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Introduction

In the study of higher dimensional algebraic geometry, an impor-
tant reduction step is to study certain good birational models of a given
algebraic manifold. This leads to the famous “minimal model program”
initiated by Mori – the search for birational models with numerically ef-
fective canonical divisors and with at most terminal singularities. The
existence problem is still completely open in dimensions bigger than
three, but even worse, in contrast to the two dimensional case, the min-
imal model is not unique in higher dimensions. It is then an important
question to see what kind of invariants are shared by all the birationally
equivalent minimal models. And more generally, to see what kind of
invariants are preserved under certain elementary birational transfor-
mations. In this paper, some results in this direction are given:

Theorem A. Let f : X · ·→ X ′ be a birational map between two
smooth complex projective varieties such that the canonical bundles are
numerically effective along the exceptional loci, then X and X ′ have the
same Betti numbers. In particular, birational smooth minimal models
have the same Betti numbers.

Theorem A generalizes, in the smooth case, previous results of
Kollár on the invariance of cohomologies under flops in dimension three
(cf. 5.1). Another interesting corollary via the Mayer-Vietoris argument
shows that the exceptional loci of the given birational map also share
the same Betti numbers (Corollary 4.5).

The proof of Theorem A is based on general considerations in bi-
rational geometry given in §1 and Grothendieck-Deligne’s solution to
the Weil conjecture [D1, D2]. The bridge to connect these two is the
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theory of p-adic integrals.
The idea to use the Weil conjecture via p-adic integrals to compute

cohomologies can be dated back to Harder and Narasimhan in the 70’s
[HN]. However, it was used there in a somewhat different way. In the
context of Igusa-Weil local zeta functions, the p-adic integral has been
studied extensively by Denef and Loeser since late 80’s [Ig, DL1]. Re-
cently, this was taken up again by Batyrev [Ba]. In fact, he established
Theorem A in the special case of projective Calabi-Yau manifolds.

By extending this idea further, an argument based on birational
correspondences is developed here in order to deal with the general
case. Namely, we introduce in §1 the notion of “K-partial ordering”
and relate it to interesting geometric situations. The applicability of the
Weil conjecture is largely clarified in terms of this notion (cf. Proposition
2.16 and Theorem 3.1). Moreover, this approach also provides a natural
setting in the singular case.

In this paper, We have tried to develop this, together with the
p-adic measure, as far as possible so that it could fit the need of the
minimal model theory. In fact, an easy but very interesting result ob-
served here is that the integral points of a p-adic variety has finite p-adic
measure if and only if it has at most log-terminal singularities (Propo-
sition 2.12). This gives the basic reason why p-adic integrals fit into
the framework of minimal model theory naturally. But due to technical
reasons, we have restricted ourself to the smooth case when we state
and prove Theorem A. (See however 5.3 for the singular case.)

Theorem A is still not all satisfactory in two aspects – the torsion
elements are not considered and no natural maps between cohomolo-
gies has been mentioned. Although there is one obvious candidate for
this map – the cohomology correspondence induced from the birational
correspondence, it is not clear how to show directly that it induces iso-
morphisms. In fact, there is no strong evidence why this should be
true. The next result only deals with the simplest cases. However, it is
included to emphasize this important aspect.

Theorem B. Smooth minimal models minimize H2(X,Z) compat-
ible with the Hodge structure among birational smooth projective vari-
eties. In the singular case, the minimal models minimize the group of
Weil divisors among birational projective varieties with at most termi-
nal singularities.

The proof, which is elementary (does not use the Weil conjecture),
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is contained in §4 together with some related results. In fact, it is simply
another application of the notion of K-partial ordering.

To finish the introduction, it is worth pointing out that in stating
both theorems, what we have in mind is that there should be a “minimal
cohomology theory” among birational varieties. Moreover, it should be
realized exactly by the minimal models.

§1 Birational Geometry

We begin with some standard definitions. For a complete treatment
of minimal model theory, the reader should consult [KMM].

Let X be an n dimensional complex normal Q-Gorenstein variety.
That is, the canonical divisor KX is Q-Cartier. Recall that X has (at
most) terminal (resp. canonical, resp. log-terminal) singularities if there
is a resolution φ : Y → X such that in the canonical bundle relation

(1.1) KY =Q φ∗KX +
∑

aiEi,

we have that ai > 0 (resp. ai ≥ 0, resp. ai > −1) for all i. Here,
the Ei’s vary among the prime components of all the exceptional divi-
sors. Although (1.1) holds only up to Q-linear equivalence, the divisor∑

aiEi ∈ Zn−1 ⊗Q is uniquely determined. Moreover, the condition
on ai’s is readily seen to be independent of the chosen resolution. It is
also elementary to see that smooth points are all terminal.

