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ON THE INCOMPLETENESS OF THE
WEIL-PETERSSON METRIC ALONG

DEGENERATIONS OF CALABI-YAU MANIFOLDS

Chin-Lung Wang

Introduction

The classical Weil-Petersson metric on the Teichmüller space of
compact Riemann surfaces is a Kähler metric, which is complete only
in the case of elliptic curves [Wo]. It has a natural generalization to
the deformation spaces of higher dimansional polarized Kähler-Einstein
manifolds. It is still Kähler, and in the case of abelian varieties and
K3 surfaces, the Weil-Petersson metric turns out to coincide with the
Bergman metric of the Hermitian symmetric period domain, hence is
in fact “complete” Kähler-Einstein [Sc].

The completeness is an important property for differential geomet-
ric reason. Motivated by the above examples, one may naively think
that the completeness of the Weil-Petersson metric still holds true for
general Calabi-Yau manifolds (compact Kähler manifolds with trivial
canonical bundle). However, explicit calculation done by physicists (eg.
Candelas et al. [Ca] for some special nodal degenerations of Calabi-Yau
3-folds) indicated that this may not always be the case.

The notion of completeness depends on the precise definition the
“moduli space”. However, through our analysis, it would become clear
that the Weil-Petersson metric is in general incomplete if one sticks

† Some inaccuracies in §3 has been corrected in this reproduced
version.
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on “moduli” of smooth varieties. In fact, our aim in this paper is to
characterize all finite distance degenerations and then to describe the
possible picture of the completion. It is found to be closely related to the
minimal model program in birational geometry. The results proved here
could be regarded as a first attempt toward the completion problem.

There are two parts of this paper. In the first part, §1 – §2, we
start with Tian’s description of the Weil-Petersson metric as the Chern
form of the Hodge bundle Fn. This fits naturally into the framework of
variation of Hodge structures and the Weil-Petersson can be formally
defined in this setting. By applying Schmid’s theory of limiting mixed
Hodge structures, we obtain in (1.1) our first Hodge-theoretic criterion:

Theorem A. The center of a degeneration of polarized Hodge
structures of weight n with Fn ∼= C has finite Weil-Petersson distance
if and only if NFn

∞ = 0.

Here N is the nilpotent monodromy and Fn
∞ is the limiting filtra-

tion. In §2, we return to the geometric situation, namely the semi-stable
degeneration of polarized Calabi-Yau manifolds. As a simple applica-
tion of the Clemens-Schmid exact sequence [C], we get in (2.5) the

Theorem B. The central fiber X has finite Weil-Petersson dis-
tance if and only if some irreducible component Xi ⊂ X has Hn,0 6= 0.
This is equivalent to that there is exact one component with hn,0 = 1.

This theorem is also claimed in a recent preprint of Hayakawa [H].
However, the proof given there seems to be incomplete and too compli-
cate. As a corollary, we deduce in (2.10) the following theorem which we
believe to be very close to the final picture of the completion problem:

Theorem C. Let X be a Calabi-Yau varieties which admits a
smoothing to Calabi-Yau manifolds. If X has only canonical singu-
larities then X has finite Weil-Petersson distance along the base.

In the second part, §3 – §4, we deal with a refined question: up
to a base change, is the finite distance degeneration birationally equiv-
alent to a smooth family? This is exactly what happens in the case
of K3 surfaces [Ku] — this is also one reason that one usually regards
the Weil-Petersson metric on the “moduli space” of K3 surfaces to be
complete. In general, is there any “essential non-trivial finite distance
degeneration”? The simplest examples would be those degenerations
with monodromy not of finite order. In §3, we show that it is the case
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for nodal degenerations of 3-folds.
In §4, which is perhaps the most technical part of this work, we

study the “expected most general cases” of finite distance degenerations,
i.e. degenerations with canonical singularities, via various results in 3-
fold birational geometry. The main result is:

Theorem D. Let X → ∆ be a projective smoothing of a terminal
Gorenstein 3-fold X0 with KX0 nef. Then X → ∆ is not birational to
a projective smooth family X ′ → ∆ with Xt = X ′t for t 6= 0.

This applies in particular to terminal degenerations of Calabi-Yau
3-folds (see (4.11)) and hence we conclude that smoothable Calabi-Yau
3-folds with nontrivial terminal singularities all provide essential finite
distance points. Since some of these degenerations are known to have
C∞ trivial monodromies, Theorem D then gives a negative answer to
the so-called “filling-in problem” in dimension 3.

§0 Background Material

Here we briefly recall some basic definitions and well-known prop-
erties about Hodge theory and the Weil-Petersson metrics that will be
used in this paper. More details could be found in [G, GS, K, S, T1].

0.1. Polarized VHS and the period map. It is well known that
from the theory of harmonic forms that the m-th primitive cohomology
of a compact Kähler manifold (Xn, ω) admits a “polarized real Hodge
structure” of weight m. That is, for V := Pm

R ⊗C ⊂ Hm
C , one has

(0.2) V =
⊕

p+q=m
P p,q, P p,q = P q,p.

