Aspects on Calabi-Yau moduli

Chin-Lung Wang National Taiwan University

The 90th Anniversary of Tsinghua Math. April 23, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

1/24

Contents

- Distance
- Curvature
- Singularities
- Transitions
- Invariance

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへ⊙

2/24

Distance

For a polarized family of Calabi–Yau *n*-folds $\pi : \mathfrak{X} \to S$,

$$\omega_{WP} = c_1(F^n, \langle \, , \rangle) = -\frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \log \langle \Omega, \Omega \rangle$$

where Ω is any local holomorphic section of $F^n = \pi_* K_{\mathfrak{X}/S}$ Theorem (W-1996)

Let $\mathscr{H} \to \Delta^{\times}$ be a polarized VHS of weight *n* with rank $F^n = 1$. Then $0 \in \Delta$ is at finite distance if and only if

$$NF_{\infty}^n=0.$$

Here F^{\bullet}_{∞} *is the limiting Hodge filtration and* N *is the nilpotent part of the monodromy operator.*

Assume that $S = (\Delta^{\times})^r \times \Delta^m$, $0 \in \overline{S} = \Delta^{r+m}$, and $D = \overline{S} \setminus S = D_1 \cup \cdots \cup D_r$

a NCD with nilpotent monodromy N_j along $D_j = (t_j)$. Conjecture The point $0 \in \overline{S}$ is at finite g_{WP} distance if and only if

 $N_j F_\infty^n = 0, \qquad j = 1, \ldots, r.$

Here F_{∞}^{\bullet} is the limiting Hodge filtration with respect to $N = \sum_{j=1}^{r} N_j$. \Leftarrow is easy: for $\gamma(t) = (t^{d_1}, \dots, t^{d_r}, c_1, \dots, c_m), d_j > 0$,

$$N_{\vec{d}} = \sum_{j=1}^r d_j N_j$$

all define the same weight filtration W_{\bullet} .

Approach I: VMHS

By the nilpotent orbit theorem, we may pick

$$\Omega(t) = e^{\frac{1}{2\pi\sqrt{-1}}\sum(\log t_j)N_j}a(t) \in F_t^n,$$

where a(t) is holomorphic in t with $a(0) \in F_{\infty}^{n}$.

Theorem (T.-J. Lee 2016)

Let $\pi : \mathfrak{X} \to S = (\Delta^{\times})^2 \times \Delta^m$ be a polarized family of Calabi–Yau 3-folds. Then the distance measured by the dominant term of the Weil–Petersson potential is infinite if $N_i F_{\infty}^3 \neq 0$ for some $j \in \{1, 2\}$.

Question

Is there a geodesic $\gamma \subset S$ *towards* $0 \in \overline{S}$ *which lies in a holomorphic curve* $C \subset S$? *Is there a geodesic which fails this property?*

Approach II: Hessian geometry

Given $ds^2 = \sum h_{ij} dy_i \otimes dy_j$, $h = -\log p$, i.e. $h_{ij} = p^{-2}p_ip_j - p^{-1}p_{ij}$. Assume that $(p_{ij}) = D^2p$ is invertible, $(dp)^2 := \sum p^{ij}p_ip_j$, then

$$h^{ij} = -p\left(p^{ij} - \frac{p^i p^j}{(dp)^2 - p}\right),$$

$$0 < \|\nabla h\|^2 = \sum h^{ij} h_i h_j = -\frac{1}{p} \left((dp)^2 - \frac{((dp)^2)^2}{(dp)^2 - p} \right) = \frac{(dp)^2}{(dp)^2 - p}.$$

Hence $(dp)^2 > p$, and $\|\nabla h\| \le f \iff p \le (1 - f^{-2})(dp)^2$. Then

$$|\gamma| = \int_{\gamma} \|\gamma'\| \, ds \ge \int_{\gamma} \frac{1}{f} \, |\nabla h \cdot \gamma'| \, ds \ge \left| \int_{\gamma} \frac{dh}{f} \right|$$

Then $|\gamma| = \infty$ if f = c, or $f = c |h| \log |h| \log(\log |h|)$ etc..