Let Z be a proper subvariety of X. A Q-Cartier divisor D is called
numerically effective (nef) along Z if D.C := degC̃(f∗D) ≥ 0 for all
effective curves C ⊂ Z, where f : C̃ → C is the normalization of C. And
D is simply called nef if Z = X. A projective variety X is called a
minimal model if X is terminal and KX is nef.

Two normal varieties X and X ′ are birational if they have iso-
morphic function fields K(X) ∼= K(X ′) (over C). Geometrically, this
means that there is a rational map f : X ··→ X ′ such that f−1 is also
rational. The exceptional loci of f are defined to be the smallest sub-
varieties Z ⊂ X and Z ′ ⊂ X ′ such that f induces an isomorphism
X − Z ∼= X ′ − Z ′.

Among the class of birational Q-Gorenstein varieties, We have the
notion of K-partial ordering (where the “K” is for canonical divisors):

Definition 1.2. For two Q-Gorenstein varieties X and X ′, we say
that X ≤K X ′ (resp. X <K X ′) if there is a birational correspondence
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(φ, φ′) : X ← Y → X ′ with Y smooth, such that φ∗KX ≤Q φ′∗KX′

(resp. “<Q”). Moreover, “X ≤K X ′” plus “X ≥K X ′” implies that
“X =K X ′”, ie. φ∗KX =Q φ′∗KX′ . In this case, we say that X and X ′

are K-equivalent.

The well-definedness of this notion follows from the canonical bun-
dle relations

(1.3) KY =Q φ∗KX + E =Q φ′∗KX′ + E′,

since we know that X ≤K X ′ if and only if E ≥ E′. In the terminal case,
this means that φ has more exceptional divisors than φ′ (so heuristically,
X is “smaller” than X ′).

Here is the typical geometric situation that we can compare their
K-partial order:

Theorem 1.4. Let f : X ··→ X ′ be a birational map between two
varieties with canonical singularities. Suppose that the exceptional locus
Z ⊂ X is proper and that KX is nef along Z, then X ≤K X ′. Moreover,
if X ′ is terminal, then Z has codimension at least two.

Proof. Let φ : Y → X and φ′ : Y → X ′ be a good common
resolution of singularities of f so that the union of the exceptional set
of φ and φ′ is a normal crossing divisor of Y . This can be done by
considering Γ̄f ⊂ X ×X ′, the closure of the graph of f , blowing up the
exceptional set of Γ̄f → X and Γ̄f → X ′ and then taking Y to be a
Hironaka (embedded) resolution [Hi].

Consider the canonical bundle relations:

(1.5)
KY =Q φ∗KX + E ≡ φ∗KX + F + G

=Q φ′∗KX′ + E′ ≡ φ′∗KX′ + F ′ + G′.

Here F and F ′ denote the sum of divisors (with coefficients ≥ 0) which
are both φ and φ′ exceptional. G (resp. G′) denotes the part which is
φ exceptional but not φ′ exceptional (resp. φ′ but not φ exceptional).
Notice that φ(G′) ⊂ Z.

To proceed, we write

(1.6) φ′∗KX′ =Q φ∗KX + G + (F − F ′ −G′).

It is enough to prove that F − F ′ − G′ ≥ 0, because this implies that
F − F ′ ≥ 0 and G′ = 0, and so E ≥ E′.
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By taking a generic hyperplane section H of Y n − 2 times, the
problem is reduced to a problem on surfaces. Namely

(1.7) Hn−2.φ′∗KX′ =Q Hn−2.φ∗KX + ζ + (ξ − ξ′ − ζ ′),

where ξ = Hn−2.F and ζ = Hn−2.G etc. If ξ − ξ′ − ζ ′ is not effective,
write it as Hn−2.(A − B) = a − b with A and B effective. Then by
taking the intersection of (1.7) with b, we get

(1.8) B.Hn−2.φ′∗KX′ =Q B.Hn−2.φ∗KX + b.ζ + b.a− b2.

