

where $F_{i j k}$ is the Bryant-Griffiths cubic form $F_{i j k}=\frac{\int_{X} \partial_{i} \partial_{j} \partial_{k} \Omega \wedge \Omega}{\int_{X} \Omega \wedge \Omega}$.

Definition

The length of Yukawa coupling $\ell(\pi)$ for a VHS $\pi: \mathscr{H} \rightarrow S$ is the largest integer ℓ with $\sigma_{i_{1}} \cdots \sigma_{i_{\ell}} \not \equiv 0$ for some $i_{1}, \ldots i_{\ell}$.
(i) The existence of maximal degenerate point implies that $\ell(\pi)=n$. Then the VHS over S is rigid [Viehweg and Zuo].
(ii) There exist maximal families (moduli) of Calabi-Yau manifolds $\pi: \mathfrak{X} \rightarrow \mathscr{M}$ with $\ell(\pi)=1$. Then

$$
R_{i \bar{j} \bar{\ell} \bar{\ell}}=-\left(g_{i \bar{j}} g_{k \bar{\ell}}+g_{i \bar{\ell}} g_{\bar{k} \bar{j}}\right)
$$

That is, $\left(\mathcal{M}, g_{W P}\right)$ is locally complex hyperbolic.
Question
Is there a mirror-like phenomenon near the boundary of \mathscr{M} ?

Examples

Let $\mathfrak{M}_{n, m} \ni A=\left\{H_{1}, \ldots, H_{m}\right\}$ be the space of m-hyperplane arrangements of P^{n} in general positions. Let $n \geq 3$ be odd and

$$
f_{n}: \mathfrak{X}_{n} \rightarrow \mathfrak{M}_{n, n+3}
$$

be the family of $r=\frac{1}{2}(n+3)$-fold cyclic cover $\pi_{A}: X_{A} \rightarrow P^{n}$ branched along $H_{A}=\bigcup_{i=1}^{n+3} H_{i} \subset P^{n}$. Then

$$
K_{X_{A}}=\pi_{A}^{*} K_{P^{n}}+(r-1) H_{A} \sim 0
$$

Theorem (Sheng-Xu-Zuo 2013)

There is a crepant resolution family $\tilde{f}_{n}: \tilde{\mathfrak{X}}_{n} \rightarrow \mathfrak{M}_{n, n+3}, \widetilde{X}_{A} \rightarrow X_{A}$, which is a maximal family of Calabi-Yau n-folds with $\ell\left(\tilde{f}_{n}\right)=1$.

The S_{n}-Galois cover $\gamma:\left(P^{1}\right)^{n} \rightarrow \operatorname{Sym}^{n} P^{1}=P^{n}$ induces

$$
\Gamma: \mathfrak{M}_{1, n+3} \cong \mathfrak{M}_{n, n+3}
$$

by $p_{i} \in P^{1} \mapsto H_{i}=\gamma\left(\left\{p_{I}\right\} \times\left(P^{1}\right)^{n-1}\right)$. Now $f_{1}: \mathscr{C}=\mathfrak{X}_{1} \rightarrow \mathfrak{M}_{1, n+3}$ is a family of curves C which are r-cyclic covers of P^{1} at $n+3$ general points. Then $g(C)=\frac{1}{4}(n+1)^{2}, \operatorname{dim} \mathfrak{M}_{1, n+3}=n=h^{1, n-1}\left(\widetilde{X}_{A}\right)$, and

where $G=N \rtimes S_{n}, N$ is abelian, and h_{n} is a \mathbb{Z} / r-Galois cover.

Question

Classify maximal Calabi-Yau families π with $\ell(\pi)=1$. Is the harmonic $K-S$ field $v \in\left(T^{*}\right)^{0,1} \otimes T \cong \operatorname{Hom}(\bar{T}, T)$ corresponding to $\sigma_{i} \Omega$ parallel?

Singularities

Definition

A Q-Gorenstein variety \bar{X} has at most canonical singularities if there is a resolution $\phi: Y \rightarrow \bar{X}$ such that $K_{Y}=\phi^{*} K_{X}+\sum a_{i} E_{i}$ and $a_{i} \geq 0$.