Curvature

Let $\mathscr{H} \to S$ be an effective polarized VHS of weight *n* with $h^{n,0} = 1$. Let $g_{WP} = \sum g_{i\bar{i}} dt_i \otimes d\bar{t}_j$ on *S*.

Theorem (W-1997, see also Schumacher 1993) The full curvature tensor of g_{WP} is given by

$$R_{i\bar{j}k\bar{\ell}} = -(g_{i\bar{j}}g_{k\bar{\ell}} + g_{i\bar{\ell}}g_{k\bar{j}}) + \frac{\langle \sigma_i\sigma_k\Omega, \sigma_j\sigma_\ell\Omega\rangle}{\langle\Omega,\Omega\rangle},$$

where $\sigma_i = \sigma(\partial/\partial t_i)$ is the infinitesimal period map. For n = 3, it is equivalent to Strominger's formula

$$R_{i\bar{j}k\bar{\ell}} = -(g_{i\bar{j}}g_{k\bar{\ell}} + g_{i\bar{\ell}}g_{k\bar{j}}) + \sum_{p,q} g^{p\bar{q}}F_{pik}\overline{F_{qj\ell}},$$

where F_{ijk} is the Bryant–Griffiths cubic form $F_{ijk} = \frac{\int_X \partial_i \partial_j \partial_k \Omega \wedge \Omega}{\int_X \Omega \wedge \overline{\Omega}}$.

Definition

The length of Yukawa coupling $\ell(\pi)$ for a VHS $\pi : \mathscr{H} \to S$ is the largest integer ℓ with $\sigma_{i_1} \cdots \sigma_{i_\ell} \neq 0$ for some $i_1, \ldots i_\ell$.

- (i) The existence of *maximal degenerate point* implies that $\ell(\pi) = n$. Then the VHS over *S* is rigid [Viehweg and Zuo].
- (ii) There exist maximal families (moduli) of Calabi–Yau manifolds $\pi : \mathfrak{X} \to \mathscr{M}$ with $\ell(\pi) = 1$. Then

$$R_{i\bar{j}k\bar{\ell}} = -(g_{i\bar{j}}g_{k\bar{\ell}} + g_{i\bar{\ell}}g_{k\bar{j}}).$$

That is, (\mathcal{M}, g_{WP}) is locally complex hyperbolic.

Question

Is there a mirror-like phenomenon near the boundary of \mathcal{M} ?

Examples

Let $\mathfrak{M}_{n,m} \ni A = \{H_1, \ldots, H_m\}$ be the space of *m*-hyperplane arrangements of P^n in general positions. Let $n \ge 3$ be odd and

$$f_n:\mathfrak{X}_n\to\mathfrak{M}_{n,n+3}$$

be the family of $r = \frac{1}{2}(n+3)$ -fold cyclic cover $\pi_A : X_A \to P^n$ branched along $H_A = \bigcup_{i=1}^{n+3} H_i \subset P^n$. Then

$$K_{X_A} = \pi_A^* K_{P^n} + (r-1)H_A \sim 0.$$

Theorem (Sheng-Xu-Zuo 2013)

There is a crepant resolution family $\tilde{f}_n : \tilde{\mathfrak{X}}_n \to \mathfrak{M}_{n,n+3}, \widetilde{X}_A \to X_A$, which is a maximal family of Calabi–Yau n-folds with $\ell(\tilde{f}_n) = 1$.

The S_n -Galois cover $\gamma : (P^1)^n \to \operatorname{Sym}^n P^1 = P^n$ induces

$$\Gamma:\mathfrak{M}_{1,n+3}\cong\mathfrak{M}_{n,n+3},$$

by $p_i \in P^1 \mapsto H_i = \gamma(\{p_I\} \times (P^1)^{n-1})$. Now $f_1 : \mathscr{C} = \mathfrak{X}_1 \to \mathfrak{M}_{1,n+3}$ is a family of curves *C* which are *r*-cyclic covers of P^1 at n + 3 general points. Then $g(C) = \frac{1}{4}(n+1)^2$, dim $\mathfrak{M}_{1,n+3} = n = h^{1,n-1}(\widetilde{X}_A)$, and

where $G = N \rtimes S_n$, *N* is abelian, and h_n is a \mathbb{Z}/r -Galois cover.

