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Abstract

We show that the Green functions on flat tori can have either three or five critical
points only. There does not seem to be any direct method to attack this problem.
Instead, we have to employ sophisticated nonlinear partial differential equations
to study it. We also study the distribution of the number of critical points over
the moduli space of flat tori through deformations. The functional equations of
special theta values provide important inequalities which lead to a solution for all
rhombus tori.

1. Introduction and statement of results

The study of geometric or analytic problems on two dimensional tori is the
same as the study of problems on R2 with doubly periodic data. Such situations
occur naturally in sciences and mathematics since early days. The mathematical
foundation of elliptic functions was subsequently developed in the 19th century. It
turns out that these special functions are rather deep objects by themselves. Tori of
different shapes may result in very different behavior of the elliptic functions and
their associated objects. Arithmetic on elliptic curves is perhaps the eldest and the
most vivid example.

In this paper, we show that this is also the case for certain nonlinear partial
differential equations. Indeed, researches on doubly periodic problems in mathe-
matical physics or differential equations often restrict the study to rectangular tori
for simplicity. This leaves the impression that the theory for general tori may be
much the same as for the rectangular case. However this turns out to be false.
We will show that the solvability of the mean field equation depends on the shape
of the Green function, which in turn depends on the geometry of the tori in an
essential way.

Recall that the Green function G.z;w/ on a flat torus T D C=Z!1CZ!2 is
the unique function on T �T which satisfies

�4zG.z;w/D ıw.z/�
1

jT j

911
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and
R
T G.z;w/ dAD 0, where ıw is the Dirac measure with singularity at z D w.

Because of the translation invariance of 4z , we have G.z;w/DG.z�w; 0/ and
it is enough to consider the Green function G.z/ WDG.z; 0/.

Not surprisingly, G can be explicitly solved in terms of elliptic functions. For
example, using theta functions we have (cf. Lemmas 2.1 and 7.1)

G.z/D�
1

2�
log j#1.z/jC

1

2b
y2CC.�/

where z D xC iy and � WD !2=!1 D aC ib. The structure of G, especially its
critical points and critical values, will be the fundamental objects that interest us.
The critical point equation rG.z/D 0 is given by

@G

@z
�
�1

4�

�
.log#1/zC 2�i

y

b

�
D 0:

In terms of Weierstrass’ elliptic functions }.z/, �.z/ WD �
R z
} and by the relation

.log#1/z D �.z/ � �1z and with �i D �.z C !i / � �.z/ the quasi-periods, the
equation takes the simpler form: z D t!1C s!2 is a critical point of G if and only
if the following linear relation (Lemma 2.3) holds:

(1.1) �.t!1C s!2/D t�1C s�2:

Since G is even, it is elementary to see that half-periods 1
2
!1, 1

2
!2 and

1
2
!3 D .!1C!2/=2 are the three obvious critical points and other critical points

must appear in pairs. The question is: Are there other critical points? or How
many critical points might G have? It turns out that this is a delicate question and
cannot be attacked easily from the simple looking equation (1.1). One of our chief
purposes in this paper is to understand the geometry of the critical point set over
the moduli space of flat tori M1 DH=SL.2;Z/ and to study its interaction with the
nonlinear mean field equation.

The mean field equation on a flat torus T takes the form (� 2 RC)

(1.2) 4uC �eu D �ı0:

This equation has its origin in the prescribed curvature problem in geometry like
the Nirenberg problem, cone metrics etc. It also comes from statistical physics as
the mean field limits of the Euler flow, hence the name. Recently it was shown
to be related to the self dual condensation of the Chern-Simons-Higgs model. We
refer to [3], [4], [2], [5], [6], [8], [9] and [10] for the recent development of this
subject.

When � ¤ 8m� for any m 2 Z, it has been recently proved in [4], [2], [5]
that the Leray-Schauder degree is nonzero; so the equation always has solutions,
regardless of the actual shape of T .

The first interesting case remaining is when �D 8� where the degree theory
fails completely. Instead of the topological degree, precise knowledge on the Green
function plays a fundamental role in the investigation of (1.2). The first main result
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of this paper is the following existence criterion whose proof is given in Section 3
by a detailed manipulation on elliptic functions:

THEOREM 1.1 (Existence). For �D 8� , the mean field equation on a flat torus
has solutions if and only if the Green function has critical points other than the
three half-period points. Moreover, each extra pair of critical points corresponds
to a one-parameter scaling family of solutions.

It is known that for rectangular tori G.z/ has precisely the three obvious crit-
ical points; hence for � D 8� equation (1.2) has no solutions. However we will
show in Section 2 that for the case !1 D 1 and � D !2 D e�i=3 there are at least
five critical points and the solutions of (1.2) exist.