Equivalently, this can be expressed in terms of the Hodge filtration
F : V = F 0 ⊃ F 1 ⊃ · · · ⊃ Fm with F p =

⊕
i≥p P i,m−i. Moreover, for

m ≤ n, the Hodge-Riemann bilinear form

(0.3) Q(u, v) := (−1)
m(m−1)

2

∫

X

u ∧ v ∧ ωn−m

polarizes V in the sense that F satisfies the Hodge-Riemann bilinear
relations:

(0.4)
I. Q(F p, Fm+1−p) = 0 and

II. Q(Cv, v̄) > 0,
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where C, the Weil operator, acts on P p,q by multiplying
√−1

p−q
.

Varying the above data (V, F,Q), a family of polarized Kähler man-
ifolds X → S, ie. [ω(s)] is locally constant, gives rise to a “polarized
VHS over S”: (V,F,∇, Q) with ∇ the flat connection. This data sat-
isfies the Griffiths transversality relation

(0.5) ∇Fp ⊂ Fp−1 ⊗ Ω1
S .

It follows that ∂̄Fp ⊂ Fp and hence that Fp’s form holomorphic sub-
bundles of the flat bundle V, which is polarized by the flat bilinear form
Q. This can also be described in terms of the “period map”:

The period domain D is the classifying space of all Hodge filtra-
tions F of V that are polarized by Q. We have D = G/K where
G = Aut(PR, Q) and K the stabilizer of a point. It comes naturally
with the tautological homogeneous vector bundle Fp ⊂ V := V × D.
The compact dual Ď is the set of all the F ’s which satisfy only the
first Hodge-Riemann relation. It contains D as an open subvariety.
The family X → S gives rise to the period map φ : S → Γ\D with Γ
the representation of π1(S) in G. It is clear that φ∗Fp gives the holo-
morphic vector bundle mentioned above and (0.5) translates into the
horizontality of φ:

(0.6) dφ : TS →
⊕

p+q=m
Hom(P p,q, P p−1,q+1) =: Th

D,

where Th
D is called the horizontal tangent bundle.

We can formalize the above situation and define the polarized VHS
as a locally liftable horizontal holomorphic map φ : S → Γ\D with Γ a
representation of π1(S) in G∩Aut(HZ), where HZ is an integral lattice
such that PR ⊂ HR. In the case Fn ∼= C, we will also consider the
“n-th flag period map” φn : S → Γ\P(V ) which in fact contains almost
all the information that we will need in this paper.

0.7. Semi-stable degenerations and the monodromies. We
are interested in the case of a degeneration X → ∆ of polarized Kähler
n-folds. By this we mean that X is a Kähler (n+1)-fold and X → ∆ is a
proper flat holomorphic map with the general fiber Xt, t 6= 0, a smooth
Kähler n-fold. Notice that the resulting family over the punctured disk
has a polarization induced from the Kähler form on X .

X → ∆ is called semi-stable if X0 is a reduced divisor with normal
crossings in X . By a theorem of Mumford [K], every degeneration has
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a semi-stable reduction by a sequence of blow-ups and base-changes. In
general, X → ∆ is called a degeneration of certain type if X0 has only
singularities of that type. And by “X → ∆ is a smoothing of X0”, we
will mean that X → ∆ is a proper flat family with smooth Xt for t 6= 0
but without assuming the complex space X to be smooth.

Now a generator of π1(∆×) ∼= Z induces the so called Picard-
Lefschetz transformation – the monodromy T on Hm

Z , which is known
to be quasi-unipotent. Under the semi-stable asssumption, T will be
unipotent and we will consider the associated nilpotent operator N :=
log T acting on Hm

Q (and therefore on V ⊂ Hm
C since the polarization

class is invariant under T ). The quasi-unipotent statement is also known
to be true for any polarized VHS [S]. In this paper, we will usually
assume that T is unipotent by allowing a base change implicitly.

0.8. Schmid’s theory on limiting MHS. For a polarized VHS
φ : ∆× → 〈T 〉\D; the map φ lifts to the upper half plane Φ : H → D

with the coordinates t ∈ ∆× and z ∈ H related by t = e2π
√−1z. Set

(0.9) A(z) = e−zNΦ(z) : H → Ď,

(instead of D). Since A(z+1) = A(z), A descends to a function α(t) on
∆×. The very first part of Schmid’s “nilpotent orbit theorem” says that
α(t) extends holomorphically over t = 0. The special value F∞ := α(0)
is called the limiting filtration and is in general outside D. However, the
nilpotent operator N uniquely defines a “monodromy weight filtration”
on V : 0 ⊂ W0 ⊂ W1 ⊂ · · · ⊂ W2m−1 ⊂ W2m = V such that N(Wk) ⊂
Wk−2 and induces an isomorphism

(0.10) N ` : GW
m+`

∼= GW
m−`,

where GW
k := Wk/Wk−1 is the graded piece. These two filtrations F p

∞
and Wk together define a “polarized mixed Hodge structure” on V in
the following sense: the induced Hodge filtration

(0.11) F p
∞GW

k := F p
∞ ∩Wk/F p

∞ ∩Wk−1, p = 0, . . . ,m

defines a (pure) Hodge structure of weight k on GW
k . The operator

N acts on them as a morphism of MHS’s of type (−1,−1). That is,
N(F p

∞GW
k ) ⊂ F p−1

∞ GW
k−2. Moreover, for ` ≥ 0, the primitive part

PW
m+` := kerN `+1 ⊂ GW

m+` is polarized by Q(·, N `̄·).
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When φ comes from geometric situations, by adding together with
the non-primitive part, the total cohomology Hm(Xt,C) still admits
non-polarized MHS.

