Calabi-Yau Without Maximal Degenerations

Chin-Lung Wang
National Taiwan University

40 Years of Calabi-Yau Theory
Jioling, Meizhou
December 23, 2018

Contents

- Sheng-Xu-Zuo's Example
- Extending Toric Mirror Symmetry via Conifold Transitions
- Connecting SXZ to the Toric Web
- A Test of Reid's Fantasy with Quantum Data

Sheng-Xu-Zuo's Example

- Let $a=\left\{H_{1}, \ldots, H_{6}\right\} \in \mathfrak{M}$ be a hyperplane arrangement in P^{3} and $D_{a}:=\bigcup_{i=1}^{6} H_{i}$.
- Let $Z_{a} \rightarrow P^{3}$ the $3: 1$ cyclic cover branched along D_{a}, it has singularities of binomial type

$$
y_{1}^{a \alpha_{1}} \cdots y_{p}^{\alpha_{p}}=x_{1} \cdots x_{q} .
$$

- In [SXZ, 2013] they constructed a crepant resolution

$$
\begin{array}{r}
Y_{a} \xrightarrow{\phi_{a}} \mathrm{Z}_{a} \\
\left.\pi\right|_{\downarrow 3: 1} \\
P^{3}
\end{array}
$$

- Y_{a} is a Calabi-Yau 3-fold with $h^{21}\left(Y_{a}\right)=3, h^{11}\left(Y_{a}\right)=51$.
- Let $f: \mathscr{Y}:=\bigcup_{a \in \mathfrak{M}} Y_{a} \rightarrow \mathfrak{M}$ be the CY family with

$$
F^{p}=f_{*} \Omega_{\mathscr{Y} / \mathfrak{M}^{\prime}}^{p} \quad \mathcal{H}^{p q}:=F^{p} \cap \overline{F^{q}} .
$$

- Denote the infinitesimal period map by

$$
\begin{aligned}
\sigma: T \mathfrak{M} \longrightarrow \operatorname{Hom} & \left(\mathcal{H}^{30}, \mathcal{H}^{21}\right) \\
& \oplus \operatorname{Hom}\left(\mathcal{H}^{21}, \mathcal{H}^{12}\right) \oplus \operatorname{Hom}\left(\mathcal{H}^{12}, \mathcal{H}^{03}\right)
\end{aligned}
$$

- Theorem (SXZ, 2013)
$f: \mathscr{Y} \rightarrow \mathfrak{M}$ is a maximal family (moduli) of CY 3-folds such that

$$
\sigma_{i} \circ \sigma_{j}=0 \quad \forall i, j
$$

where $\sigma_{i}=\sigma\left(\partial_{t^{i}}\right)$, i.e. f has Yukawa coupling length $\ell=1$.

Curvature of the Weil-Petersson metric

- Let $\mathcal{H} \rightarrow S$ be a polarized VHS of weight n with $h^{n, 0}=1$. Let $g_{W P}=\sum g_{i j} d t_{i} \otimes d \bar{t}_{j}$ with $\omega_{W P}=c_{1}\left(F^{n}, Q\right)$ on S.
- Theorem (W-1997, Schumacher 1993)

$$
R_{i j k \bar{\ell}}=-\left(g_{i \bar{j}} g_{k \bar{\ell}}+g_{i \bar{\ell}} g_{k \bar{j}}\right)+\frac{\left\langle\sigma_{i} \sigma_{k} \Omega, \sigma_{j} \sigma_{\ell} \Omega\right\rangle}{\langle\Omega, \Omega\rangle}
$$

- For $n=3$, it is equivalent to Strominger's formula

$$
R_{i j \bar{k} \bar{\ell}}=-\left(g_{i \bar{j}} g_{k \bar{\ell}}+g_{i \bar{\ell}} g_{k \bar{j}}\right)+\sum_{p, q} g^{p \bar{q}} F_{p i k} \overline{F_{q j \ell}}
$$

where $F_{i j k}=\frac{\int_{X} \partial_{\partial} \partial_{j} \partial_{k} \Omega \wedge \Omega}{\int_{X} \Omega \wedge \Omega}$ is the Bryant-Griffiths-Yukawa cubic form .