Our second main result is the uniqueness theorem.

THEOREM 1.2 (Uniqueness). For � D 8� , the mean field equation on a flat
torus has at most one solution up to scaling.

In view of the correspondence in Theorem 1.1, an equivalent statement of
Theorem 1.2 is the following result:

THEOREM 1.3. The Green function has at most five critical points.

Unfortunately we were unable to find a direct proof of Theorem 1.3 from the
critical point equation (1.1). Instead, we will prove uniqueness theorem first, and
then Theorem 1.3 is an immediate corollary. Our proof of Theorem 1.2 is based on
the method of symmetrization applied to the linearized equation at a particularly
chosen, even solution in the scaling family. In fact we study in Section 4 the one
parameter family

4uC �eu D �ı0; � 2 Œ4�; 8��

on T within even solutions. This extra assumption allows us to construct a double
cover T ! S2 via the Weierstrass } function and to transform equation (1.2) into a
similar one on S2 but with three more delta singularities with negative coefficients.
The condition � � 4� is to guarantee that the original singularity at 0 still has a
nonnegative coefficient of delta singularity.

The uniqueness is proved for this family via the method of continuity. For
the starting point � D 4� , by a construction similar to the proof of Theorem 1.1
we sharpen the result on the nontrivial degree to the existence and uniqueness of
solution (Theorem 3.2). For � 2 Œ4�; 8��, the symmetrization reduces the problem
on the nondegeneracy of the linearized equation to the isoperimetric inequality on
domains in R2 with respect to certain singular measure:

THEOREM 1.4 (Symmetrization Lemma). Let �� R2 be a simply connected
domain and let v be a solution of

4vC ev D
XN

jD1
2� j̨ ıpj
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in �. Suppose that the first eigenvalue of 4C ev is zero on � with ' the first
eigenfunction. If the isoperimetric inequality with respect to ds2 D evjdxj2:

(1.3) 2`2.@!/�m.!/.4� �m.!//

holds for all level domains ! D f' > tg with t > 0, thenZ
�

ev dx � 2�:

Moreover, (1.3) holds if there is only one negative j̨ and j̨ D�1.

The proof of the number of critical points appears to be one of the very few
instances that one needs to study a simple analytic equation, here the critical point
equation (1.1), by way of sophisticated nonlinear analysis.

To get a deeper understanding of the underlying structure of solutions, we
first notice that for �D 8� , (1.2) is the Euler-Lagrange equation of the nonlinear
functional

(1.4) J8�.v/D
1

2

Z
T

jrvj2 dA� 8� log
Z
T

ev�8�G.z/ dA

on H 1.T /\fv j
R
T vD 0g, the Sobolev space of functions with L2-integrable first

derivative. From this viewpoint, the nonexistence of minimizers for rectangular
tori was shown in [5]. Here we sharpen the result to the nonexistence of solutions.
Also for � 2 .4�; 8�/ we sharpen the result on the nontrivial degree of equation
(1.2) in [4] to the uniqueness of solutions within even functions. We expect the
uniqueness holds true without the even assumption, but our method only achieves
this at �D 4� . Obviously, uniqueness without the even assumption fails at �D 8�
due to the existence of scaling.

Naturally, the next question after Theorem 1.2 is to determine those tori whose
Green functions have five critical points. It is the case if the three half-periods are
all saddle points. A strong converse is proved in [7]:

THEOREM A. If the Green function has five critical points then the extra pair
of critical points are minimum points and the three half-periods are all saddle
points.

Together with Theorem 1.1, this implies that a minimizer of J8� exists if and
only if the Green function has more than three critical points. In fact we show in [7]
that any solution of equation (1.2) must be a minimizer of the nonlinear functional
J8� . Thus we completely solve the existence problem on minimizers, a question
raised by Nolasco and Tarantello in [9].

By Theorem A, we have reduced the question on detecting a given torus to
have five critical points to the technically much simpler criterion on (non)-local
minimality of the three half-period points. In this paper, however, no reference to
Theorem A is needed. Instead, it motivates the following comparison result, which
also simplifies the criterion further:
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Figure 1. �5 contains a neighborhood of e�i=3.

THEOREM 1.5. Let z0 and z1 be two half-period points. Then

G.z0/�G.z1/ if and only if j}.z0/j � j}.z1/j:

For general flat tori, a computer simulation suggests the following picture:
Let �3 (resp. �5) be the subset of the moduli space M1 [ f1g Š S2 which
corresponds to tori with three (resp. five) critical points. Then �3 [ f1g is a
closed subset containing i , �5 is an open subset containing e�i=3, both of them
are simply connected and their common boundary C WD @�3 D @�5 is a curve
homeomorphic to S1 containing1. Moreover, the extra critical points are split
out from some half-period point when the tori move from �3 to �5 across C .