The left hand side is always zero since B is φ′ exceptional. Moreover,
if B ⊂ F ′ then B.Hn−2.φ∗KX = 0 too. If B ⊂ G′ then the curve
φ(B.Hn−2) ⊂ φ(G′) ⊂ Z is inside the exceptional locus. So the first
three terms in the right hand side are non-negative since KX is nef
along Z and a, b and ζ are different components. However, since b

is a nontrivial combination of φ′ exceptional curves in Hn−2, we have
from the Hodge index theorem for surfaces that b2 < 0, a contradiction!
Hence F − F ′ −G′ ≥ 0.

For the second statement, from the construction of Y , we know
that all components of the exceptional sets, denoted by Exc φ and Exc φ′

respectively, are divisors. If X ′ is assumed to be terminal, then all φ′

exceptional divisors occur as components of E′. So G′ = 0 implies that
Excφ′ ⊂ Excφ. With this understood, from

(1.9) X − φ(Excφ) ∼= Y − Excφ ∼= X ′ − φ′(Excφ) ⊂ X ′ − φ′(Excφ′),

we conclude that Z ⊂ φ(Excφ) is of codimension at least two. Q.E.D.

Corollary 1.10. Let f :X · ·→ X ′ be a birational map between
two varieties with at most canonical singularities such that KX (resp.
KX′) is nef along the exceptional locus Z ⊂ X (resp. Z ′ ⊂ X ′), then
X =K X ′. Moreover, f extends to an isomorphism in codimension one
if X and X ′ are terminal. This applies, in particular, if both X and X ′

are minimal models.

Variant 1.11. Instead of assuming that the exceptional locus in X

is proper, one can generalize Theorem 1.4 to the relative case, namely
f is a S-birational map and that X → S and X ′ → S are proper S-
schemes. The proof is identical to the one given above by changing
notation.
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Remark 1.12. This type of argument is familiar in the minimal
model theory. Notably, in analyzing the log-flip diagram (eg. [KMM;
5-1-11]) or more specially, the flops. Theorem 1.4 implies that if X ′ is
a flip of X, then X ≥K X ′ (in fact, more is true: X >K X ′). Corollary
1.10 implies that flop induces K-equivalence. Since flip/flop will not
be used in any essential way in this paper, we will refer the interested
reader to [KMM] for the definitions. The proof given above is inspired
by Kollár’s treatment of flops in [Ko].

§2 The Weil Conjecture and p-adic Integrals

To prove Theorem A, we will show that X and X ′ have the same
number of rational points over certain finite fields when a suitable good
reduction is taken. That is, we prove that they have the same “zeta
function”. The theorem will then follow from the statement of the Weil
conjecture.

2.1. The reduction procedure. This is standard in algebraic
geometry and in number theory: as long as we perform only a finite
number of “algebraic constructions” in the complex case, e.g. consider
morphisms, since all the objects involved can by defined by a finite
number of polynomials, we can take S ⊂ C a finitely generated subring
over Z so that everything is defined over S. S has the property that
the residue field S/m of any maximal ideal m ⊂ S is finite.

If we start with “smooth objects”, general reduction theory then
says that for an infinite number of “good primes” (in fact, Zariski dense
in Spec (S)), we may get good reductions so that everything is defined
smoothly over the finite residue field Fq with q = pr for some prime
number p. We may also assume that this reduction has a lifting such
that everything is defined smoothly over R, the maximal compact sub-
ring of a p-adic local field K, i.e. a finite extension field of Qp, with
residue field Fq.

Here is a special way to see this. Let F be the quotient field of
S. Based on the fact (and others) that Qp has infinite transcendence
degree, the “embedding theorem” (see for example [Ca; p.82]) says that
for an infinite number of p’s, there is an embedding of fields i : F → Qp

such that i(S) ⊂ Zp. Moreover, i may be chosen so that a prescribed
finite subset of S, say the coefficients of those defining polynomials, is
mapped into the set of p-adic units. This embedding then gives the
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desired lifting.
Let P be the unique maximal ideal of R (so R/P ∼= Fq). We denote

by X̄, Ū , . . . those objects constructed from X, U . . . via reductions mod
P . That is, objects lie over the point Spec R/P → Spec R – they are
defined over Fq. We also denote the reduction map by π : X(R) →
X̄(Fq) etc.

2.2. The Weil conjecture. Let X̄ be a variety defined over a
finite field Fq. After fixing an algebraic closure, the Weil zeta function
of X̄ is defined by

(2.3) Z(X̄, t) := exp

(∑
k≥1

|X̄(Fqk)| t
k

k

)
.