Definition

The length of Yukawa coupling $\ell(\rho)$ for a VHS $\rho: \mathcal{H} \rightarrow S$ is the largest integer ℓ with $\sigma_{i_{1}} \cdots \sigma_{i_{\ell}} \not \equiv 0$ for some i_{1}, \ldots, i_{ℓ}.

- Mirror Symmetry requires the existence of maximal degenerate point, and it implies that $\ell(\rho)=n$.
- For maximal CY families $f: \mathscr{Y} \rightarrow \mathfrak{M}$ with $\ell\left(\rho_{f}\right)=1$. Then

$$
R_{i j k \bar{\ell}}=-\left(g_{i \bar{j}} g_{k \bar{\ell}}+g_{i \bar{\ell}} g_{k \bar{j}}\right) .
$$

That is, locally complex hyperbolic: $\mathfrak{M} \cong B_{\mathbb{C}}^{n} / \Gamma$.

- Does MS extends over families with $\ell\left(\rho_{f}\right)<n$?
- Say for the SXZ example?
- They actually constructed such examples for all odd $n \geq 3$.

Extending toric MS via confifold transitions

- Topological MS: $\left(Y, Y^{\circ}\right)$ is a mirror pair of CY 3-folds if

$$
h^{21}(Y)=h^{11}\left(Y^{\circ}\right), \quad h^{11}(Y)=h^{21}\left(Y^{\circ}\right)
$$

- Classical MS, or $A \leftrightarrow B$ MS:

$$
B(Y) \cong A\left(Y^{\circ}\right), \quad A(Y) \cong B\left(Y^{\circ}\right)
$$

- $A(Y)=Q H(Y)$ is the genus zero Gromov-Witten theory on the complexified Kähler moduli

$$
\mathscr{K}_{Y}^{\mathrm{C}}=H^{2}(Y, \mathbb{R}) \oplus \sqrt{-1} \operatorname{Amp}(Y) .
$$

- $B(Y)=\left(\mathscr{H}, \nabla^{G M}\right)$ is the VHS on the complex moduli \mathscr{M}.
- The modern SYZ/HMS are not discussed here.

Toric MS

- A lattice polytope $\triangle \subset M_{\mathbb{R}}, M \cong \mathbb{Z}^{n+1}$ is reflexive if $0 \in$ int \triangle and its polar (dual) polytope

$$
\triangle^{\circ}:=\left\{w \in N:=M^{\vee} \mid\langle w, v\rangle \geq-1, \forall v \in \triangle\right\}
$$

is also a lattice polytope, in $N_{\mathbb{R}}$.

- Number of them $N_{2}=16, N_{3}=4319, N_{4}=473800776, \ldots$ [Kruezer-Skarke, 2000].
- For reflexive pair $\left(\triangle, \triangle^{\circ}\right)$, the toric variety

$$
P_{\triangle}:=\operatorname{Proj}\left(\bigoplus_{k \geq 0} C^{k \triangle \cap M}\right)
$$

is Fano with $H^{0}\left(K_{P_{\triangle}}^{-1}\right)=\bigoplus_{v \in \triangle \cap M} \mathbb{C} t^{v}$; similarly for $P_{\triangle^{\circ}}$.

- For a general section $f, X_{f}:=\{f=0\}$ is a CY n-fold.
- Consider $n=3$ and families $X_{f} \subset P_{\triangle}, X_{g}^{\circ} \subset P_{\triangle^{\circ}}$.
- Topological MS holds [Batyrev '94].
- $A \leftrightarrow B$ MS holds for "many cases".
- $A\left(X_{f}\right)$ is determined by localization data [LLY, G 1999]

$$
I_{\beta}=\frac{\prod_{m=1}^{K^{-1} \cdot \beta}\left(K_{P_{\Delta}}^{-1}+m z\right)}{\prod_{\rho \in \Sigma_{1}} \prod_{m=1}^{D_{\rho} \cdot \beta}\left(D_{\rho}+m z\right)}, \quad \beta \in H_{2}\left(X_{f}, \mathbb{Z}\right)
$$

where Σ is the (normal) fan of P_{\triangle}.