Theorem (W-1996)
(i) For a semi-stable CY degeneration $\mathfrak{X} \rightarrow \Delta$ with $\mathfrak{X}_{0}=\bigcup_{i} X_{i}$, $N F_{\infty}^{n}=0 \Longleftrightarrow$ there is a component X_{0} in \mathfrak{X}_{0} with $h^{n, 0} \neq 0$.
(ii) Hence a $C Y$ degeneration $\pi: \mathfrak{X} \rightarrow \Delta$ with $\mathfrak{X}_{0}=\bar{X}$ irreducible and with at most canonical singularities is at finite $g_{W P}$ distance.

Theorem (W-2003)

Let $\pi: \mathfrak{X} \rightarrow \Delta$ is a finite distance degeneration of $C Y$ manifolds. Assuming MMP, then up to a finite base change and birational modifications on the central fiber \mathfrak{X}_{0} has only canonical singularities.

Idea of proof

- The s.s. reduction $\pi^{\prime}: \mathfrak{X}^{\prime} \rightarrow \Delta$ of π is also at finite distance. Write $\mathfrak{X}_{0}^{\prime}=\bigcup_{i=0}^{N} X_{i}^{\prime}$ with X_{0}^{\prime} being the unique component with $0 \neq \Omega \in \Gamma\left(X_{0}^{\prime}, K_{X_{0}^{\prime}}\right)$.
- Let $\pi^{\prime \prime}: \mathfrak{X}^{\prime \prime} \rightarrow \Delta$ be the relative minimal model of π^{\prime} constructed from divisorial contractions and flips. The component X_{0}^{\prime} is not contracted, for otherwise it will be covered by extremal rational curves and $\kappa\left(X_{0}^{\prime}\right)=-\infty$.
- The minimality of $\pi^{\prime \prime} \Longrightarrow K_{\mathfrak{X}^{\prime \prime}} \sim 0$. Also if $\mathfrak{X}_{0}^{\prime \prime}=\sum_{i=0}^{N} X_{i}$ with $N>0$ then $-K_{X_{i, \text { red }}}=-\left.\sum_{j \neq i} X_{j}\right|_{X_{i}}$ is anti-effective on $X_{i, \text { red }}$ for each i. Hence the component X_{0} corresponding to X_{0}^{\prime} does not have a non-zero section Ω.
- We conclude $\mathfrak{X}_{0}^{\prime \prime}=X_{0}$ has at most canonical singularities.
- This special MMP was proved by Lai and Fujino in 2011.

Hausdorff convergence

Conjecture (W-1998, 2003)
(i) CY degeneration with $d_{W P}<\infty$
(ii) $\Longleftrightarrow{ }_{I}$ Continuity of $\Omega(t)\left(\Longleftrightarrow N_{j} F_{\infty}^{n}=0 \Longleftrightarrow\right.$ canonical)
(iii) $\Longleftrightarrow_{I I} C Y$ family with uniformly bounded diameters.

Theorem (Rong-Zhang 2011)

Let $(\mathfrak{X}, \mathscr{L}) \rightarrow \Delta$ be a degeneration of polarized $C Y$ n-folds with $K_{\mathfrak{X} / \Delta} \sim 0$. Let $g_{t}, t \in \Delta^{\times}$, be the Yau metric in $c_{1}\left(\left.\mathscr{L}\right|_{\mathfrak{X}_{t}}\right)$. Then

$$
\operatorname{diam}_{g_{t}} \mathfrak{X}_{t} \leq 2+c\langle\Omega(t), \Omega(t)\rangle
$$

This proves $\Longrightarrow{ }_{I I}$. Let $\mathcal{K}(n, c, V)$ be the class of projective manifolds with volume $=V, \mid$ Ric $\mid \leq 1$, and $\operatorname{Vol} B_{r} \geq c r^{2 n}$ for any r-ball with $r \leq \operatorname{diam} X$. (Here $n=\operatorname{dim}_{\mathbb{C}} X$.)
[Tosatti 2015] volume non-collapsing \Longleftrightarrow uniform boundedness of diameter via Bishop volume comparison:

$$
\frac{\operatorname{Vol}_{g_{t}} B_{r}}{c_{n} r^{2 n}} \geq \frac{\int_{\mathfrak{X}_{t}} \omega_{t}^{n}}{c_{n}\left(\operatorname{diam}_{g_{t}} \mathfrak{X}_{t}\right)^{2 n}} .
$$