0.12. The Weil-Petersson metric. For a given family of po-
larized Kähler manifolds X → S with Kähler metrics g(s) on Xs, one
can define a possibly degenerate hermitian metric G on S as follows:
at s ∈ S with fiber X = Xs, we consider the Kodaira-Spencer map
ρ : TS,s → H1(X, TX) ∼= H0,1

∂̄
(TX) into harmonic forms with respect to

g(s); so for v, w ∈ Ts(S), we may define

(0.13) G(v, w) :=
∫

X

〈ρ(v), ρ(w)〉g(s).

When X → S is a polarized Kähler-Einstein family and ρ is injective,
GWP := G is called the Weil-Petersson metric on S.

When X is a Calabi-Yau manifold, we have (1) Yau’s solution to
Calabi’s conjecture [Y] that X has an unique Ricci flat metric in each
Kähler class and (2) the Bogomolov-Tian-Todorov theorem that the
Kuranishi space of X is unobstructed [T1, To].

Let X → S be a maximal subfamily of the Kuranishi family with
a fixed polarization class [ω], then ρ is clearly injective. Let g(s) be the
unique Ricci flat metric in the given polarization. Using the fact that
the global holomorphic n-form Ω(s) is flat with respect to g(s), it was
shown in [T1, To] that

(0.14) GWP (v, w) =
Q(C(i(v)Ω), i(w)Ω)

Q(CΩ, Ω̄)
,

where H1(X, TX) → Hom(Hn,0,Hn−1,1) ∼= Hn−1,1 via the interior
product v 7→ i(v)Ω is the well-known isomorphism. The tangent space
TS is mapped to Pn−1,1 isomorphically and hence leads to the fact
that the n-th flag period map is an local embedding. So the Weil-
Petersson metric is induced from the Hodge metric on the n-th piece of
the horizontal tangent bundle. For convienence, let’s write Q̃ =

√−1
n
Q

(= Q(C·, ·̄) on Hn,0 = Pn,0). Tian observed that Q̃ is a Kähler potential
of GWP , that is,

(0.15) ωWP =
√−1

2
Ric

Q̃
(Hn,0) = −

√−1
2

∂∂̄ log Q̃,
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where ωWP denotes the fundamental real 2-form of GWP (this formula
shows in particular that ωWP is independent of the polarization). The
proof is essentially part of Griffiths’ curvature calculation [G], hence is
purely Hodge theoretic. So we can extend the definition of GWP to
polarized VHS over S with hn,0 = 1 by (0.15), although it is only semi-
positive. Since it makes sense to talk about geodesics and distances, we
will still call it the Weil-Petersson metric.

§1 Hodge Theoretic Criterion for Finite Distance Points

We now give the basic criterion for finite Weil-Petersson distance in
the case of one parameter degenerations of polarized Hodge structures
φ : ∆× → 〈T 〉\D with hn,0 = 1:

Theorem 1.1. The center of a degeneration of polarized Hodge
structures of weight n with Fn ∼= C has finite Weil-Petersson distance
if and only if NFn

∞ = 0.

Proof. We will keep the notation from §0. Let Φ : H → D be
the lifting. To start the computation, all we need is a good choice of a
holomorphic section Ω of Hn,0. Let pn : D → P(V ) be the projection
to the Fn part. we have Φn(z) = (ezNα(t))n = ezNαn(t). Here ∗n :=
pn(∗) ∈ P(V ) means the n-th flag. Near t = 0, we can consider a vector
(local homogeneous coordinates) representation a of αn in V . Then
a(t) = a0 + a1t + · · · is holomorphic in t. We have correspondingly

(1.2) A(z) = a0 + a1e
2π
√−1z + a2e

4π
√−1z + · · · .

The crucial point here is that the function e2π
√−1z = e2π

√−1xe−2πy

has the property that all the partial derivatives in x and y decay to 0
exponentially as y →∞, with rate of decay independent of x. For ease
of notation, let h be the function class satisfying the above property
and h the corresponding function class with values in V .

Now let Ω(z) = ezNA(z). This is the desired section because vector
representations correspond to sections of the tautological line budle of
Pn which pull back to Hn,0 by Φ. So the Kähler form ωWP of the
induced Weil-Petersson metric GWP on H is given by

(1.3) ωWP = −
√−1

2
∂∂̄ log Q̃(ezNA(z), ez̄NA(z)).
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Since we are in one complex variable, write GWP = G|dz|2, then
G = −(1/4)4 log Q̃. We have Q(Tu, Tv) = Q(u, v), it follows easily
that Q(Nu, v) = −Q(u,Nv) and Q(ezNu, v) = Q(u, e−zNv). Since
A = a0 + h, we have

(1.4)
Q̃(ezNA, ez̄NĀ) = Q̃(ezNa0, e

z̄N ā0) + h

= Q̃(e2
√−1yNa0, ā0) + h = p(y) + h,

where p(y) is a polynomial in y with

(1.5) d = deg p(y) = max{ ` | N `α0 6= 0 }.

This a consequence of the polarization condition for the mixed Hodge
structure (0.8) and the fact that a0 ∈ Gn+d. So

(1.6)
4G =

(p′ + h)2 − (p + h)(p′′ + h)
(p + h)2

=
(p′2 − pp′′) + h

p2 + h

∼ p′2 − pp′′

p2
+ h ∼ d2 − d(d− 1)

y2
+ h =

d

y2
+ h.