In 1949, Weil conjectured several nice properties of this zeta func-
tion for smooth projective varieties and expalined how some of these
would follow once a suitable cohomology theory exists [W1]. This lead
Grothendieck to his creation of étale cohomology theory.

More precisely, Grothendieck proved a “Lefschetz fixed point for-
mula” in a very general context (eg. constructible sheaves over seper-
ated schems of finite type) [D2], which in particular implies that the
zeta function is a rational function:

(2.4) Z(X̄, t) =
P1(t) · · ·P2n−1(t)

P0(t)P2(t) · · ·P2n(t)
,

where Pj(t) is a polynomial with integer coefficients such that Pj(0) = 1
and deg Pj(t) = hj , the j-th Betti number of the compactly supported `-
adic étale cohomologies (for a prime number ` 6= p). Moreover, when X̄

comes from a good reduction of a smooth complex projective variety X

in the sense described in (2.1), hj coincides with the j-th Betti number
of the singular cohomologies of X(C).

Deligne [D1] completed the proof of the Weil conjecture by prov-
ing the important “Riemann Hypothesis” that all roots of Pj(t) have
absolute value q−j/2. In particular, the complete information about the
Fqk -rational points determines the hj ’s and all the roots.

2.5. Counting points via p-adic integrals. How do we count
X̄(Fq)? If X̄ comes from the good reduction of a smooth R-scheme, we
will see that such a counting can be achieved by using p-adic integrals
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(cf. Theorem 2.8). We will first recall some elementary aspects of the
p-adic integral over K-analytic manifolds and over R-schemes.

Consider the Haar measure on the locally compact field K, nor-
malized so that the compact open “disk” R has volume 1:

(2.6)
∫

R

|dz| = 1.

We may extend this to the multivariable case and define the p-adic
integral of any regular n form Ψ = ψ(z1, · · · , zn)dz1 ∧ · · · ∧ dzn by

(2.7)
∫

Rn

|Ψ| :=
∫

Rn

|ψ(z)||dz1 ∧ · · · ∧ dzn|.

Here |a| := q−νp(NK/Qp (a)) is the usual p-adic norm.
We may define an integral slightly more general than (2.7): suppose

that Ψ is a r-pluricanonical form such that in local analytic coordinates
Ψ = ψ(z1, · · · , zn)(dz1 ∧ · · · ∧ dzn)⊗r. We define the integration of a
“r-th root of |Ψ|” by

(2.7′)
∫

Rn

|Ψ|1/r :=
∫

Rn

|ψ(z)|1/r|dz1 ∧ · · · ∧ dzn|.

This is independent of the choice of coordinates, as can be checked easily
by the same method as in [W2; p.14]. So we can extend the definition
to (not necessarily complete) K-analytic manifolds with Ψ a (possibly
meromorphic) pluricanonical form. Certainly then the integral defined
may not be finite.

The key property we need is the following (slightly more general
form of a) formula of Weil [W2; 2.2.5]. We briefly sketch its proof.

Theorem 2.8. Let U be a smooth R-scheme and Ω a nowhere zero
r-pluricanonical form on U , then

∫

U(R)

|Ω|1/r =
|Ū(Fq)|

qn
.

Proof. The proof given by Weil in [W2] goes through without
difficulties – one first observes that the reduction map π: U(R) → Ū(Fq)
induces an isomorphism between π−1(t̄) and PRn for any t̄ ∈ Ū(Fq)
(Hensel’s lemma) such that there is a function ψ with |ψ(z)| = 1 and

(2.9) Ω = ψ(z) · (dz1 ∧ · · · ∧ dzn)⊗r
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in the K-analytic chart PRn. This implies that
∫

π−1(t̄)
|Ω|1/r = 1/qn

for any t̄ ∈ Ū(Fq). Summing over t̄ then gives the result. Q.E.D.

The right hand side of (2.8) shows that the integral is independent
of the choice of the form Ω. One may also see this by observing that
any two such forms differ by a nowhere vanishing function on U (over
R) which takes values in the units on all R-points. This allows one to
define a canonical p-adic measure on the R-points of smooth R-schemes
by “gluing” the local integrals. We will define it in the singular case
with the hope that it may be useful for later development.