Theorem (Donaldson-Sun 2014)

(i) Given n, V and $c, \exists k, N \in \mathbb{N}$ such that any $X \in \mathcal{K}(n, c, V)$ can be embedded in P^{N} by $\Gamma\left(X, L^{\otimes k}\right)$.
(ii) Let $X_{j} \in \mathcal{K}(n, c, V)$ with Hausdorff limit X_{∞}. Then X_{∞} is homeomorphic to a normal variety $W \subset P^{N}$. By passing to a subsequence and taking suitable projective transformations, we have $\mathrm{X}_{j} \subset P^{N}$ converges to W in P^{N} which is klt.
[Takayama 2015] then proved $\Longleftarrow_{\text {II }}$.

Metric completion

Conjecture

Given an irreducible component \mathcal{M} of the moduli of polarized $C Y$ n-folds, there exist a finite number of $\mathcal{M}_{h_{j}}$'s such that

$$
\mathcal{M}^{c}=\bigcup_{j} \mathcal{M}_{h_{j}} \supset \mathcal{M}
$$

is complete w.r.t. the induced WP metric. Here $\mathcal{M}_{h_{j}}$ is an irreducible component of Viehweg's quasi-projective moduli of polarized CY with canonical singularities and with Hilbert polynomial h_{j},
[Zhang 2014] Hausdorff completion using infinite covers.
Question (Main remaining question \Longrightarrow_{I} for HD base)
Given a polarized CY degeneration $\mathfrak{X} \rightarrow S$ such that $p \in S$ is at finite WP distance. Do we have diam $\mathfrak{X}_{t}<C$ for t close to p ?

Transitions $Y \searrow X$ or $X \nearrow Y$ through \bar{X}

[Namikawa 2002] Let $S \rightarrow P^{1}$ be a rational elliptic surface with 6 singular fibers of type II (i.e., cuspidal). Then

- $\bar{X}=S \times_{P^{1}} S$ is a CY 3-fold with $6 c A_{2}$ singular points:

$$
x^{2}-y^{3}=u^{2}-v^{3} .
$$

- \bar{X} admits smoothings to $X=S_{1} \times{ }_{P^{1}} S_{2}$ with $S_{i} \rightarrow P^{1}$ having disjoint discriminant loci, and
- an explicit small resolution $\pi: Y \rightarrow \bar{X}$ exists.
- The π-exceptional loci can not be deformed to a disjoint union of ($-1,-1$)-curves since a singular fiber of type II splits up into at most 2 singular fibers of type I , and a general fiber of small deformation of a singularity of \bar{X}, which preserves small resolutions, has 3 ODPs.

Conifold transitions

Theorem (S.-S. Wang 2015)

Namikawa's examples of extremal transition can be factorized into composition of conifold transitions up to flat deformations.

Lemma

Let $Y \rightarrow \bar{X}$ be a small resolution of a terminal 3 -fold \bar{X} and X a smoothing of \bar{X}. Then $e(Y)-e(X) \geq 2|\operatorname{Sing}(\bar{X})|$ with equality holds if and only if all the singularities of X are ODPs.
Proof: Let $C_{i} \rightarrow p_{i} \in \operatorname{Sing}(\bar{X})$. Since \bar{X} is terminal Gorenstein, p_{i} is an isolated hypersurface singularity (cDV). It is well-known that

$$
e(Y)-e(X)=\sum_{i} \mu_{p_{i}}+\sum\left(e\left(C_{i}\right)-1\right),
$$

where $\mu_{p_{i}}=$ Milnor number. Supp C_{i} is a transverse union of $n_{i} P^{1}$ s and $n_{i}=e\left(C_{i}\right)-1$. So $\sum \mu_{p_{i}}+\sum n_{i} \geqslant 2|\operatorname{Sing}(X)|$, with " $=$ " if and only if $n_{i}=\mu_{p_{i}}=1$ for all i, i.e., p_{i} is an ODP.

