Calabi–Yau Without Maximal Degenerations

Chin-Lung Wang National Taiwan University

40 Years of Calabi–Yau Theory Jioling, Meizhou December 23, 2018

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

1/19

Contents

- Sheng–Xu–Zuo's Example
- Extending Toric Mirror Symmetry via Conifold Transitions
- Connecting SXZ to the Toric Web
- A Test of Reid's Fantasy with Quantum Data

Sheng–Xu–Zuo's Example

- ▶ Let $a = \{H_1, ..., H_6\} \in \mathfrak{M}$ be a hyperplane arrangement in P^3 and $D_a := \bigcup_{i=1}^6 H_i$.
- Let $Z_a \rightarrow P^3$ the 3 : 1 cyclic cover branched along D_a , it has singularities of binomial type

$$y_1^{a\alpha_1}\cdots y_p^{\alpha_p}=x_1\cdots x_q.$$

In [SXZ, 2013] they constructed a crepant resolution

$$Y_a \xrightarrow{\phi_a} Z_a$$

$$\pi \downarrow_{3:1}$$

$$P^3$$

• Y_a is a Calabi–Yau 3-fold with $h^{21}(Y_a) = 3$, $h^{11}(Y_a) = 51$.

• Let
$$f : \mathscr{Y} := \bigcup_{a \in \mathfrak{M}} Y_a \to \mathfrak{M}$$
 be the CY family with
 $F^p = f_* \Omega^p_{\mathscr{Y}/\mathfrak{M}'} \qquad \mathcal{H}^{pq} := F^p \cap \overline{F^q}.$

Denote the infinitesimal period map by

$$\sigma: T\mathfrak{M} \longrightarrow \operatorname{Hom}(\mathcal{H}^{30}, \mathcal{H}^{21}) \oplus \operatorname{Hom}(\mathcal{H}^{12}, \mathcal{H}^{03}).$$

- ► Theorem (SXZ, 2013)
 - $f: \mathscr{Y} \to \mathfrak{M}$ is a maximal family (moduli) of CY 3-folds such that

$$\sigma_i \circ \sigma_j = 0 \qquad \forall i, j$$

where $\sigma_i = \sigma(\partial_{t^i})$, *i.e. f has Yukawa coupling length* $\ell = 1$.

Curvature of the Weil-Petersson metric

► Let $\mathcal{H} \to S$ be a polarized VHS of weight *n* with $h^{n,0} = 1$. Let $g_{WP} = \sum g_{i\bar{j}} dt_i \otimes d\bar{t}_j$ with $\omega_{WP} = c_1(F^n, Q)$ on *S*.

► Theorem (W-1997, Schumacher 1993)

$$R_{i\bar{j}k\bar{\ell}} = -(g_{i\bar{j}}g_{k\bar{\ell}} + g_{i\bar{\ell}}g_{k\bar{j}}) + \frac{\langle \sigma_i \sigma_k \Omega, \sigma_j \sigma_\ell \Omega \rangle}{\langle \Omega, \Omega \rangle}$$

▶ For *n* = 3, it is equivalent to Strominger's formula

$$R_{i\bar{j}k\bar{\ell}} = -(g_{i\bar{j}}g_{k\bar{\ell}} + g_{i\bar{\ell}}g_{k\bar{j}}) + \sum_{p,q} g^{p\bar{q}}F_{pik}\overline{F_{qj\ell}},$$

where $F_{ijk} = \frac{\int_X \partial_i \partial_j \partial_k \Omega \wedge \Omega}{\int_X \Omega \wedge \overline{\Omega}}$ is the Bryant–Griffiths–Yukawa cubic form .

Definition

The length of Yukawa coupling $\ell(\rho)$ for a VHS $\rho : \mathcal{H} \to S$ is the largest integer ℓ with $\sigma_{i_1} \cdots \sigma_{i_\ell} \neq 0$ for some i_1, \ldots, i_ℓ .

- Mirror Symmetry requires the existence of maximal degenerate point, and it implies that ℓ(ρ) = n.
- For maximal CY families $f : \mathscr{Y} \to \mathfrak{M}$ with $\ell(\rho_f) = 1$. Then

$$R_{i\bar{j}k\bar{\ell}} = -(g_{i\bar{j}}g_{k\bar{\ell}} + g_{i\bar{\ell}}g_{k\bar{j}}).$$

That is, locally complex hyperbolic: $\mathfrak{M} \cong B^n_{\mathbb{C}}/\Gamma$.

- ► Does MS extends over families with $\ell(\rho_f) < n$?
- Say for the SXZ example?
- ▶ They actually constructed such examples for all odd *n* ≥ 3.

Extending toric MS via confifold transitions

► *Topological MS*: (*Y*, *Y*°) is a mirror pair of CY 3-folds if

$$h^{21}(Y) = h^{11}(Y^{\circ}), \qquad h^{11}(Y) = h^{21}(Y^{\circ}).$$

• *Classical MS*, or $A \leftrightarrow B$ MS:

$$B(Y) \cong A(Y^{\circ}), \qquad A(Y) \cong B(Y^{\circ}).$$

• A(Y) = QH(Y) is the genus zero Gromov–Witten theory on the complexified Kähler moduli

$$\mathscr{K}_{\Upsilon}^{\mathbb{C}} = H^2(\Upsilon, \mathbb{R}) \oplus \sqrt{-1} \operatorname{Amp}(\Upsilon).$$

▶ $B(Y) = (\mathscr{H}, \nabla^{GM})$ is the VHS on the complex moduli \mathscr{M} .