2.10. Canonical measure on Q-Gorenstein R-schemes. We
will only consider those R-schemes, eg. X, that come from complex
Q-Gorenstein varieties as in (2.1). Let r ∈ N such that rKX is Cartier
(locally free). We may assume that we have a R-resolution of singular-
ities φ: Y → X, which is a projective R-morphism, so that the reduced
part of the exceptional set is a simple normal crossing R-variety. We
will define a measure on X(R) such that the measurable sets are exactly
the compact open subsets in the K-analytic topology.

Let Ui’s be a Zariski open cover of X such that rKX |Ui is actually
free. Then for a compact open subset S ⊂ Ui(R) ⊂ X(R), we define its
measure by

(2.11) mX(S) ≡
∫

S

|Ωi|1/r :=
∫

φ−1(S)

|φ∗Ωi|1/r,

where Ωi is an arbitrary generator of rKX |Ui . Notice that the proper-
ness of φ implies that φ−1(S) ⊂ Y (R). This allows us to operate the
integral entirely on R-points.

For general compact open S ⊂ X(R), we may break S into disjoint
pieces Sj so that Sj is contained in some Ui(R) (in fact, Sj may be
chosen to lie entirely in a fiber of the reduction map π), and then define
mX(S) =

∑
i mX(Si). Notice that mX(S) is again independent of the

choice of Ui, Ωi and Y .
The following proposition explains the possible connection between

the canonical measure and the minimal model theory:

Proposition 2.12. For a Q-Gorenstein R-variety X, X(R) has
finite measure if and only if X has at most log-terminal singularities.

Proof. Consider the canonical bundle relation for φ:Y → X

(2.13) rKY = φ∗rKX +
∑

i
eiEi
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with rKX being Cartier and ei ∈ Z. To determine the finiteness of
mX(X(R)), we only need to consider those R-points on the exceptional
fibers. Locally, div φ∗Ω =

∑
i eiEi for a generator Ω of rKX . So the

integral is a product of one dimensional integrals of the form

(2.14) Ii :=
∫

R

|zei dz⊗r|1/r =
∫

R

|z|ei/r |dz|.

If this is finite, then

(2.15) Ii =
∫

PR

|z|ei/r |dz|+ (q − 1)
1
q

= q−(ei/r+1)Ii +
q − 1

q
.

Since Ii > 0, this makes sense only if qei/r+1 > 1. That is, ei/r > −1,
which is exactly the definition of log-terminal singularities. Q.E.D.

Since the measure is defined Zariski-locally via p-adic integrals, for
smooth X, we have from Weil’s formula (2.8) that:

Corollary 2.16. Let X be an n-dimensional smooth R-variety
with finite residue field Fq, then

mX(X(R)) =
|X̄(Fq)|

qn
.

Remark 2.17. If X is singular, mX((X(R)) is a weighted count-
ing of the rational points. By definition, if φ: Y → X is a crepant
R-morphism, ie. KY =Q φ∗KX , then mX((X(R)) = mY ((Y (R)). In
particular, mX((X(R)) counts the rational points of Ȳ if Y is smooth!
This applies to many interesting “pure canonical” singularities and to
terminal singularities having small resolutions. However, further inves-
tigation on the precise “geometric meaning” of this weighted counting
is still needed for the general case (cf. 5.3).

§3 The Proof of Theorem A

We will in fact prove a result which connects the notion of K-
partial ordering and the canonical measure. This will largely clarify the
role played by the Weil conjecture.

Theorem 3.1. Let X and X ′ be two birational log-terminal R-
varieties. Then mX(X(R)) ≤ mX′(X ′(R)) if X ≤K X ′. In particular,
K-equivalence implies measure equivalence.
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Proof. Consider as before, a birational correspondence (φ, φ′) :
X ← Y → X ′ over R with Y a smooth R-variety. Let r ∈ N be such
that both rKX and rKX′ are Cartier. Then X ≤K X ′ if and only if in
the canonical bundle relations rKY = φ∗rKX + E = φ′∗rKX′ + E′, we
have E ≥ E′.

From the properness of φ and φ′, we have that φ−1(X(R)) =
Y (R) = φ′−1(X ′(R)). So from the definition of the measure (2.11),
it suffices to show that for any compact open subset T ⊂ Y (R) with
π(T ) a single point ȳ ∈ Ȳ (Fq), we have

(3.2)
∫

T

|φ∗Ω|1/r ≤
∫

T

|φ′∗Ω′|1/r.

Here Ω is an arbitrary local generator of rKX on a Zariski open set U

where rKX is actually free and such that φ̄(ȳ) ∈ Ū (and with similar
conditions for Ω′).