Projective CICY web

Definition (Determinantal contractions/transitions)
Let $Y \subset S \times P^{n}$ be the zero loci of sections $s_{i} \in \Gamma\left(S \times P^{n}, \mathscr{L}_{i}\right)$, $i=0, \ldots, n$, where $\mathscr{L}_{i}=L_{i} \boxtimes \mathscr{O}_{P^{n}}(1)$ with L_{i} semi-ample on S. We write $s_{i}=\sum_{j=0}^{n} s_{i j} x_{j}$, where $s_{i j} \in \Gamma\left(S, L_{i}\right)$. For $\pi: S \times P^{n} \rightarrow S$, let

$$
\psi=\left.\pi\right|_{Y}: Y \rightarrow \bar{X}:=\pi(Y) \subset S
$$

For $p \in \bar{X}, \psi^{-1}(p)$ is not unique if and only if p is a singular point of

$$
\Delta:=\operatorname{det} s_{i j}=0
$$

Since $\Delta \in \Gamma\left(S, \otimes_{i=0}^{n} L_{i}\right)$ and $\bar{X}=(\Delta)$, if $X_{\tau}=(\tau)$ is smooth for general $\tau \in \Gamma\left(S, \otimes_{i=0}^{n} L_{i}\right)$, then we get a transition $Y \searrow X_{\tau}$.

Theorem (Greene-Hubsch 1988, S.-S. Wang 2005)
The web of CICY 3-folds in $\Pi P^{n_{j}}$ is connected by conifold transitions.

Invariance [LLW 2015]

Let $X \nearrow Y$ be a projective conifold transition of CY 3-folds through \bar{X} with k ODPs $p_{1}, \ldots, p_{k}, \pi: \mathfrak{X} \rightarrow \Delta, \psi: Y \rightarrow \bar{X}$:

$$
\begin{aligned}
& C_{i} \subset Y \\
& \left.\right|_{S_{i} / X}=T^{*} S^{3} \quad S_{C_{i} / Y}=\mathscr{O}_{P 1}(-1)^{\oplus 2} \\
& S_{i} \subset X \xrightarrow{\pi} \underset{\sim}{ } p_{i} \in \bar{X}
\end{aligned}
$$

Let $\mu:=h^{2,1}(X)-h^{2,1}(Y)>0$ and $\rho:=h^{1,1}(Y)-h^{1,1}(X)>0$.

$$
\chi(X)-k \chi\left(S^{3}\right)=\chi(Y)-k \chi\left(S^{2}\right) \Longrightarrow \mu+\rho=k .
$$

Hence there are non-trivial relations between the "vanishing cycles":

$$
\begin{aligned}
A=\left(a_{i j}\right) \in M_{k \times \mu}, & \sum_{i=1}^{k} a_{i j}\left[C_{i}\right]=0, \\
B=\left(b_{i j}\right) \in M_{k \times \rho}, & \sum_{i=1}^{k} b_{i j}\left[S_{i}\right]=0 .
\end{aligned}
$$

Let $0 \rightarrow V_{\mathbb{Z}} \hookrightarrow H_{3}(X, \mathbb{Z}) \rightarrow H_{3}(\bar{X}, \mathbb{Z}) \rightarrow 0$ and $V:=C_{\mathbb{Z}} \otimes \mathbb{C}$.

Theorem (Basic exact sequence)

We have an exact sequence of weight two pure Hodge structures:

$$
0 \rightarrow H^{2}(Y) / H^{2}(X) \xrightarrow{B} \mathbb{C}^{k} \xrightarrow{A^{t}} V \rightarrow 0 .
$$

Since $\psi: Y \rightarrow \bar{X}$ deforms in families, this identifies \mathscr{M}_{Y} as a codimenison μ boundary strata in $\mathscr{M}_{\bar{X}}$ and locally $\mathscr{M}_{\bar{X}} \cong \Delta^{\mu} \times \mathscr{M}_{Y}$. Write $V=\mathbb{C}\left\langle\Gamma_{1}, \ldots, \Gamma_{\mu}\right\rangle$ in terms of a basis Γ_{j} 's. Then the α-periods

$$
r_{j}=\int_{\Gamma_{j}} \Omega, \quad 1 \leq j \leq \mu
$$

form the degeneration coordinates around $[\bar{X}]$. The discriminant loci of $\mathscr{M}_{\bar{X}}$ is described by a central hyperplane arrangement $D_{B}=\bigcup_{i=1}^{k} D_{i}$:

Proposition (Friedman 1986)

Let $w_{i}=a_{i 1} r_{1}+\cdots+a_{i \mu} r_{\mu}$, then the divisor $D_{i}:=\left\{w_{i}=0\right\} \subset \mathcal{M}_{\bar{X}}$ is the loci where the sphere S_{i} shrinks to an ODP p_{i}.