We propose to prove the experimental observation by the method of deforma-
tions in M1. The degeneracy analysis of critical points, especially the half-period
points, is a crucial step. In this direction we have the following partial result on
tori corresponding to the line Re � D 1=2. These are equivalent to the rhombus
tori and � D 1

2
.1C i/ is equivalent to the square torus where there are only three

critical points.

THEOREM 1.6 (Moduli Dependence). Let !1 D 1 and !2 D � D 1
2
C ib with

b > 0. Then

(1) There exists b0 < 1
2
< b1 <

p
3=2 such that 1

2
!1 is a degenerate critical point

of G.zI �/ if and only if b D b0 or b D b1. Moreover, 1
2
!1 is a local minimum

point of G.zI �/ if b0 < b < b1 and it is a saddle point if b < b0 or b > b1.

(2) Both 1
2
!2 and 1

2
!3 are nondegenerate saddle points of G.

(3) G.zI �/ has two more critical points˙z0.�/ when b < b0 or b > b1. They are
nondegenerate global minimum points of G and in the former case,

Re z0.�/D
1

2
I 0 < Im z0.�/ <

b

2
:

Part (1) gives a strong support of the conjectural shape of the decomposition
M1D�3[�5. Part (3) implies that minimizers of J8� exist for tori with �D 1

2
Cib

where b < b0 or b > b1.
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Figure 2. Graphs of �1 (the left one) and e1 in b where e1 is increasing.
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Figure 3. Graphs of e1C �1 (the upper one) and 1
2
e1� �1. Both

functions are increasing in b and 1
2
e1� �1% 0.

The proofs are given in Section 6, notably in Lemmas 6.1, 6.2, 6.6 and The-
orem 6.7. They rely on two fundamental inequalities of special values of elliptic
functions and we would like to single out the statements (recall that ei D }.12!i /
and �i D 2�.12!i /):

THEOREM 1.7 (Fundamental Inequalities). Let !1 D 1 and !2 D � D 1
2
C ib

with b > 0. Then

(1) d
db
.e1C �1/D�4�

d2

db2
log j#2.0/j> 0.

(2) 1
2
e1� �1 D 4�

d
db

log j#3.0/j< 0 and d2

db2
log j#3.0/j> 0. The same holds

for #4.0/D #3.0/. In particular, e1 increases in b.
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These modular functions come into play due to the explicit computation of
Hessian at half-periods along Re � D 1

2
(cf. (6.3) and (6.21)):

4�2 detD2G
�!1
2

�
D .e1C �1/

�
e1C �1�

2�

b

�
;

4�2 detD2G
�!2
2

�
D

�
�1�

1

2
e1

��2�
b
C
1

2
e1� �1

�
� jIm e2j

2:

Although ei ’s and �i ’s are classical objects, we were unable to find an ap-
propriate reference where these inequalities were studied. Part of (2), namely
1
2
e1� �1 < 0, can be proved within the Weierstrass theory (cf. (6.22)). The whole

theorem, however, requires theta functions in an essential way. Theta functions are
recalled in Section 7 and the theorem is proved in Theorems 8.1 and 9.1. The proofs
make use of the modularity of special values of theta functions (Jacobi’s imaginary
transformation formula) as well as the Jacobi triple product formula. Notice that
the geometric meaning of these two inequalities has not yet been fully explored.
For example, the variation on signs from #2 to #3 is still mysterious to us.

2. Green functions and periods integrals

We start with some basic properties of the Green functions that will be used
in the proof of Theorem 1.1. Detailed behavior of the Green functions and their
critical points will be studied in later sections.

Let T D C=Z!1CZ!2 be a flat torus. As usual we let !3 D !1C!2. The
Green function G.z;w/ is the unique function on T which satisfies

(2.1) �4zG.z;w/D ıw.z/�
1

jT j

and
R
T G.z;w/ dAD 0. It has the property thatG.z;w/DG.w; z/ and it is smooth

in .z; w/ except along the diagonal z D w, where

(2.2) G.z;w/D�
1

2�
log jz�wjCO.jz�wj2/CC

for a constant C which is independent of z and w. Moreover, due to the translation
invariance of T we have G.z;w/DG.z�w; 0/. Hence it is also customary to call
G.z/ WDG.z; 0/ the Green function. It is an even function with the only singularity
at 0.

There are explicit formulae for G.z;w/ in terms of elliptic functions, either
in terms of the Weierstrass } function or the Jacobi-Riemann theta functions #j .
Both are developed in this paper since they have different advantages. We adopt
the first approach in this section.