Question

Classify maximal Calabi–Yau families π with $\ell(\pi) = 1$. Is the harmonic K–S field $v \in (T^*)^{0,1} \otimes T \cong Hom(\overline{T}, T)$ corresponding to $\sigma_i \Omega$ parallel?

Singularities

Definition

A Q-Gorenstein variety \bar{X} has at most canonical singularities if there is a resolution $\phi : Y \to \bar{X}$ such that $K_Y = \phi^* K_X + \sum a_i E_i$ and $a_i \ge 0$.

Theorem (W-1996)

- (i) For a semi-stable CY degeneration $\mathfrak{X} \to \Delta$ with $\mathfrak{X}_0 = \bigcup_i X_i$, $NF_{\infty}^n = 0 \iff$ there is a component X_0 in \mathfrak{X}_0 with $h^{n,0} \neq 0$.
- (ii) Hence a CY degeneration $\pi : \mathfrak{X} \to \Delta$ with $\mathfrak{X}_0 = \overline{X}$ irreducible and with at most canonical singularities is at finite g_{WP} distance.

Theorem (W-2003)

Let $\pi : \mathfrak{X} \to \Delta$ is a finite distance degeneration of CY manifolds. Assuming MMP, then up to a finite base change and birational modifications on the central fiber \mathfrak{X}_0 has only canonical singularities.

Idea of proof

- ► The s.s. reduction $\pi' : \mathfrak{X}' \to \Delta$ of π is also at finite distance. Write $\mathfrak{X}'_0 = \bigcup_{i=0}^N X'_i$ with X'_0 being the unique component with $0 \neq \Omega \in \Gamma(X'_0, K_{X'_0})$.
- Let π'' : X'' → Δ be the relative minimal model of π' constructed from divisorial contractions and flips. The component X'₀ is not contracted, for otherwise it will be covered by extremal rational curves and κ(X'₀) = -∞.
- ► The minimality of $\pi'' \Longrightarrow K_{\mathfrak{X}''} \sim 0$. Also if $\mathfrak{X}''_0 = \sum_{i=0}^N X_i$ with N > 0 then $-K_{X_{i,red}} = -\sum_{j \neq i} X_j |_{X_i}$ is anti-effective on $X_{i,red}$ for each *i*. Hence the component X_0 corresponding to X'_0 does not have a non-zero section Ω .
- We conclude $\mathfrak{X}_0'' = X_0$ has at most canonical singularities.
- This special MMP was proved by Lai and Fujino in 2011.

Hausdorff convergence

Conjecture (W-1998, 2003)

- (i) CY degeneration with $d_{WP} < \infty$
- (ii) $\iff_I Continuity of \Omega(t) \iff N_j F_{\infty}^n = 0 \iff canonical)$
- (iii) $\iff_{II} CY$ family with uniformly bounded diameters.

Theorem (Rong–Zhang 2011) Let $(\mathfrak{X}, \mathscr{L}) \to \Delta$ be a degeneration of polarized CY *n*-folds with $K_{\mathfrak{X}/\Delta} \sim 0$. Let $g_t, t \in \Delta^{\times}$, be the Yau metric in $c_1(\mathscr{L}|_{\mathfrak{X}_t})$. Then

$$\operatorname{diam}_{g_t}\mathfrak{X}_t \leq 2 + c \langle \Omega(t), \Omega(t) \rangle.$$

This proves \Longrightarrow_{II} . Let $\mathcal{K}(n, c, V)$ be the class of projective manifolds with *volume* = V, $|\text{Ric}| \le 1$, and $\text{Vol } B_r \ge c r^{2n}$ for any *r*-ball with $r \le \text{diam } X$. (Here $n = \text{dim}_{\mathbb{C}} X$.)