- The β-periods in transversal directions are given by a function u :

$$
u_{p}=\partial_{p} u=\int_{\beta_{p}} \Omega
$$

- The BGY couplings extend over D_{B} and satisfy

$$
u_{p m n}:=\partial_{p m n}^{3} u=O(1)+\sum_{i=1}^{k} \frac{1}{2 \pi \sqrt{-1}} \frac{a_{i p} a_{i m} a_{i n}}{w_{i}}
$$

for $1 \leq p, m, n \leq \mu$. It is holomorphic outside this index range.

- Let $y=\sum_{i=1}^{k} y_{i} e_{i} \in \mathbb{C}^{k}$, with $e^{i \prime}$ s being the dual basis on $\left(\mathbb{C}^{k}\right)^{\vee}$. The trivial logarithmic connection on $\underline{\mathbb{C}}^{k} \oplus\left(\underline{\mathbb{C}}^{k}\right)^{\vee} \longrightarrow \mathbb{C}^{k}$ is

$$
\nabla^{k}=d+\frac{1}{z} \sum_{i=1}^{k} \frac{d y_{i}}{y_{i}} \otimes\left(e^{i} \otimes e_{i}^{*}\right)
$$

Theorem (Local invariance: $\operatorname{Exc}(\mathscr{A})+\operatorname{Exc}(\mathscr{B})=$ trivial $)$
(1) ∇^{k} restricts to the logarithmic part of $\nabla^{G M}$ on V^{*}.

Linked $A+B$ theory

Theorem (Lee-Lin-W 2015)

Let $[X]$ be a nearby point of $[\bar{X}]$ in $\mathscr{M}_{\bar{X}}$,
(1) $\mathscr{A}(X)$ is a sub-theory of $\mathscr{A}(Y)$ (e.g. quantum sub-ring in genus 0).
(2) $\mathscr{B}(Y)$ is a sub-theory of $\mathscr{B}(X)$ (invariant sub-VHS).
(3) $\mathscr{A}(Y)$ can be reconstructed from a "refined \mathscr{A} theory" on

$$
X^{\circ}:=X \backslash \bigcup_{i=1}^{k} s_{i}
$$

"linked" by the vanishing spheres in $\mathscr{B}(X)$.
(4) $\mathscr{B}(X)$ can be reconstructed from the variations of $M H S$ on $\mathrm{H}^{3}\left(Y^{\circ}\right)$,

$$
Y^{\circ}:=Y \backslash \bigcup_{i=1}^{k} C_{i},
$$

"linked" by the exceptional curves in $\mathscr{A}(Y)$.
For (3) and (4), effective methods are under developed.

Example (For (4), Lee-Lin 2016)

Conifold transitions $X \nearrow Y$ of CY 3-folds arising from toric degenerations:

$$
X \subset G=\left.G(2,4) \sim\right|_{\nmid \Psi} \sim P(2,4) .
$$

- $\mathscr{B}(X)=\tau_{G}$ (tautological systems [Lian-Song-Yau 2013]), $\mathscr{B}(Y)=\tau_{\hat{P}}($ extended GKZ [Lee-Lin 2016]).
- For τ_{G}, the symmetry come from $\operatorname{SL}(4, C)$, which has $16-1=15$ dimensions. It consists of 12 roots and 3 torus action.
- For $\tau_{\hat{p}}$, its symmetry $\operatorname{Aut}^{0}(\hat{P})$ is generated by T^{4} and 14 "roots" [Cox 1995]: for toric variety with fan Σ in $N_{\mathbb{R}}$, the roots $R(\Sigma, N)$ is given by $\left\{\alpha \in M \mid \exists p \in \Sigma_{1},(\alpha, p)=-1,\left(\alpha, p^{\prime}\right) \geq 0 \quad \forall p^{\prime} \neq p\right\}$.
- The 2 roots $\pm(1,1,1,1)$ are dropped since they move Ψ. The remaining 12 give those in τ_{G}. Thus $\left(\cup C_{i}, \tau_{\hat{p}}\right) \Longrightarrow \tau_{G}$.

HAPPY 90th BIRTHDAY TO TSINGHUA MATH

Thank you for paying attention!