Here we have used the fact that p−2h ∈ h. Obviously, if NFn
∞ = 0 then

d = 0 and G = h, so
∫∞

t

√
G |dz| < ∞ for some curve (e.g. x = c).

When NFn
∞ 6= 0 we have d ≥ 1 and for y large enough we can make

h < 1/y3 uniformly in x, then clearly
∫∞

t

√
G |dz| ∼ 2 log y |∞t = ∞ for

any path with y →∞. Q.E.D.

Remark 1.7. From the proof of (1.1), we know that in the case of
infinite distance, the Weil-Petersson metric is exponentially asymptotic
to a scaling of the Poincaré metric. In particular, the (holomorphic
sectional) curvature approaches to a negative constant when t → 0.
This is exactly the situation what we are familiar with for the moduli
space of elliptic curves.

§2 Geometric Criterion for Finite Distance Points

For a semi-stable degeneration, there is a well-known procedure to
relate the limiting MHS and Deligne’s canonical MHS on the singular
cohomology of the central fiber, namely the Clemens-Schmid exact se-
quence, which generalizes the classical Picard-Lefschetz theory (cf. §3).
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Let’s briefly recall the constructions (see [C, GS] for more details). Let
X = ∪iXi be a simple normal crossing variety, for I = {i0, · · · , ip},
XI := Xi0 ∩ · · · ∩ Xip . Also let X [p] be the disjoint union of all
XI with |I| = p + 1. There is a spectral sequence which computes
H∗(X) = H∗(X,C) with Ep,q

0 = Ωq(X [p]), d0 := d (the exterior dif-
ferentiation of forms) and d1 := δ: the restriction operator of forms
defined by

(2.1) (δφ)(Xi0···ip+1) :=
∑p+1

j=0
(−1)jφ(Xi0···îj ···ip+1

)
∣∣
Xi0···ip+1

.

Clearly Ep,q
1 = Hq(X [p]) and the Ep,q

2 term is computed from

(2.2) Hq(X [p−1]) δ→Hq(X [p]) δ→Hq(X [p+1]),

where the δ’s respect Hodge structures. Moreover, it degenerates at
E2. The weight filtration for the resulting MHS on Hm(X) is W` :=⊕

s≤` Em−s,s
2 , and the Hodge filtration is the usual one for each factor

induced from E1. Notice that in contrast to the limiting MHS, the
canonical MHS has terms G`H

m(X) only for 0 ≤ ` ≤ m.
The Clemens-Schmid exact sequence for a semi-stable degeneration

(2.3)
smooth Xt ⊂ X ⊃ X0 (= X = ∪iXi)

↓ ↓ ↓
(0 6=) t ∈ ∆ 3 0

is an exact sequence of MHS’s:
(2.4)

· · · → H2n+2−m(X0)
j→Hm(X0)

i→Hm N→Hm k→H2n−m(X0) → · · ·

Notice that the inclusion X0 ⊂ X is a homotopy equivalence, j is
induced by inclusion and duality and i is induced by the inclusion
Xt ⊂ X ∼ X0. Also Hm denotes the cohomology for the general
fiber Xt and N is the nilpotent monodromy oprator. Moreover, this
exact sequence is compatible with the MHS’s with types of morphisms
(n + 1, n + 1), (0, 0), (−1,−1) and (−n,−n) respectively, where type
(p, q) means F ∗G∗ → F ∗+pG∗+2q. Here MHS for homology is defined
by duality: G−`Hq := G`(Hq)∗ and F−pG−`Hq := Ann(F p+1G`H

q).
When the degeneration of Hodge structures in (1.1) comes from a

semi-stable degeneration of Calabi-Yau manifolds X → ∆, we have:
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Theorem 2.5. The central fiber X = X0 has finite Weil-Petersson
distance if and only if some irreducible component Xi ⊂ X has Hn,0 6=
0. This is equivalent to that there is exact one component with hn,0 = 1.

Proof. By the results of Schmid in (0.8), F∞ and N defines a MHS
on Hn(Xt) for a reference fiber Xt with t 6= 0. It follows from (0.10)
that (kerN)∩Fn

∞ ≡ GW
n Fn

∞. So NFn
∞ = 0 if and only if Fn

∞ = GW
n Fn

∞.
Recall that the “geometric genus formula” [C] says that

(2.6) hn,0(Xt) ≥
∑

i
hn,0(Xi),

and the RHS corresponds to all the invariant cycles in Fn
∞, that is,

(kerN) ∩ Fn
∞. Since the LHS of (2.6) has the same dimension as Fn

∞,
the eqality holds if and only if Fn

∞ = (kerN) ∩ Fn
∞ = GW

n Fn
∞, that is,

if and only if NFn
∞ = 0.

In our case, Theorem 1.1 says that finite distance is equivalent to
NFn

∞ = 0. Since hn,0(Xt) = 1, this is equivalent to that there exist
some (and so at most one) component with hn,0 6= 0 (and so in fact it
must be 1). The proof is now complete.