LEMMA 2.1. There exists a constant C.�/, � D !2=!1, such that

(2.3) 8�G.z/D
2

jT j

Z
T

log j}.�/�}.z/j dACC.�/:
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It is straightforward to verify that the function of z, defined in the right-hand
side of (2.3), satisfies the equation for the Green function. By comparing with
the behavior near 0 we obtain Lemma 2.1. Since the proof is elementary, also an
equivalent form in theta functions will be proved in Lemma 7.1, we skip the details
here.

In view of Lemma 2.1, in order to analyze critical points of G.z/, it is natural
to consider the following periods integral

(2.4) F.z/D

Z
L

}0.z/

}.�/�}.z/
d�;

where L is a line segment in T which is parallel to the !1-axis.
Fix a fundamental domain T 0Df s!1Ct!2 j � 12 � s; t �

1
2
g and setL�D�L.

Then F.z/ is an analytic function, except at 0, in each region of T 0 divided by
L[L�. Clearly, }0.z/=.}.�/�}.z// has residue ˙1 at � D ˙z. Thus for any
fixed z, F.z/ may change its value by ˙2�i if the integration lines cross z. Let
T 0n.L[L�/ D T1 [ T2 [ T3, where T1 is the region above L[L�, T2 is the
region bounded by L and L� and T3 is the region below L [ L�. Recall that
�0.z/D�}.z/ and �i D �.zC!i /� �.z/ for i 2 f1; 2; 3g. Then we have

LEMMA 2.2. Let C1 D 2�i , C2 D 0 and C3 D�2�i . Then for z 2 Tk ,

(2.5) F.z/D 2!1�.z/� 2�1zCCk :

Proof. For z 2 T1[T2[T3, we have

F 0.z/D

Z
L

d

dz

�
}0.z/

}.�/�}.z/

�
d�:

Clearly, z and �z are the only (double) poles of d
dz

�
}0.z/

}.�/�}.z/

�
as a meromorphic

function of � and d
dz

�
}0.z/

}.�/�}.z/

�
has zero residues at �D z and �z. Thus the value

of F 0.z/ is independent of L and it is easy to see F 0.z/ is a meromorphic function
with the only singularity at 0.

By fixing L such that 0 62 L[L�, a straightforward computation shows that

F.z/D
2!1

z
� 2�1zCO.z

2/

in a neighborhood of 0. Therefore

F 0.z/D�2!1}.z/� 2�1:

By integrating F 0, we get

F.z/D 2!1�.z/� 2�1zCCk :

Since F.!2=2/D 0; F.!1=2/D 0 and F.�!2=2/D 0, Ck is as claimed. Here
we have used the Legendre relation �1!2� �2!1 D 2�i . �
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From (2.3), we have

(2.6) 8�Gz D
1

jT j

Z
T

�}0.z/

}.�/�}.z/
dA:

LEMMA 2.3. Let G be the Green function. Then for z D t!1C s!2,

(2.7) Gz D�
1

4�
.�.z/� �1t � �2s/:

In particular, z is a critical point of G if and only if

(2.8) �.t!1C s!2/D t�1C s�2:

Proof. We shall prove (2.7) by applying Lemma 2.2. Since critical points
appear in pair, without loss of generality we may assume that z D t!1C s!2 with
s � 0. We first integrate (2.6) along the !1 direction and obtain

f .s0/ W D

Z
L1.s0/

�}0.z/

}.�/�}.z/
d�

D

8<:
�2!1�.z/C 2�1z if s0 > s;

�2!1�.z/C 2�1z� 2�i if � s < s0 < s;

�2!1�.z/C 2�1z if s0 < �s;

where L1.s0/D f t0!1C s0!2 j jt0j � 1
2
g. Thus,

8�Gz D

Z 1
2

� 1
2

Z
L1.s0/

�}0.z/

}.�/�}.z/
dt0 ds0 D !

�1
1

Z 1
2

� 1
2

f .s0/ ds0

D !�11 ..�2!1�.z/C 2�1z/.1� 2s/C .�2!1�.z/C 2�1z� 2�i/2s/

D !�11 .�2!1�.z/C 2�1z� 4�si/

D !�11 .�2!1�.z/C 2�1t!1C 2s.�1!2� 2�i//

D�2�.z/C 2�1t C 2s�2;

where the Legendre relation is used again. �

COROLLARY 2.4. Let G.z/ be the Green function. Then 1
2
!k , k 2 f1; 2; 3g

are critical points of G.z/. Furthermore, if z is a critical point of G then both
periods integrals

F1.z/W D 2.!1�.z/� �1z/ and(2.9)

F2.z/W D 2.!2�.z/� �2z/

are purely imaginary numbers.