Clearly, (3.2) can fail to be an equality only if ȳ ∈ Ē∪Ē′. However,
in this case E ≥ E′ says that the order of φ∗Ω is no less than that of
φ∗Ω. (3.2) then follows from the definition of the p-adic integral (2.7′)
(see also (2.15)). Q.E.D.

If X and X ′ are smooth, combining this with (2.16) gives

Corollary 3.3. Let X and X ′ be two birational smooth R-schemes.
Then |X̄(Fq)| ≤ |X̄ ′(Fq)| if X ≤K X ′.

With this been done, by working on cyclotomic extensions of K,
the same proof shows that |X̄(Fqk)| ≤ |X̄ ′(Fqk)| for all k ∈ N. In
particular, Z(X̄, t) ≤ Z(X̄ ′, t) for all t > 0. The same is true for all the
derivatives, but it is not clear how to make use of these inequalities.

Corollary 3.4. Let X and X ′ be two birational complex smooth
varieties. They have the same Euler number for the compactly supported
cohomologies if X =K X ′.

Proof. Apply the reduction procedure (2.1) to reduce this to the
p-adic case. The statement then follows from Grothendieck’s Lefschetz
fixed point formula (2.4) and the above comparison of zeta functions.
Q.E.D.

What kind of geometric situation can we have X ≤K X ′? Theorem
1.4 provides such a typical case inspired by the minimal model theory.
Namely, let f : X · ·→ X ′ be a birational map between two varieties
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with at most canonical singularities and with proper exceptional locus
Z ⊂ X such that KX is nef along Z, then X ≤K X ′.

So far we have not used Deligne’s theorem on the “Riemann Hy-
pothesis”. To use it, we need to impose the projective assumption.

Theorem 3.5. Let X and X ′ be two birational smooth projective
R-schemes. If X =K X ′ then mX(X(R)) = mX′(X ′(R)). Equiva-
lently, Z(X̄, t) = Z(X̄ ′, t). In particular, they have the same étale Betti
numbers by the Weil conjecture.

Now Theorem A simply follows from the reduction procedure (2.1),
Corollary 1.10 and Theorem 3.5. Q.E.D.

Remark 3.6. In the preliminary version of this paper (dated Oc-
tober 1997), Theorem A was stated with the assumption that the canon-
ical bundle is semi-ample, that is, rKX is generated by global sections
for some r ∈ N. The proof proceeds by cutting out the pluri-canonical
divisors and applying p-adic integrals to the birational correspondence,
where the notion of K-equivalence is essential for this step to work.

By using Weil’s formula (2.8), the proof is then concluded by in-
duction on dimensions. In this approach, the usage of integration of a
r-th root of the absolute value of a pluricanonical form was suggested
to the author by C.-L. Chai in order to deal with the case that r > 1.

Remark 3.7. The equivalence of zeta functions is a stronger state-
ment than the equivalence of Betti numbers. Moreover, we have in fact
established the equivalence of zeta functions for a dense set of primes.
From the theory of motives, this suggests that we may in fact have the
equivalence of Hodge structures. Further investigation in this should
be interesting and important.

Question 3.8. Is Theorem A true for Kähler manifolds?

§4 Miscellaneous Results

Now we come back to the complex number field and begin with an
elementary observation:

Lemma 4.1. If the exceptional loci of a birational map f :X ··→ X ′

between two smooth projective varieties have codimension at least two
then for i ≤ 2 we have πi(X) ∼= πi(X ′) and Hi(X,Z) ∼= Hi(X ′,Z)
which is compatible with the rational Hodge structures.
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Proof. The real codimension four statement plus the transversal-
ity argument shows that πi(X) ∼= πi(X ′), Hi(X,Z) ∼= Hi(X ′,Z) and
Hi(X,Z) ∼= Hi(X ′,Z) canonically for i ≤ 2. Moreover, by Hartog’s
extension we know that the Hodge groups H0(Ωi) are all birational
invariants among smooth varieties. The orthogonality of Hodge filtra-
tions then shows that Hi(X,Q) and Hi(X ′,Q) share the same rational
Hodge structures for i ≤ 2. Q.E.D.

A slightly deeper result is given by

Proposition 4.2. If the exceptional loci Z ⊂ X and Z ′ ⊂ X ′ of
a birational map f between two smooth varieties have codimension at
least two, then hi(X)− hi(Z) = hi(X ′)− hi(Z ′).