For the reader’s convienence, we sketch the well-known argument
for the geometric genus formula. Apply the Clemens-Schmid exact se-
quences to FnGnHn, we get

(2.7) → F−1G−n−2Hn+2(X0) → FnGnHn(X0) → Fn
∞GW

n Hn N→ 0

We know by definition that Gn+2H
n+2(X0) = E0,n+2

2 = ker δ with
δ : Hn+2(X [0]) → Hn+2(X [1]) and that F 2Hn+2(X0) = Hn+2(X0).
From this we conclude that F 2(ker δ) ≡ ker δ. So

(2.8) F−1G−n−2Hn+2(X0) = Ann(F 2Gn+2H
n+2(X0)) = 0,

and (2.7) implies that FnGnHn(X0) ∼= Fn
∞GW

n Hn.
Now E0,n

2 is computed from 0 → E0,n
1 → E1,n

1 ≡ Hn(X [1]), and
the Fn part of the right term is zero. So FnGnHn(X0) = FnE0,n

2 =
FnE0,n

1 = FnHn(X [0]) = Hn,0(X [0]).
The resulting isomorphism Fn

∞GW
n Hn ∼= Hn,0(X [0]) clearly gives

what we want. Q.E.D.

Remark 2.9. Both (1.1) and (2.5) are stated in the one parameter
case, but the Weil-Petersson metric distance should be evaluated in
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the corresponding smoothing component of the central fiber, which is
in general of many dimensions. However, finite distance in a special
direction implies finite distance in the whole component, so (2.5) indeed
provides a suifficient condition for the existence of finite distance points.
The converse is not obvious in case the base dimension is bigger than
one. We plan to discuss this issue in a forthcoming work.

Now we apply (2.5) to smoothable singular Calabi-Yau varieties.
A Calabi-Yau variety is by definition a normal projective variety with
trivial canonical (cartier) divisor. Recall that a normal variety X is
has canonical (resp. terminal) singularities if KX is Q-Cartier and
there is a (equivalently for any) resolution f : X̃ → X such that
K

X̃
=Q f∗KX +

∑
eiEi with ei ≥ 0 (resp. ei > 0), where Ei’s are

the exceptional divisors. Canonical singularities in dimension two are
exactly RDP’s (also called Du Val, A-D-E, Kleinian singularities). Ter-
minal singularities must be of codimension three. In dimension three,
they are completely classified by Reid and Mori [R].

Canonical singularities play an important role in birational geome-
try. In the case of Calabi-Yau 3-folds, birational primitive contractions
[W] will create at most canonical singularities. It has been conjectured
that the moduli spaces of Calabi-Yau 3-folds (with h1(O) = 0) of dif-
ferent topological types can be “connected” by performing primitive
contractions and smoothings. This statement is also known to be in-
terestng from the point of view of physics. Our next result implies that
this can happen only within finite Weil-Petersson distance.

Theorem 2.10. Let X be a Calabi-Yau varieties which admits a
smoothing to Calabi-Yau manifolds. If X has only canonical singulari-
ties then X has finite Weil-Petersson distance along the base.

Proof. For any resolution f : X̃ → X, we have as in the above
that Hn,0(X̃,C) = Γ(X̃,K

X̃
) = Γ(X̃,

∑
eiEi) (notice that ei’s are

integers). Since Ei’s are exceptional, it follows easily that Hn,0(X̃,C) 6=
0 precisely when X has at most canonical singularities.

Now let X → ∆ be a smoothing of X. Take a semi-stable reduction
of it, then there is a component in the central fiber of the semi-stable
reduction which corresponds to the proper transform of X. Then it
has hn,0 = 1. Now apply Theorem 2.1 and notice that finite distance
in a special smoothing implies finite distance in the whole smoothing
component. Q.E.D.
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Example 2.11. According to [R], hypersurface singularities of
monomial type

∑
i xdi = 0 is canonical if and only if

∑
i 1/di > 1.

In the three dimensional case, the finiteness of the Weil-Petersson dis-
tance with singularities of this type were known to Candelas et al. [Ca]
via direct calculations. Theorem 2.9 seems to indicate that canonical
singularities may also play significant role in certain physics problems.

Question 2.12. Is the converse of (2.10) true? More precisely, if
a degeneration of Calabi-Yau manifolds has finite Weil-Petersson dis-
tance, is that true this degeneration is birational to another degenera-
tion such that the central fiber is an irreducible Calabi-Yau variety with
only canonical singularities? This would be an important step toward
the completion program.

Remark 2.13. The problem of whether a singular Calabi-Yau
variety X with canonical singularities has a flat deformation into non-
singular Calabi-Yau’s Xt has already been studied extensively in di-
mension 3. The first step was taken by Friedman [F1] in the case of
ODP’s (see also Tian [T2] and [F2]). Recent preprints of Namikawa-
Steenbrink and M. Gross have provided quite satisfactory results in this
direction. These developments are closely related to Z. Ran’s extension
of the Bogomolov-Tian-Todorov theorem to the singular case.

Remark 2.14. In fact, all the statements in §1 and §2 are true
in the following more general setting. Given a smooth polarized fam-
ily of varieties X → S parametrized by a smooth base S and with
h0(Xs,KXs) ≥ 2, we may consider the semi-definite metric ω on S given
by the Chern form of det Fn, that is, det f∗KX/S . Using this metric,
the main results (1.1), (2.5) and (2.10) generalize immediately. In fact,
the same proofs work except notationally more complicated. However,
even in the Kähler-Einstein case with KX ample, this metric is not the
Weil-Petersson metric defined in (0.12). There is a complicated relation
between the two in terms of certain “Quillen metrics”.

§3 Incompleteness I: Nontrivial Monodromy

In §3 and §4, we work in the projective category. For Calabi-Yau
varieties, it will be assumed that h1(O) = 0. In particular, we have
excluded the case of abelian varieties.