Proof. The half-periods 1
2
!1, 1

2
!2 and 1

2
!3 are obvious solutions of (2.8).

Alternatively, the half-periods are critical points of any even functions. Indeed for
G.z/DG.�z/, we get rG.z/D�rG.�z/. Let p D 1

2
!i for some i 2 f1; 2; 3g,

then p D�p in T and so rG.p/D�rG.p/D 0.
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If z D t!1C s!2 is a critical point, then by Lemma 2.3,

!1�.z/� �1z D !1.t�1C s�2/� �1.t!1C s!2/D s.!1�2�!2�1/D�2s�i:

The proof for F2 is similar. �

Example 2.5. When � D!2=!1 2 i R, by symmetry considerations it is known
(cf. [5, Lemma 2.1]) that the half-periods are all the critical points.

Example 2.6. There are tori such that equation (2.8) has more than three so-
lutions. One such example is the torus with !1 D 1 and !2 D 1

2
.1C
p
3i/. In this

case, the multiplication map z 7! !2z is simply the counterclockwise rotation by
angle �=3, which preserves the lattice Z!1CZ!2; hence } satisfies

(2.10) }.!2z/D }.z/=!
2
2 :

Similarly in }02 D 4}3�g2} �g3,

g2 D 60
X0 1

!4
D 60

X0 1

.!2!/4
D !22g2;

which implies that g2 D 0 and

(2.11) }00 D 6}2:

Let z0 be a zero of }.z/. Then }00.z0/ D 0 too. By (2.10), }.!2z0/ D 0;
hence either !2z0 D z0 or !2z0 D�z0 on T since }.z/D 0 has zeros at z0 and
�z0 only. From here, it is easy to check that either z0 is one of the half-periods or
z0D˙

1
3
!3. But z0 cannot be a half-period because }00.z0/¤ 0 at any half-period.

Therefore, we conclude that z0 D˙13!3 and }00.˙1
3
!3/D }.˙

1
3
!3/D 0.

We claim that 1
3
!3 is a critical point. Indeed from the addition formula

(2.12) �.2z/D 2�.z/C
1

2

}00.z/

}0.z/

we have

(2.13) �
�2!3
3

�
D 2�

�!3
3

�
:

On the other hand,

�
�2!3
3

�
D �

�
�!3

3

�
C .�1C �2/D��

�!3
3

�
C �1C �2:

Together with (2.13) we get

�
�!3
3

�
D
1

3
.�1C �2/:

That is, 1
3
!3 satisfies the critical point equation.

Thus G.z/ has at least five critical points at 1
2
!k , kD 1; 2; 3 and ˙1

3
!3 when

� D !2=!1 D
1
2
.1C
p
3i/.

By way of Theorem 1.3, these are precisely the five critical points, though we
do not know how to prove this directly.
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To conclude this section, let u be a solution of (1.2) with �D 8� and set

(2.14) v.z/D u.z/C 8�G.z/:

Then v.z/ satisfies

(2.15) 4v.z/C 8�
�
e�8�G.z/ev.z/�

1

jT j

�
D 0

in T . By (2.2), it is obvious that v.z/ is a smooth solution of (2.15). An important
fact which we need is the following: Assume that there is a blow-up sequence of
solutions vj .z/ of (2.15). That is,

vj .pj /Dmax
T
vj !C1 as j !1:

Then the limit p D limj!1 pj is the only blow-up point of fvj g and p is in fact
a critical point of G.z/:

(2.16) rG.p/D 0:

We refer the reader to [3, p. 739, Estimate B] for a proof of (2.16).

3. The criterion for existence via monodromies

Consider the mean field equation

(3.1) 4uC �eu D �ı0; � 2 RC

in a flat torus T , where ı0 is the Dirac measure with singularity at 0 and the volume
of T is normalized to be 1. A well known theorem due to Liouville says that any so-
lution u of4uC�euD 0 in a simply connected domain��C must be of the form

(3.2) uD c1C log
jf 0j2

.1Cjf j2/2
;

where f is holomorphic in �. Conventionally f is called a developing map of
u. Given a torus T D C=Z!1CZ!2, by gluing the f ’s among simply connected
domains it was shown in [5] that for �D 4�l , l 2 N, (3.2) holds on the whole C

with f a meromorphic function. (The statement there is for rectangular tori with
l D 2, but the proof works for the general case.)