イロト イロト イヨト イヨト 二日

[Tosatti 2015] *volume non-collapsing* \iff *uniform boundedness of diameter* via Bishop volume comparison:

$$\frac{\operatorname{Vol}_{g_t} B_r}{c_n r^{2n}} \geq \frac{\int_{\mathfrak{X}_t} \omega_t^n}{c_n \, (\operatorname{diam}_{g_t} \mathfrak{X}_t)^{2n}}.$$

Theorem (Donaldson–Sun 2014)

- (i) Given n, V and $c, \exists k, N \in \mathbb{N}$ such that any $X \in \mathcal{K}(n, c, V)$ can be embedded in P^N by $\Gamma(X, L^{\otimes k})$.
- (ii) Let X_j ∈ K(n, c, V) with Hausdorff limit X_∞. Then X_∞ is homeomorphic to a normal variety W ⊂ P^N. By passing to a subsequence and taking suitable projective transformations, we have X_i ⊂ P^N converges to W in P^N which is klt.

[Takayama 2015] then proved \Leftarrow_{II} .

Metric completion

Conjecture

Given an irreducible component \mathcal{M} of the moduli of polarized CY *n*-folds, there exist a finite number of \mathcal{M}_{h_i} 's such that

$$\mathcal{M}^{c} = \bigcup_{j} \mathcal{M}_{h_{j}} \supset \mathcal{M}$$

is complete w.r.t. the induced WP metric. Here \mathcal{M}_{h_j} is an irreducible component of Viehweg's quasi-projective moduli of polarized CY with canonical singularities and with Hilbert polynomial h_j ,

[Zhang 2014] Hausdorff completion using infinite covers.

Question (Main remaining question \Longrightarrow_I for HD base) Given a polarized CY degeneration $\mathfrak{X} \to S$ such that $p \in S$ is at finite WP distance. Do we have diam $\mathfrak{X}_t < C$ for t close to p?

Transitions $Y \searrow X$ or $X \nearrow Y$ through \overline{X}

[Namikawa 2002] Let $S \rightarrow P^1$ be a rational elliptic surface with 6 singular fibers of type II (i.e., cuspidal). Then

• $\bar{X} = S \times_{p_1} S$ is a CY 3-fold with 6 *cA*₂ singular points:

$$x^2 - y^3 = u^2 - v^3$$

- ► X̄ admits smoothings to X = S₁ ×_{P¹} S₂ with S_i → P¹ having disjoint discriminant loci, and
- an explicit small resolution $\pi : Y \to \overline{X}$ exists.
- The π-exceptional loci can not be deformed to a disjoint union of (-1, -1)-curves since a singular fiber of type II splits up into at most 2 singular fibers of type I, and a general fiber of small deformation of a singularity of X̄, which preserves small resolutions, has 3 ODPs.

Conifold transitions

Theorem (S.-S. Wang 2015)

Namikawa's examples of extremal transition can be factorized into composition of conifold transitions up to flat deformations.

Lemma

Let $Y \to \overline{X}$ be a small resolution of a terminal 3-fold \overline{X} and X a smoothing of \overline{X} . Then $e(Y) - e(X) \ge 2 |\operatorname{Sing}(\overline{X})|$ with equality holds if and only if all the singularities of X are ODPs.

Proof: Let $C_i \rightarrow p_i \in \text{Sing}(\bar{X})$. Since \bar{X} is terminal Gorenstein, p_i is an isolated hypersurface singularity (cDV). It is well-known that

$$e(Y) - e(X) = \sum_{i} \mu_{p_i} + \sum_{i} (e(C_i) - 1)$$
,

where μ_{p_i} = Milnor number. Supp C_i is a transverse union of $n_i P^{1'}$ s and $n_i = e(C_i) - 1$. So $\sum \mu_{p_i} + \sum n_i \ge 2 |\text{Sing}(X)|$, with "=" if and only if $n_i = \mu_{p_i} = 1$ for all *i*, i.e., p_i is an ODP. **QED**