• The modern SYZ/HMS are not discussed here.

Toric MS

 A lattice polytope △ ⊂ M_ℝ, M ≅ Zⁿ⁺¹ is reflexive if 0 ∈ int △ and its polar (dual) polytope

 $\triangle^{\circ} := \{ w \in N := M^{\vee} \mid \langle w, v \rangle \ge -1, \, \forall v \in \triangle \}$

is also a lattice polytope, in $N_{\mathbb{R}}$.

- ▶ Number of them $N_2 = 16$, $N_3 = 4319$, $N_4 = 473800776$, ... [Kruezer–Skarke, 2000].
- For reflexive pair $(\triangle, \triangle^{\circ})$, the toric variety

$$P_{\triangle} := \operatorname{Proj}(\bigoplus_{k \ge 0} \mathbb{C}^{k \triangle \cap M})$$

is Fano with $H^0(K_{P_{\wedge}}^{-1}) = \bigoplus_{v \in \triangle \cap M} \mathbb{C} t^v$; similarly for P_{\triangle° .

• For a general section f, $X_f := \{f = 0\}$ is a CY *n*-fold.

- Consider n = 3 and families $X_f \subset P_{\triangle}, X_g^{\circ} \subset P_{\triangle^{\circ}}$.
- Topological MS holds [Batyrev '94].
- $A \leftrightarrow B$ MS holds for "many cases".
- $A(X_f)$ is *determined* by localization data [LLY, G 1999]

$$I_{\beta} = \frac{\prod_{m=1}^{K^{-1},\beta}(K_{P_{\Delta}}^{-1} + mz)}{\prod_{\rho \in \Sigma_1} \prod_{m=1}^{D_{\rho},\beta}(D_{\rho} + mz)}, \qquad \beta \in H_2(X_f, \mathbb{Z}),$$

where Σ is the (normal) fan of P_{\triangle} .

B(X_f) is *determined* by the GKZ* system: (1) symmetry operators, (2) for ℓ a relation of m_i ∈ △ ∩ M with ∑ℓ_i = 0,

$$\Box_\ell := \prod_{\ell_i > 0} \partial_i^{\ell_i} - \prod_{\ell_i < 0} \partial_i^{-\ell_i}.$$

- Observation: $\Sigma_1 = \text{rays from 0 to Vert}(\triangle^\circ)$.
- ► Existence of max-deg-point [HLY] (⇒ mirror transform).

Conifold transition

• Geometric transition $X \nearrow Y$ (or $Y \searrow X$) of CY 3-folds

is a *finite WP distance degeneration* from X to Z (with canonical singularities) followed by a *crepant resolution* Y.

► It is a conifold transition when Z_{sing} has only k nodes $p_i: x_1^2 + x_2^2 + x_3^2 + x_4^2 = 0$. Then $S_i^3 \rightsquigarrow p_i \leftarrow S_i^2$ and

$$\mu + \rho = k.$$

μ = h²¹(X) − h²¹(Y) = dimension of vanishing cycles in X.
 ρ = h¹¹(Y) − h¹¹(X) = rank of φ-exc (−1, −1) curves in Y.

• Assume MS on (X, X°) with $X \nearrow Y$; form $X^\circ \searrow Y^\circ$:

- If Z° also has *k* nodes \Rightarrow topological MS on (Y, Y°) .
- ▶ **Propositions:*** True for toric mirror candidates (*X*, *X*°).
- ► For classical $A \leftrightarrow B$ MS, needs to lift/categorify $\mu + \rho = k$ to a version on flat connections.
- Local exchange on quantum data based on

$$0 \to A(Y)/A(X) \to \underline{\mathbb{C}}^k \to B(X)/B(Y) \to 0$$

(basic exact sequence of weight 2 Hodge structures) holds near $[Z] \in \mathcal{M}_Z$ [LLW 2015].

Connecting SXZ to toric web

- Work in progress with Tsung-Ju Lee.
- Let $s \in H^0(P^3, \mathcal{O}(6))$, $D_s = \{s = 0\}$ smooth for general *s*:

► This leads to a geometric transition $Y \searrow X$ with $h^{21}(X) = 103, \quad h^{11}(X) = 1.$

> *Z* has singularities far more complicate than nodes.

- Q: Is X an anti-canonical hypersurface in toric Fano?
- ▶ In general an *r*-cyclic cover is realized in a line bundle *L*:

$$\xi = E_{\infty} \subset \widetilde{P} := P(L \oplus \mathscr{O})$$

$$\int_{L \supset X} \\ \downarrow_{r:1} \\ h \subset P^{n} \supset D_{s}$$

For D_s connected and reduced (1) X is Cohen–Macaulay,
 (2) if codim X_{sing} ≥ 2 then X is CY ⇐⇒

$$L^{\otimes (r-1)} \cong K_{\mathbb{P}^n}^{-1}.$$

▶ Now r = 3, n = 3, $K_{p_3}^{-1} \cong \mathcal{O}(4) \Longrightarrow L \cong \mathcal{O}(2)$.