It is straightforward to show that u and f satisfy

(3.3) uzz �
1

2
u2z D

f 000

f 0
�
3

2

�
f 00

f 0

�2
:

The right-hand side of (3.3) is the Schwartz derivative of f . Thus for any two
developing maps f and Qf of u, there exists S D

� p �Nq
q Np

�
2 PSU.1/ (i.e. p, q 2 C

and jpj2Cjqj2 D 1) such that

(3.4) Qf D Sf WD
pf � Nq

qf C Np
:
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Now we look for the constraints. The first type of constraint is imposed by the
double periodicity of the equation. By applying (3.4) to f .zC!1/ and f .zC!2/,
we find S1 and S2 in PSU.1/ with

f .zC!1/D S1f;(3.5)

f .zC!2/D S2f:

These relations also force that S1S2 D S2S1 (up to a sign, as A��A in PSU.1/).
The second type of constraint is imposed by the Dirac singularity of (3.1) at 0.

A straightforward local computation with (3.2) shows that

LEMMA 3.1. (1) If f .z/ has a pole at z0 � 0 .mod !1; !2/, then the order
k D l C 1.

(2) If f .z/ D a0C akzk C � � � is regular at z0 � 0 .mod !1; !2/ with ak ¤ 0
then k D l C 1.

(3) If f .z/ has a pole at z0 6� 0 .mod !1; !2/, then the order is 1.

(4) If f .z/ D a0 C ak.z � z0/
k C � � � is regular at z0 6� 0 .mod !1; !2/ with

ak ¤ 0 then k D 1.

Now we are in a position to prove Theorem 1.1, namely the case l D 2.

Proof. We first prove the “only if” part. Let u be a solution and f be a
developing map of u. By the above discussion, we may assume, after conjugating
a matrix in PSU.1/, that S1 D

�
ei� 0
0 e�i�

�
for some � 2 R. Let S2 D

� p �Nq
q Np

�
and

then (3.5) becomes

f .zC!1/D e
2i�f .z/;(3.6)

f .zC!2/D S2f .z/:

Since S1S2 D S2S1, a direct computation shows that there are three possibil-
ities:

(1) p D 0 and ei� D˙i ;

(2) q D 0;

(3) ei� D˙1.

Case 1. By assumption we have

(3.7) f .zC!1/D�f .z/; f .zC!2/D�
. Nq/2

f .z/
:

For any l 2 N, the logarithmic derivative

g D .logf /0 D
f 0

f

is a nonconstant elliptic function on zT D C=Z!1CZ2!2 which has a simple pole
at each zero or pole of f . By Lemma 3.1, if f or 1=f is singular at z D 0 then g
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has no zero, which is not possible. So f must be regular at z D 0 with f .0/¤ 0.
Moreover g has two zeros of order l at 0 and !2.

Let }.z/, �.z/ and �.z/ D exp
R z
�.w/ dw D z C � � � be the Weierstrass

elliptic functions on zT . Recall that � is odd with a simple zero at each lattice point.
Moreover, for z!1 D !1, z!2 D 2!2 and z!3 D !1C 2!2,

(3.8) �.z˙ z!i /D�e
��i .z˙

1
2
z!i /�.z/:

Now l D 2. By the standard representation of elliptic functions,

(3.9) g.z/D A
�2.z/�2.z�!2/

�.z� a/�.z� b/�.z� c/�.z� d/

with four distinct simple poles such that aC bC cC d D 2!2. We will show that
such a function g.z/ does not exist.

By (3.7), we have g.zC!2/D�g.z/. Hence we may assume that c� aC!2
and d � b C !2 modulo !1; 2!2. Thus a C b � 0 modulo 1

2
!1; !2 and we

arrive at two inequivalent cases. (i) .a; b; c; d/ D .a;�a; aC!2;�aC!2/. (ii)
.a; b; c; d/ D .a;�aC 1

2
!1; aC !2;�a �

1
2
!1 C !2/. Using (3.8), it is easily

checked that (i) leads to g.zC!2/ D g.z/ and (ii) leads to g.zC!2/ D �g.z/.
Hence we are left with (ii).

The residues of g at a; b; c and d are equal to �Ar , Ar 0, Ar and �Ar 0 re-
spectively, where

r D
�2.aC!2/�

2.a/

�.!2/�.2a�
1
2
!1C!2/�.2aC

1
2
!1/

and

r 0 D
�2.a� 1

2
!1/�

2.a� 1
2
!1C!2/

�.2a� 1
2
!1/�.2a�

1
2
!1C!2/�.!1�!2/

:

We claim that Ar D˙1 and Ar 0 D˙1: Since

f .z/D exp
Z z

g.w/ dw

is well-defined, by the residue theorem, we must have Ar D m for some m 2 Z.
Moreover one of a, b is a pole of order jmj of f and then by Lemma 3.1 we
conclude that mD˙1. Similarly Ar 0 D˙1.