Proof. Construct a birational correpondence X ← Y → X as in
§1 and denote the exceptional divisor of φ: Y → X (resp. φ′: Y → X ′)
by E (resp. E′). Since Hironaka’s resolution process only blows up
smooth centers inside the singular set of the graph of f , the isomorphism
X − Z ∼= X ′ − Z ′ implies that φ(E ∪ E′) ⊂ Z and φ′(E ∪ E′) ⊂ Z ′,
hence that Ered = E′

red, Z = φ(E) and Z ′ = φ′(E′).
Consider an open cover {V,W} of X by letting V := X − Z and

W ⊃ Z be a deformation retract neighborhood. Let Ṽ := φ−1(V ) and
W̃ := φ−1(W ) ⊃ E be the corresponding open cover of Y . Then we
have the following commutative diagram of integral cohomologies
(4.3)
Hi−1(Ṽ ∩ W̃ ) → Hi(Y ) → Hi(Ṽ )⊕Hi(E) → Hi(Ṽ ∩ W̃ )

↑ ↑ ↑ ↑
Hi−1(V ∩W ) → Hi(X) → Hi(V )⊕Hi(Z) → Hi(V ∩W )

It is a general fact that φ∗: Hi(X) → Hi(Y ) is injective (by the
projection formula, that φ is proper of degree one implies that φ! ◦
φ∗(a) = a for all a ∈ Hi(X)). Since Ṽ ∼= V and Ṽ ∩ W̃ ∼= V ∩ W ,
simple diagram chasing shows that Hi(Z) → Hi(E) is also injective.
We may then break (4.3) into short exact sequences

(4.4) 0 → φ∗Hi(X) → Hi(Y ) → Hi(E)/φ∗Hi(Z) → 0.

Similarly, we have for φ′:Y → X ′:

(4.4′) 0 → φ′∗Hi(X ′) → Hi(Y ) → Hi(E′)/φ′∗Hi(Z ′) → 0.

Since Ered = E′
red, the proposition follows immedeately. Q.E.D.
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Combining this with Theorem A gives

Corollary 4.5. Let f :X · · → X ′ be a birational map between
two smooth complex projective varieties such that the canonical bundles
are numerically effective along the exceptional loci, then the exceptional
loci also have the same Betti numbers. In particular, this applies to
birational smooth minimal models.

Remark 4.6. The proof of Theorem A in fact also shows that
Z̄ and Z̄ ′ have the same number of Fq-rational points. This is simply
because |X̄(Fq)| = |X̄ ′(Fq)| and X̄ − Z̄ ∼= X̄ ′ − Z̄ ′. In particular, if Z

and Z ′ are smooth then they have the same Betti numbers. Although
this argument apparently only works for smooth Z and Z ′, which is
very restricted, it is more than just a special case of (4.5) – since it
carries certain nontrivial arithmetic information.

Now we begin the proof of Theorem B. Let f : X · ·→ X ′ be a
birational map between two n dimensional smooth projective varieties
where only X is assumed to be minimal. In the notation of §1, Theorem
1.4 says that E ≥ E′. So we obtain canonical morphisms Hi(E) →
Hi(E′) induced from E′ ⊂ E. Since Z := φ(E) and Z ′ := φ′(E′) are of
codimension at least two, H2n−2(Z) = 0 = H2n−2(Z ′). By comparing
(4.4) and (4.4′) via the surjective map H2n−2(E) → H2n−2(E′), we
obtain a canonical embedding:

(4.7) φ∗H2n−2(X,Z) ⊂ φ′∗H2n−2(X ′,Z).

which respects the Hodge structures. This induces an injective map

(4.8) φ′! ◦ φ∗ : H2n−2(X,Z) → H2n−2(X ′,Z),

which by the projection formula is easily seen to be independent of the
choice of Y , hence canonical. Poincaré duality then concludes the first
statement of Theorem B.

For the second statement, we may simply copy the above proof by
replacing (4.4) with the similar formula for the Weil divisors. Q.E.D.

One can also interpret this result in terms of the Picard group if the
terminal varieties considered are assumed to be factorial or Q-factorial.

§5 Further Remarks
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5.1. Birational geometry. A version of Theorem 1.4, or rather
the Corollary 1.10, was used before by Kollár in his study of three
dimensional flops. In fact, he proved that three dimensional birational
Q-factorial minimal models all share the same singularities, singular
cohomologies and intersection cohomologies with pure Hodge structures
(for deep reasons). See [Ko] for the details.