There exists smoothable Calabi-Yau 3-folds with canonical singu-
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larities such that the smoothing comes from a birational contraction
of a smooth family over the disk, which induces isomorphisms out-
side the puncture. These examples are due to Wilson [W] in his deep
study of the jumping phenomenon of Kähler cones. More precisely, his
proposition 4.4 says that the “type III primitive contraction” with the
exceptional divisor a quasi-ruled surface over an elliptic curve provides
such an example.

In the surface case, these correspond to smoothings of K3 surfaces
with RDP’s. By Kulikov’s classification theorem [Ku] and the fact that
“NF 2

∞ = 0 implies N = 0”, they are birational to smooth families (up
to a base change).

For our purpose, the above examples should not be considered
as incomplete points by the following reason: one can include these
points by hand – just replace the degeneration by the smooth family
by allowing the polarization line bundle to be only big and nef. In
the case of K3 surfaces, an equivalent way is to add these points by
allowing Ricci-flat orbifold metrics. In fact, this process leads to the
(metric) completion of the K3 moduli! However, The situation changes
if dim X ≥ 3. We will see that there are “nontrivial” examples. By this
we mean a degeneration such that the complement of the central fiber
can not be completed into a smooth family.

If the monodromy T is not of finite order (N 6= 0) then the degen-
eration is clearly “nontrivial” in the above sense. In this connection, we
mention the following classical result of Picard, Lefschetz and Poincaré:

Theorem 3.1. For a nodal degeneration of smooth n-folds, the
monodromy T is trivial except possibly in the middle dimensional coho-
mology. In the middle dimensional case, we have that

I. N2 = 0 if n is odd, and that
II. T 2 = I (so N = 0) if n is even.

The standard proof of (3.1) is to write down the explicit formula of
T in terms of the “vanishing cycles”. However, in order to see whether
N 6= 0 in the odd case one needs to know whether the vanishing cycle
represent nontrivial homology classes, and this is clearly not just a local
problem near the singular points. (The fact that the vanishing cycle can
be homologically trivial was kindly pointed out to me by J. de Jong.)

As an exercise, We will show that how Theorem 3.1 follows easily
from the topological version of the Clemens-Schmid exact sequence and
then make some remarks on it.

13



First of all, a semi-stable reduction can be obtained by first doing a
degree 2 base change and then blowing up the ODP’s of the total space.
So X [0] is the union of n-quadrics and the proper transform X ′ of the
original central fiber, X [1] is the union of (n−1)-quadrics and X [2] = ∅.
For m < n, we claim that for ` ≤ m − 1 , G`H

m = 0. Suppose it has
been proved up to `− 1, then

(3.2) G`−2n−2H2n+2−m(X0) → G`H
m(X0) → GW

` Hm N→ 0.

If m − ` ≥ 2, since X [2] = ∅ we have that G`H
m(X0) = Em−`,`

2 =
0. If m − 1 = `, since m < n we have E1,m−1

2 = coker δ with δ :
Hm−1(X [0]) → Hm−1(X [1]), which is surjective by explicit cohomolo-
gies of quadrics (or use hyperplane section theorem). This proves that
G`H

m(X0) = 0 and so GW
` Hm = 0 up to ` = m− 1. This means that

the MHS is pure and so N = 0.
For Hn, the same argument shows that GW

` Hn = 0 up to ` =
n − 2, so N2 = 0. Since ` < n, G`−2n−2H2n+2−n(X0) is the dual of
G2(n+1)−`H

2(n+1)−n(X0), which is zero. So Gn−1H
n(X0) ∼= GW

n−1H
n

is given by coker δ with

(3.3) δ : Hn−1(X [0]) → Hn−1(X [1]).

Now the middle cohomology of an (n − 1)-quadric is zero if n is even,
so N = 0 in this case. Q.E.D.

For the case n is odd, N 6= 0 if and only if δ is not surjective.
The middle cohomology has rank 2 for an even dimensional quadric.
The image of these n-quadrics under δ consist of suitable powers of
the hyperplane class, which is also in the image of Hn−1(X ′) if n ≥ 5
(because for any of these (n − 1)-quadrics E, E |E generates H2(E),
which is only one dimensional). Therefore δ is surjective if and only if
the induced map

(3.4) δ′ : Hn−1(X ′) → Hn−1(X [1])

is surjective. That is, the surjectivity of (3.3) (or (3.4) for n ≥ 5) is
equivalent to the triviality of monodromy N . It is immedeate from
this that if the monodromy is trivial then the number of ODP’s of the
central fiber X has an upper bound given by bn−1(X). However, it
is not clear how to get anything more without specifying the varieties
under consideration.
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In the three dimensional case, there are some explicit computations
done by Candelas et al. showing that certain nodal degenerations have
indeed monodromies not of finite order. Hence one obtains nontrivial
finite distance examples. A theoretic proof of this statement for any
nodal degenerations turns out to be delicate (even for Calabi-Yau 3-
folds). We will give a sketch of it by showing the existence of nontrivial
vanishing cycles, following a suggestion by Mark Gross.