In particular we must have r=r 0 D˙1. Using (3.8), this is equivalent to

(3.10)
�2.aC!2/�

2.a/

�2.aC 1
2
!1/�2.a�

1
2
!1C!2/

D�e�1.�
1
2
!1C!2/:

To solve a from this equation, we first recall that

}.z/�}.y/D�
�.zCy/�.z�y/

�2.z/�2.y/
:
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By substituting y D 1
2
z!i into it and using (3.8), we get

(3.11) }.z/� ei D
�2.zC 1

2
z!i /

�2.z/�2.1
2
z!i /

e��iz :

With (3.11), the “C” case in equation (3.10) simplifies to

}
�
a�

!1
2
C!2

�
� e1 D }.a/� e1:

That is, 2a� 1
2
!1�!2. But this implies that b � c, a contradiction.

Similarly, the “�” case in (3.10) simplifies to (using the Legendre relation)

}
�
aC

!1

2

�
� e3 D }.a/� e3:

That is, 2aC 1
2
!1 � 0. This leads to c � d , which is again a contradiction.

Case 2. In this case we have

f .zC!1/D e
2i�1f .z/;(3.12)

f .zC!2/D e
2i�2f .z/:

The logarithmic derivative g D .logf /0 D f 0=f is now elliptic on T which
has a simple pole at each zero or pole of f . As in Case 1, it suffices to investigate
the situation when f is regular at 0 and f .0/¤ 0. Since g has 0 as its only zero
(of order 2), we have

(3.13) g.z/D A
�2.z/

�.z� z0/�.zC z0/

where �.z/ is the Weierstrass sigma function on T . Without loss of generality we
may assume that f has a zero at z0 and a pole at �z0. In particular z0 ¤�z0 in
T and we conclude that z0 ¤ !k=2 for any k 2 f1; 2; 3g.

Notice that if a meromorphic function f satisfies (3.12), then e�f also satis-
fies (3.12) for any � 2 R. Thus

(3.14) u�.z/D c1C log
e2�jf 0.z/j2

.1C e2�jf .z/j2/2

is a scaling family of solutions of (3.1).
Clearly u�.z/!�1 as �!C1 for any z such that f .z/¤ 0 and u�.z0/!

C1 as �!C1. Hence z0 is the blow-up point and we have by (2.16) that

rG.z0/D 0:

Namely, it is a critical point other than the half-periods.

Case 3. In this case we get that S1 is the identity. So by another conjugation
in PSU.1/ we may assume that S2 is in diagonal form. But this case is then reduced
to Case 2. The proof of the “only if” part of Theorem 1.1 is completed.
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Now we prove the “if” part. Suppose that there is a critical point z0 of G.z/
with z0 ¤ 1

2
!k for any k 2 f1; 2; 3g.

For any closed curve C such that z0 and �z0 62C , the residue theorem implies
that

(3.15)
Z
C

}0.z0/

}.�/�}.z0/
d� D 2�mi

for some m 2 Z. Hence

(3.16) f .z/ WD exp
�Z z

0

}0.z0/

}.�/�}.z0/
d�

�
is well-defined as a meromorphic function. Notice that f is nonconstant since
}0.z0/¤ 0.

Let L1 and L2 be lines in T which are parallel to the !1-axis and !2-axis
respectively and with ˙z0 62 L1; L2. Then for j D 1; 2,

(3.17) f .zC!j /D f .z/ exp

 Z
Lj

}0.z0/

}.�/�}.z0/
d�

!
:

By Lemma 2.2, Z
Lj

}0.z0/

}.�/�}.z0/
d� D Fj .z0/CCk

for some Ck 2 f2�i; 0;�2�ig. Also, by Corollary 2.4,

Fj .z0/D 2.!j �.z0/� �j z0/D 2i�j 2 i R:

Hence for j D 1; 2,

(3.18) f .zC!j /D f .z/e
2i�j

holds. Set

u�.x/D c1C log
e2�jf 0.z/j2

.1C e2�jf .z/j2/2
:

Then u�.x/ satisfies (3.1) for any �2R and u� is doubly periodic by (3.18). There-
fore, solutions have been constructed and the proof of Theorem 1.1 is completed.

�
A similar argument leads to

THEOREM 3.2. For �D 4� , there exists a unique solution of (3.1).

Proof. By the same procedure of the previous proof, there are three cases to
be discussed. For Case 2, the subcases that f or 1=f is singular at z D 0 leads to
contradiction as before. For the subcase that f is regular at z D 0 and f .0/¤ 0
we see that f .z/=f 0.z/ is an elliptic function with 0 as its only simple pole (since
now k� 1D l D 1). Hence Case 2 does not occur. Similarly Case 3 is not possible.