- $B\left(X_{f}\right)$ is determined by the GKZ* system: (1) symmetry operators, (2) for ℓ a relation of $m_{i} \in \triangle \cap M$ with $\sum \ell_{i}=0$,

$$
\square_{\ell}:=\prod_{\ell_{i}>0} \partial_{i}^{\ell_{i}}-\prod_{\ell_{i}<0} \partial_{i}^{-\ell_{i}}
$$

- Observation: $\Sigma_{1}=$ rays from 0 to $\operatorname{Vert}\left(\triangle^{\circ}\right)$.
- Existence of max-deg-point [HLY] (\Rightarrow mirror transform).

Conifold transition

- Geometric transition $X \nearrow Y($ or $Y \searrow X)$ of CY 3-folds

$$
\left.X \leadsto\right|_{i} ^{Y}
$$

is a finite WP distance degeneration from X to Z (with canonical singularities) followed by a crepant resolution Y.

- It is a conifold transition when $Z_{\text {sing }}$ has only k nodes $p_{i}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=0$. Then $S_{i}^{3} \rightsquigarrow p_{i} \leftarrow S_{i}^{2}$ and

$$
\mu+\rho=k
$$

- $\mu=h^{21}(X)-h^{21}(Y)=$ dimension of vanishing cycles in X.
- $\rho=h^{11}(Y)-h^{11}(X)=$ rank of ϕ-exc $(-1,-1)$ curves in Y.
- Assume MS on $\left(X, X^{\circ}\right)$ with $X ~ \nearrow Y$; form $X^{\circ} \searrow Y^{\circ}$:

- If Z° also has k nodes \Rightarrow topological MS on $\left(Y, Y^{\circ}\right)$.
- Propositions:* True for toric mirror candidates $\left(X, X^{\circ}\right)$.
- For classical $A \leftrightarrow B$ MS, needs to lift/categorify $\mu+\rho=k$ to a version on flat connections.
- Local exchange on quantum data based on

$$
0 \rightarrow A(Y) / A(X) \rightarrow \underline{\mathbb{C}}^{k} \rightarrow B(X) / B(Y) \rightarrow 0
$$

(basic exact sequence of weight 2 Hodge structures) holds near $[Z] \in \mathscr{M}_{Z}$ [LLW 2015].

Connecting SXZ to toric web

- Work in progress with Tsung-Ju Lee.
- Let $s \in H^{0}\left(P^{3}, \mathscr{O}(6)\right), D_{s}=\{s=0\}$ smooth for general s :

$$
\begin{aligned}
& \downarrow^{3: 1} \quad \downarrow^{3: 1} \\
& P^{3} \supset D_{s} \leadsto P^{3} \supset D_{a}=\bigcup_{i=1}^{6} H_{i}
\end{aligned}
$$

- This leads to a geometric transition $Y \searrow X$ with

$$
h^{21}(X)=103, \quad h^{11}(X)=1
$$

- Z has singularities far more complicate than nodes.
- Q: Is X an anti-canonical hypersurface in toric Fano?
- In general an r-cyclic cover is realized in a line bundle L :

$$
\begin{aligned}
& \xi=E_{\infty} \subset \widetilde{P}:=P(L \oplus \mathscr{O}) \\
& \int_{L}^{\substack{\downarrow_{r: 1}}} \\
& h \subset P^{n} \supset D_{s}
\end{aligned}
$$

- For D_{s} connected and reduced (1) X is Cohen-Macaulay, (2) if codim $X_{\text {sing }} \geq 2$ then X is $\mathrm{CY} \Longleftrightarrow$

$$
L^{\otimes(r-1)} \cong K_{P^{n}}^{-1} .
$$

- Now $r=3, n=3, K_{P^{3}}^{-1} \cong \mathscr{O}(4) \Longrightarrow L \cong \mathscr{O}(2)$.
- $\widetilde{P}=P_{P^{3}}(\mathscr{O}(2) \oplus \mathscr{O})$ is toric, Pic $\widetilde{P}=\mathbb{Z} h \oplus \mathbb{Z} \xi$,

$$
K_{\widetilde{P}}^{-1}=\pi^{*} L^{\otimes r} \otimes \mathscr{O}_{\widetilde{p}}(2)=6 h+2 \tilde{\zeta}
$$

is ample. Hence \tilde{P} is toric Fano.