Let us assume that our 3-folds are all simply connected. First
of all, a nodal threefold X0 always admits (not necessarily projective)
small resolutions X → X0 with smooth rational curves X ⊃ Ci →
pi ∈ X0 contracted to ODP’s. In the case of Calabi-Yau threefolds
(Gorenstein threefolds with trivial canonical bundle and with h1(O) =
0), the existence of global smoothing X → ∆ of X0 forces that there
are nontrivial relations of [Ci] ∈ H2(X) by Friedman’s result [F3, F4].
That is, the canonical map e :

⊕
i Z[Ci] → H2(X,Z) has nontrivial

kernel dimension s > 0. Consider the resulting surgery diagram:

(3.5)

X

↓
X0 ⊂ X ⊃ Xt

It has the following local description: let Vi 3 pi be a contrctible neigh-
borhood of an ODP, V ′

i ⊂ Xt be the smoothing of Vi and Ui ⊂ X be
the inverse image of Vi. Then

I. Ui is a deformation retract neighborhood Ci and so has the homo-
topy type of S2 ∼ D4 × S2.

II. V ′
i has the homotopy type of S3×D3. Where the sections σi ∼ S3

are the so called vanishing cycles.
III. The surgery from X to Xt is induced from ∂(D4×S2) = S3×S2 =

∂(S3 ×D3).
Let us assume that there are k ODP’s.

An immedeate consequence of (3.5) is the Euler number formula:

(3.6) χ(X)− kχ(P1) = χ(X0)− kχ(pt) = χ(Xt)− kχ(S3).

Let W be the “common open set” of X, Xo and Xt away from
all points pi’s such that W and Vi’s cover Xt etc. A portion of the
Mayer-Vietoris sequence of the covering {W, V ′

i } of Xt gives

(3.7) 0 → H3(W ) → H3(Xt) →
⊕

i
Z[Ci] → H2(X) → H2(Xt) → 0.
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Hence that b2(X) = b2(Xt) + (k − s).
Take into account of b2(X0) = b2(Xt) and b4(X0) = b4(X) (which

also follows from suitable Mayer-Vietoris sequences), simple manipula-
tions with (6.7) shows that b3(Xt) = b3(X0) + s. Comparing with the
(Mayer-Vietoris) sequence defining the vanishing cycles:

(3.8)
⊕

i
Z[σi] → H3(Xt) → H3(X0) → 0,

we conclude that s > 0 is the dimension of the sapce of vanishing cycles.
Q.E.D.

Remark (3.9) We do not know whether every Calabi-Yau three-
fold admits nontrivial finite distance degenerations, not to say nodal
degenerations. It is also possible for a nontrivial degeneration to have
N = 0! In [F2], Friedman remarked that there exists families of quintic
hypersurfaces in P4 aquiring an A2 singularity and have N = 0 (due to
Clemens) and in fact are even C∞ trivial outside the puncture after a
finite base change. He then asked whether this family can be filled in
smoothly up to a base change. Since an A2 singularity is terminal, the
degeneration has finite Weil-Petersson distance from the smooth fibers.
Thus we need better method to detect nontrivial finite distance points.
This is the main issue of the following section.

§4 Incompleteness II: Birational Geometry

Now we go to the most technical part of this paper. In this section,
by using several results of Reid, Kawamata and Kollár in the theory of
3-fold birational geometry along with Friedman’s result on the simul-
taneous resolution of 3-fold double points, a negative answer to the
“filling problem” as stated at the end of §3 is given for any projective
smoothing of a terminal Gorenstein 3-fold with numerical effective (nef)
canonical bundle. As a consequence, any smoothable terminal Calabi-
Yau 3-fold provides nontrivial incomplete points of the Weil-Petersson
metric. Even if the monodromy is completely (eg. C∞) trivial! Similar
statement is true for the general setting in remark (2.14). Here is the
main theorem:

Theorem 4.1. Let X → ∆ be a projective smoothing of a terminal
Gorenstein 3-fold X0 with KX0 nef. Then X → ∆ is not birational to
a projective smooth family X ′ → ∆ with Xt = X ′t for t 6= 0.
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We start with the following important fact (true in any dimension):

Theorem 4.2. Let X → ∆ and X ′ → ∆ be two projective families
with smooth general fiber Xt = X ′t for t 6= 0. Assume that

I. X and X ′ have at most terminal singularities and
II. KX (resp. KX ′) is nef on the central fiber,

then the bimeromorphic map which identifies all fibers outside t = 0
extends to a map which is an isomorphism in codimension one. In
particular, X0 and X ′0 are birational to each other.

Proof. This is essentially the same as in [K1, lemma 4.3], except
that they deal with the case where X and X ′ are both compact projec-
tive (and so ∆ is not involved). The same proof applies to our relative
situation basically because our families are assumed to be projective.
So we will just give a sketch of the proof:

Let φ be the given bimeromorphic map and Z be a desingulariza-
tion of the closure of the graph of φ with projection maps p : Z → X
and p′ : Z → X ′ over ∆. Clearly we have that Zt

∼= Xt
∼= X ′t for t 6= 0.

If p and p′ have the same exceptional divisors then the p-exceptional
set and p′-exceptional set differ only in codimension two or higher, let
E be the union of both set. Then we have the following isomorphisms

(4.3) X − p(E) ∼= Z − E ∼= X ′ − p′(E),

which is the extension of φ we want.
To see p and p′ have the same exceptional divisors, consider the

relation between canonical divisors:

(4.4) KZ = p∗KX + E1 + F = p′∗KX ′ + E2 + G,

where Ei (resp. F , resp. G) denotes the part which are p and p′ (resp.
p but not p′, resp. p′ but not p) exceptional. We can then write

(4.5) p∗KX = p′∗KX ′ + G + (E2 − E1 − F ).