Projective CICY web

Definition (Determinantal contractions/transitions) Let $Y \subset S \times P^n$ be the zero loci of sections $s_i \in \Gamma(S \times P^n, \mathscr{L}_i)$, i = 0, ..., n, where $\mathscr{L}_i = L_i \boxtimes \mathscr{O}_{P^n}(1)$ with L_i semi-ample on S. We write $s_i = \sum_{j=0}^n s_{ij} x_j$, where $s_{ij} \in \Gamma(S, L_i)$. For $\pi : S \times P^n \to S$, let

$$\psi = \pi|_Y : Y \to \bar{X} := \pi(Y) \subset S.$$

For $p \in \overline{X}$, $\psi^{-1}(p)$ *is not unique if and only if* p *is a singular point of*

$$\Delta := \det s_{ij} = 0.$$

Since $\Delta \in \Gamma(S, \bigotimes_{i=0}^{n} L_i)$ and $\overline{X} = (\Delta)$, if $X_{\tau} = (\tau)$ is smooth for general $\tau \in \Gamma(S, \bigotimes_{i=0}^{n} L_i)$, then we get a transition $Y \searrow X_{\tau}$.

Theorem (Greene–Hubsch 1988, S.-S. Wang 2005) The web of CICY 3-folds in $\prod P^{n_j}$ is connected by conifold transitions.

Invariance [LLW 2015]

Let $X \nearrow Y$ be a *projective* conifold transition of CY 3-folds through \overline{X} with *k* ODPs $p_1, \ldots, p_k, \pi : \mathfrak{X} \to \Delta, \psi : Y \to \overline{X}$:

$$\begin{array}{ccc} C_i \subset Y & & N_{C_i/Y} = \mathcal{O}_{P^1}(-1)^{\oplus 2} \\ & & & \downarrow \psi \\ N_{S_i/X} = T^*S^3 & & S_i \subset X \xrightarrow{\pi} p_i \in \bar{X} \end{array}$$

Let
$$\mu := h^{2,1}(X) - h^{2,1}(Y) > 0$$
 and $\rho := h^{1,1}(Y) - h^{1,1}(X) > 0$.
 $\chi(X) - k\chi(S^3) = \chi(Y) - k\chi(S^2) \Longrightarrow \mu + \rho = k.$

Hence there are non-trivial relations between the "vanishing cycles":

$$A = (a_{ij}) \in M_{k \times \mu}, \qquad \sum_{i=1}^{k} a_{ij}[C_i] = 0,$$

$$B = (b_{ij}) \in M_{k \times \rho}, \qquad \sum_{i=1}^{k} b_{ij}[S_i] = 0.$$

 Let $0 \to V_{\mathbb{Z}} \hookrightarrow H_3(X, \mathbb{Z}) \to H_3(\bar{X}, \mathbb{Z}) \to 0$ and $V := C_{\mathbb{Z}} \otimes \mathbb{C}$. Theorem (Basic exact sequence)

We have an exact sequence of weight two pure Hodge structures:

$$0 \to H^2(Y)/H^2(X) \xrightarrow{B} \mathbb{C}^k \xrightarrow{A^t} V \to 0.$$

Since $\psi : Y \to \overline{X}$ deforms in families, this identifies \mathscr{M}_Y as a codimension μ boundary strata in $\mathscr{M}_{\overline{X}}$ and *locally* $\mathscr{M}_{\overline{X}} \cong \Delta^{\mu} \times \mathscr{M}_Y$. Write $V = \mathbb{C} \langle \Gamma_1, \dots, \Gamma_{\mu} \rangle$ in terms of a basis Γ_i 's. Then the α -periods

$$r_j = \int_{\Gamma_j} \Omega, \qquad 1 \le j \le \mu$$

form the *degeneration coordinates* around $[\bar{X}]$. The discriminant loci of $\mathscr{M}_{\bar{X}}$ is described by a central hyperplane arrangement $D_B = \bigcup_{i=1}^k D_i$: Proposition (Friedman 1986)

Let $w_i = a_{i1}r_1 + \cdots + a_{i\mu}r_{\mu}$, then the divisor $D_i := \{w_i = 0\} \subset \mathcal{M}_{\bar{X}}$ is the loci where the sphere S_i shrinks to an ODP p_i .