- But $X \in|6 h+3 \xi|$ (locally $\left.y^{3}=f(x)\right)$ rather than $K_{\tilde{P}}^{-1}$. $6 h+3 \xi$ is base-point-free but not ample: $X \cap E_{\infty}=\varnothing$.
- May contract $E_{\infty} \subset \widetilde{P}$ to a point to get $p \in P$:

- $P=P(1,1,1,1,2)$ singular toric Fano with $X \in\left|K_{P}^{-1}\right| .(P$ is the one point compactification of L.)
$-\Rightarrow X^{\circ}$ exists. Q: Can we construct Y° using $X \nearrow Y$?

A test of Reid's fantasy with quantum data

- Q^{\prime} : Can we decompose $Y \searrow X$ into conifold transitions?
- [Namikawa 2002] Let $S \rightarrow P^{1}$ be a rational elliptic surface with 6 singular fibers of type II (i.e., cuspidal). Then
- $Z=S \times_{P^{1}} S$ is a CY 3-fold with $6 c A_{2}$ singular points:

$$
x^{2}-y^{3}=u^{2}-v^{3} .
$$

- Z admits smoothings to $X=S_{1} \times_{P^{1}} S_{2}$ with $S_{i} \rightarrow P^{1}$ having disjoint discr. loci, and a small resolution $\phi: Y \rightarrow Z$ exists.
- The ϕ-exc loci can not be deformed to a disjoint union of $(-1,-1)$-curves: type II fiber splits to ≤ 2 type I, but a general fiber of ϕ-deformation of $p \in Z_{\text {sing }}$ has 3 nodes.
- [S.-S. Wang] This $Y \searrow X$ can be factorized into 2 conifold transitions up to flat deformations.
- [Reid 1987] Can all CY 3-folds be connected through (possibly non-projective) conifold transitions?
- If this holds for the SXZ example

$$
Y \searrow X \sim\left(Y=Y_{0}\right) \searrow z_{1} Y_{1} \searrow z_{2} Y_{2} \ldots \searrow z_{n}\left(Y_{n}=X\right)
$$

then we may construct the chain of mirror transitions

$$
X^{\circ} \searrow Y^{\circ} \sim\left(X^{\circ}=Y_{n}^{\circ}\right) \searrow Z_{n}^{\circ} Y_{n-1}^{\circ} \searrow Z_{n-1}^{\circ} Y_{n-2}^{\circ} \cdots \searrow Z_{1}^{\circ} Y^{\circ}
$$

- By choosing the birational contraction $Y_{i}^{\circ} \rightarrow Z_{i}^{\circ}$ so that the number of nodes of Z_{n}° coincides with those of Z_{n}.
- And then the mirror candidate Y° exists.
- And hence the topological MS holds for $\left(Y, Y^{\circ}\right)$.
- For classical MS, the easy direction $A\left(Y^{\circ}\right) \hookrightarrow A\left(X^{\circ}\right)$ holds:
(*)

$$
\langle-\rangle_{\beta}^{\gamma^{\circ}}=\sum_{\gamma \mapsto \beta}\langle-\rangle_{\gamma}^{X^{\circ}} .
$$

- X° is an anti-canonical toric CY 3-fold.
- Explicit calculations $\Longrightarrow^{*}\langle-\rangle_{\beta}^{\gamma^{\circ}} \neq 0$ for some β. (without actually using the decomposition.)
- $\Longrightarrow A \leftrightarrow B$ MS fails on $\left(Y, Y^{\circ}\right)$!
- Conclusion: Either
(i) Reid's fantasy fails for $Y_{S X Z} \searrow X_{L W}$ or
(ii) the classical MS fails for $\left(Y, Y^{\circ}\right)$.

Remarks

- It might be possible to prove $(*)$ for any geometric transition directly, without the existence of factorization into conifold transitions.
- If so, then the classical MS needs to be corrected when there is no maximally degenerate boundary points.
- The correction might come from the fact that the local transition of excess A and excess B theory can not be continued far away from the transition point $[Z] \in \mathscr{M}_{[Z]}$.
- There might be wall crossing when the vanishing cycles (Special Lagrangian) intersect.

In Celebration of 40 Years of CY Theory
 And to Express my Gratitude to Porfessor Yau

Thank you