Because of the existence of relative hyperplane sections over ∆, the
key reduction lemma in [K3, (5.2.5.3)] can be adapted for our purpose
– it says that we only need to prove the above statement for the surface
case; the nef condition is used here. It implies that E2 − E1 − F ≥ 0,
hence F = 0 and E2 ≥ E1. Reversing the role of p and p′ gives G = 0
and E1 ≥ E2, so we have in fact E1 = E2. Since both X and X ′ have
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terminal singularities, all exceptional divisors must appear in Ei. So
the theorem is proved. Q.E.D.

Proof of (4.1). Assume such a smooth family X ′ → ∆ exists. We
will check the conditions needed in (4.2). II is clearly satisfied since
KX |X0 = KX0 , which is nef. To see I, first notice that by a simple
fact in commutative algebra, the total space of a small smoothing of
Gorenstein singularities is again Gorenstein. We then need the following
nontrivial theorem. (Although the statement is not explicitly appeared
in [K3], the proof is actually contained in [K3, (17.4), (17.6)], and so
will not be given here.)

Theorem 4.6. The total space of a small smoothing of Gorenstein
canonical singularities has at most Gorenstein terminal singularities.

Since both conditions in (4.2) are satisfied, we know that X0 is
birational to X ′0. We will show that this is impossible.

If X0 is Q-factorial then X0 and X ′0 are birationally equivalent
minimal models. Recall that a minimal model is a normal variety which
is Q-factorial, terminal and has nef canonical class. By Kollár’s theorem
on flops [K1], they are related by a sequence of flops. But a flop does not
change the singularities in the terminal case, so we get a contradiction.

If X0 is not Q-factorial, a theorem of Reid-Kawamata (see e.g. [K3,
(6.7.4)]) says that we still have a projective small morphism X → X0

from a (Q-factorial) minimal model X to X0. X is birational to X0 and
so is birational to X ′0. As before, this implies that X is smooth and it
is related to X ′0 by a sequence of flops. By Kollár’s result again [K1],
X and X ′0 have the same integral homologies and hence have the same
homologies as the general fiber Xt in X .

Consider the following “small contraction-smoothing” diagram:

(4.7)

X

↓
X0 ⊂ X ⊃ Xt

If X0 has only ODP singularities, (4.7) is nothing but a “surgery di-
agram” appeared in the Picard-Lefschetz theory. There is a well known
explicit formula which relates the homologies of X and Xt and shows
in particular that they can not be the same. We will state this for-
mula in a form suitable for our purpose. The proof is basically a simple
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Mayer-Vietoris argument which is entirely the same as that sketched in
[F2].

Lemma 4.8. Given a diagram as above in the C∞ category such
that near each singular point of X0 it is a “small contraction-smoothing”
diagram of a germ of ODP. Let Ci be the rational curves contracted
to those ODP’s and let e :

⊕
i Z[Ci] → H2(X,Z) be the map which

associates to each Ci its class in X, then H2(Xt) = coker e.

So, H2(Xt) ∼= H2(X) means the image of e is zero, which is impos-
sible because X is projective. This is the desired contradiction in the
case when X0 has only ODP’s as singular points.

In the general case, since the singularities are of index one, by
Reid’s classification they are exactly isolated cDV singular points, that
is, one parameter deformation of surface RDP’s. By Friedman’s result
[F1], if p ∈ V is a germ of an isolated cDV point and C ⊂ U is the cor-
responding germ of the exceptional set (which is a curve) contracted to
p, then the versal deformation spaces Def(p, V ) and Def(C, U) are both
smooth and there is an inclusion map of complex spaces Def(C, U) →
Def(p, V ). Moreover, one can deform the complex structure of a small
neighborhood of C so that in this new complex structure, C decom-
poses into several P1’s and the contraction map deforms to a nontrivial
contraction of these P1’s down to ODP’s, while keeping a neighborhood
of these ODP’s to remain in the versal deformations of the germ p ∈ V .

We can preform this analytic process for all C’s and p’s simultane-
ously in each corresponding small neighborhoods and then patch them
together smoothly. As a result, we obtain a deformed diagram which
satisfies the conditions stated in lemma 4.8:

(4.9)

X̃

↓
X̃0 ⊂ X̃ ⊃ X̃t

By our construction, X̃ is diffeomorphic to X and X̃t is diffeomorphic
to Xt for t 6= 0. The later is true because Def(p, V ) is smooth and the
constructiuon is local. Now we have again,

(4.10) H2(X̃t) ∼= H2(Xt) ∼= H2(X) ∼= H2(X̃).

This implies that the image of e is zero. Since the original excep-
tional curve has nontrivial homology class, at least one deformed ra-
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tional curve has nontrivial homology class. This leads to the desired
contradiction again and we are done. Q.E.D.

In the case of Calabi-Yau 3-folds with at most canonical singulari-
ties, h1(O) = 0 implies h2(O) = 0. Hence any smoothing X → ∆ must
be projective by the semi-continuity of h2(O) = 0, and in fact Xt must
still be Calabi-Yau. So we conclude the following:

Theorem 4.11. Let X → ∆ be a smoothing of a terminal Calabi-
Yau 3-fold. Then X → ∆ is not birational to a smooth family.
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