• The β -periods in transversal directions are given by a function *u*:

$$u_p = \partial_p u = \int_{\beta_p} \Omega$$

The BGY couplings extend over D_B and satisfy

$$u_{pmn} := \partial_{pmn}^3 u = O(1) + \sum_{i=1}^k \frac{1}{2\pi\sqrt{-1}} \frac{a_{ip}a_{im}a_{in}}{w_i}$$

for $1 \le p, m, n \le \mu$. It is holomorphic outside this index range.

▶ Let $y = \sum_{i=1}^{k} y_i e_i \in \mathbb{C}^k$, with $e^{i's}$ being the dual basis on $(\mathbb{C}^k)^{\vee}$. The trivial logarithmic connection on $\underline{\mathbb{C}}^k \oplus (\underline{\mathbb{C}}^k)^{\vee} \longrightarrow \mathbb{C}^k$ is

$$\nabla^k = d + \frac{1}{z} \sum_{i=1}^k \frac{dy_i}{y_i} \otimes (e^i \otimes e_i^*).$$

Theorem (Local invariance: $Exc(\mathscr{A}) + Exc(\mathscr{B}) = trivial)$

- (1) ∇^k restricts to the logarithmic part of ∇^{GM} on V^* .
- (2) ∇^k restricts to the logarithmic part of ∇^{Dubrovin} on $H^2(Y)/H^2(X)$.

Linked A + B theory

Theorem (Lee–Lin–W 2015)

Let [X] *be a nearby point of* $[\bar{X}]$ *in* $\mathcal{M}_{\bar{X}}$ *,*

- (1) $\mathscr{A}(X)$ is a sub-theory of $\mathscr{A}(Y)$ (e.g. quantum sub-ring in genus 0).
- (2) $\mathscr{B}(Y)$ is a sub-theory of $\mathscr{B}(X)$ (invariant sub-VHS).
- (3) $\mathscr{A}(Y)$ can be reconstructed from a "refined \mathscr{A} theory" on

$$X^\circ := X \setminus \bigcup_{i=1}^k S_i$$

"linked" by the vanishing spheres in $\mathscr{B}(X)$.

(4) $\mathscr{B}(X)$ can be reconstructed from the variations of MHS on $H^3(Y^{\circ})$,

$$Y^{\circ} := Y \setminus \bigcup_{i=1}^{k} C_{i},$$

"linked" by the exceptional curves in $\mathscr{A}(Y)$.

For (3) and (4), effective methods are under developed.

Example (For (4), Lee–Lin 2016)

Conifold transitions X \nearrow *Y of CY 3-folds arising from toric degenerations:*

$$Y \subset \hat{P} = \hat{P}(2,4)$$

$$\downarrow^{\Psi}$$

$$X \subset G = G(2,4) \xrightarrow{} P(2,4).$$

- ► $\mathscr{B}(X) = \tau_G$ (tautological systems [Lian–Song–Yau 2013]), $\mathscr{B}(Y) = \tau_{\hat{P}}$ (extended GKZ [Lee–Lin 2016]).
- For τ_G, the symmetry come from SL(4, C), which has 16 − 1 = 15 dimensions. It consists of 12 roots and 3 torus action.
- ► For $\tau_{\hat{p}}$, its symmetry $\operatorname{Aut}^{0}(\hat{P})$ is generated by T^{4} and 14 "roots" [Cox 1995]: for toric variety with fan Σ in $N_{\mathbb{R}}$, the roots $R(\Sigma, N)$ is given by $\{\alpha \in M \mid \exists p \in \Sigma_{1}, (\alpha, p) = -1, (\alpha, p') \geq 0 \quad \forall p' \neq p\}$.
- ► The 2 roots \pm (1, 1, 1, 1) are dropped since they move Ψ . The remaining 12 give those in τ_G . Thus ($\bigcup C_i, \tau_{\hat{p}}$) $\Longrightarrow \tau_G$.

HAPPY 90th BIRTHDAY TO TSINGHUA MATH

Thank you for paying attention!