More recently, the author used a relative version of (1.10) to study
degenerations of minimal projective threefolds [Wa; §4] and obtained
a negative answer to the so called “filling-in problem” in dimension
three. Namely, there exist degenerating projective families of smooth
threefolds which are C∞ trivial over the punctured disk, but can not
be completed into smooth projective families.

5.2. Previous results. After Kollár’s result on threefolds, the
problem on the equivalence of Betti numbers seemed to be ignored for a
while until recently when Batyrev treated the case of projective Calabi-
Yau manifolds [Ba].

In the special case of projective hyper-Kähler manifolds, Theorem
A has also been proved recently by Huybrechts [Hu] using quite different
methods. In fact, he proved more – these manifolds are all inseparable
points in the moduli space (hence are diffeomorphic and share the same
Hodge structures)!

This problem on general minimal models, to the best of the author’s
knowledge, has not been studied before our paper. In our case, the
homotopy types will generally be different. In fact, it is well known that
for a single elementary transform of threefolds, although the singular
cohomologies are canonically identified, the cup product must change.
However, inspired by Kollár’s result and Remark 3.7, we still expect
that the (non-polarized) Hodge structures will turn out to be the same.

5.3. Singular case. In order to generalize Theorem A to the
singular case, our approach works equally well in the log-terminal case,
with the only problem being that we need a good interpretation like
Weil’s formula (2.8) for the precise meaning of the weighted counting,
which is the key to relate p-adic integrals to the Weil conjecture.

Since a suitable version of the Weil conjecture for singular varieties
has already been proved by Deligne in [BBD] in terms of the intersec-
tion cohomologies introduced by Goresky and MacPherson [GM], this
problem is thus reduced to the calculation of local Lefschetz numbers.

More precisely, one needs to evaluate the p-adic integrals over a sin-
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gular point and to reconstruct the “constructible complexes of sheaves”
which it may correspond to. If luckily enough, it is the intersection coho-
mology complexes, then we may get our conclusion again via Deligne’s
theorem. A detailed discussion on this will be continued in a subsequent
paper.

5.4. Minimal cohomology. For Theorem B, it is likely that a
similar argument works for proving that terminal minimal models also
minimize the second intersection cohomology groups and that they all
share the same pure Hodge structures. The important injectivity of
φ∗ : IHi(X) → IHi(Y ) needed to conclude (4.4) is now a consequence
of the “decomposition theorem” of projective morphisms [BBD].

An interesting question arises: is the Picard number (or the second
Betti number) of a non-minimal model always strictly bigger than the
one attained by the minimal models?

Mazur raised the following question: can one extract the expected
“minimal cohomology piece” directly from any smooth model without
refering to the minimal models?

5.5. Recent development. We first notice that the proof of
Theorem A can be formally seperated into three parts:

1. Geometric situations lead to the conclusion of K-equivalence. This
is done Theorem 1.4, or Corollary 1.10. In particular, this applies
to birational minimal models.

2. A reasonable integration/measure theory attached to a variety.
Here we deal with p-adic integrals, or equivalently, the number of
rational points in the case of smooth varieties. Theorem 3.1 shows
that K-equivalence implies measure equivalent. In the notation
used there, E and E′ are exactly the Jacobian factor occuring in
the changing of variables formula from X and X ′ to Y respectively.

3. Topological/geometrical interpretation of the integral. In our case,
this corresponds to Grothendieck-Deligne’s solution to the Weil
conjecture.

We can then formulate a meta theorem via the above steps by consid-
ering more general integrals.

Recently, based on an idea of Kontsevich, Denef and Loeser [DL2]
has constructed a motivic integration on the space of arcs of an al-
gebraic variety, which generalizes the p-adic integral. Using this new
integration theory in step 2 and Deligne’s theorem on the existence of
functorial mixed Hodge structures on compactly supported cohomolo-
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gies of algebraic varieties in step 3, Theorem A can be strengthened to
the statement that X and X ′ also have the same Hodge numbers. More-
over, the usage of motivic integration allows much better understanding
of the exceptional loci. However, like the case of p-adic integrals, the
topological meaning of the full measure in the singular case is still not
well understood.

After the present work was completed, their preprint [DL2] and
then the preprint version of this paper became avaliable in the network.
Afterwards, the above implication was also observed and pointed out
to the author by Loeser. Since their construction of motivic integration
is quite delicate, we will not try to say anything about it here. The
interested reader is referred to [DL2] for the details of this wonderful
theory.
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