•
$$\widetilde{P} = P_{P^3}(\mathscr{O}(2) \oplus \mathscr{O})$$
 is toric, $\operatorname{Pic} \widetilde{P} = \mathbb{Z}h \oplus \mathbb{Z}\xi$,
 $K_{\widetilde{p}}^{-1} = \pi^* L^{\otimes r} \otimes \mathscr{O}_{\widetilde{p}}(2) = 6h + 2\xi$

is ample. Hence \tilde{P} is toric Fano.

- ▶ But $X \in |6h + 3\xi|$ (locally $y^3 = f(x)$) rather than $K_{\tilde{p}}^{-1}$. $6h + 3\xi$ is base-point-free but not ample: $X \cap E_{\infty} = \emptyset$.
- May contract $E_{\infty} \subset \tilde{P}$ to a point to get $p \in P$:

$$\begin{array}{ll} X & \longrightarrow \widetilde{P} \supset E_{\infty} & K_{\widetilde{P}} = \varphi^* K_P + E_{\infty}. \\ & \downarrow = & \downarrow \varphi \\ X & \longrightarrow P \ni p \end{array}$$

▶ P = P(1, 1, 1, 1, 2) singular toric Fano with $X \in |K_P^{-1}|$. (*P* is the one point compactification of *L*.)

► \Rightarrow X° exists. Q: Can we construct Y° using X \nearrow Y?

A test of Reid's fantasy with quantum data

- Q': Can we *decompose* $Y \searrow X$ into conifold transitions?
- ▶ [Namikawa 2002] Let $S \rightarrow P^1$ be a rational elliptic surface with 6 singular fibers of type II (i.e., cuspidal). Then
- $Z = S \times_{p_1} S$ is a CY 3-fold with 6 *cA*₂ singular points:

$$x^2 - y^3 = u^2 - v^3.$$

- ► *Z* admits smoothings to $X = S_1 \times_{P^1} S_2$ with $S_i \to P^1$ having disjoint discr. loci, and a small resolution $\phi : Y \to Z$ exists.
- The φ-exc loci *can not be deformed* to a disjoint union of (−1, −1)-curves: type II fiber splits to ≤ 2 type I, but a general fiber of φ-deformation of p ∈ Z_{sing} has 3 nodes.
- ► [S.-S. Wang] This *Y* \ *X* can be factorized into 2 conifold transitions *up to flat deformations*.

- [Reid 1987] Can all CY 3-folds be connected through (possibly non-projective) conifold transitions?
- If this holds for the SXZ example

$$Y \searrow X \sim (Y = Y_0) \searrow_{Z_1} Y_1 \searrow_{Z_2} Y_2 \dots \searrow_{Z_n} (Y_n = X),$$

then we *may construct* the chain of mirror transitions

$$X^{\circ} \searrow Y^{\circ} \sim (X^{\circ} = Y^{\circ}_{n}) \searrow_{Z^{\circ}_{n}} Y^{\circ}_{n-1} \searrow_{Z^{\circ}_{n-1}} Y^{\circ}_{n-2} \dots \searrow_{Z^{\circ}_{1}} Y^{\circ}.$$

- By *choosing the birational contraction* Y[◦]_i → Z[◦]_i so that the number of nodes of Z[◦]_n coincides with those of Z_n.
- And then the mirror candidate Y° exists.
- And hence the topological MS holds for (Y, Y°) .

▶ For classical MS, the easy direction $A(Y^\circ) \hookrightarrow A(X^\circ)$ holds:

$$(*) \qquad \langle -\rangle_{\beta}^{Y^{\circ}} = \sum_{\gamma \mapsto \beta} \langle -\rangle_{\gamma}^{X^{\circ}}.$$

- ► X° is an anti-canonical toric CY 3-fold.
- Explicit calculations $\implies^* \langle \rangle_{\beta}^{Y^{\circ}} \neq 0$ for some β . (without actually using the decomposition.)
- $\blacktriangleright \implies A \leftrightarrow B \text{ MS fails on } (Y, Y^{\circ})!$
- Conclusion: Either
- (i) Reid's fantasy fails for $Y_{SXZ} \searrow X_{LW}$ or
- (ii) the classical MS fails for (Y, Y°) .

Remarks

- It might be possible to prove (*) for any geometric transition directly, without the existence of factorization into conifold transitions.
- If so, then the classical MS needs to be corrected when there is no maximally degenerate boundary points.
- ► The correction might come from the fact that the local transition of excess *A* and excess *B* theory can not be continued far away from the transition point [Z] ∈ *M*_[Z].
- There might be wall crossing when the vanishing cycles (Special Lagrangian) intersect.

In Celebration of 40 Years of CY Theory

And to Express my Gratitude to Porfessor Yau

Thank you

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 1 の 4 で
19 / 19