Now we consider Case 1. By (3.7), the function g D .logf /0 D f 0=f is
elliptic on zT D C=Z!1CZ2!2 and g has a simple pole at each zero or pole of f .
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By Lemma 3.1, if f or 1=f is singular at z D 0 then g has no zero and we get a
contradiction. So f is regular at z D 0, f .0/¤ 0 and g has two simple zeros at 0
and !2.

Let � be the Weierstrass sigma function on zT . Then

(3.19) g.z/D A
�.z/�.z�!2/

�.z� a/�.z� b/

for some a, b with aC b D !2.
From (3.7), we have g.z C !2/ D �g.z/. So aC !2 D b .mod !1; 2!2/.

Since the representation of g in terms of sigma functions is unique up to the lattice
f!1; 2!2g, there is a unique solution of .a; b/:

(3.20) aD�
!1

2
; b D

!1

2
C!2:

Notice that the residues of g at a and b are equal to �Ar and Ar respectively,
where

r D
�.1
2
!1/�.

1
2
!1C!2/

�.!1C!2/
:

We claim that Ar D˙1. Since

f .z/D f .0/ exp
Z z

0

g.w/ dw

is well-defined, by the residue theorem, we must have Ar D m for some m 2 Z.
Moreover one of a, b is a pole of order jmj and then by Lemma 3.1 we conclude
that mD˙1.

Conversely, by picking up a, b and A D 1=r as above, f .z/ is a uniquely
defined meromorphic function up to a factor f .0/. There is an unique choice of
f .0/ up to a norm one factor such that c WD f .!2/f .0/ has jcj D 1. Thus by
integrating g.zC!2/D�g.z/ we get f .zC!2/D c=f .z/.

By integrating g.zC!1/D g.z/ we get f .zC!1/D c0f .z/ where

c0 D
f .!1/

f .0/
D exp

Z !1

0

g.z/ dz:

To evaluate the period integral, notice that g.1
2
!1Cu/D�g.

1
2
!1�u/. By using

the Cauchy principal value integral and the fact that the residue of g at 1
2
! is ˙1,

we get

(3.21)
Z !1

0

g.z/ dz D˙
1

2
� 2�i D˙�i

and so c0 D�1.
Thus f gives rise to a solution of (3.1) for �D 4� . The developing map for

the other choice AD�1=r is 1=f .z/ which leads to the same solution. The proof
is completed. �

Since (3.1) is invariant under z 7! �z, the unique solution is necessarily even.
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4. A uniqueness theorem for � 2 Œ4�; 8�� via symmetrizations

From the previous section, for �D 8� , solutions to the mean field equation
exist in a one-parameter scaling family in � with developing map f and centered at
a critical point other than the half-periods. By choosing �D� log jf .0/j we may
assume that f .0/D 1. Since g D .logf /0 is even by (3.13), we have logf .�z/D
� logf .z/ and then

f .�z/D
1

f .z/
:

Consider the particular solution

u.z/D c1C log
jf 0.z/j2

.1Cjf .z/j2/2
:

It is easy to verify that u.�z/ D u.z/ and u is the unique even function in this
family of solutions. In order to prove uniqueness up to scaling, it is equivalent to
prove uniqueness within the class of even functions.

The idea is to consider the following equations

(4.1)
�
4uC �eu D �ı0 and
u.�z/D u.z/ on T

where � 2 Œ4�; 8��. We will use the method of symmetrization to prove

THEOREM 4.1. For � 2 Œ4�; 8��, the linearized equation of (4.1) is nondegen-
erate. That is, the linearized equation has only trivial solutions.

Together with the uniqueness of solution in the case �D 4� (Theorem 3.2),
we conclude the proof of Theorem 1.2 by the inverse function theorem.

We first prove Theorem 1.4, the Symmetrization Lemma. The proof will con-
sist of several lemmas. The first step is an extension of the classical isoperimetric
inequality of Bol for domains in R2 with metric ew jdxj2 to the case when the
metric becomes singular.

Let �� R2 be a domain and w 2 C 2.�/ satisfy

(4.2)

8<:4wC e
w � 0 in � andZ

�

ew dx � 8�:

This is equivalent to saying that the Gaussian curvature of ew jdxj2 is

K ��
1

2
e�w4w �

1

2
:

For any domain ! b�, we set

(4.3) m.!/D

Z
!

ew dx and `.@!/D

Z
@!

ew=2 ds:
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Bol’s isoperimetric inequality says that if � is simply connected then

(4.4) 2`2.@!/�m.!/.8� �m.!//:

We first extend it to the case when w acquires singularities:8<:4wC e
w D

PN
jD1 2� j̨ ıpj in � andZ

�

ew dx � 8�;
(4.5)

with j̨ > 0, j D 1; 2; : : : ; N .

LEMMA 4.2. Let � be a simply connected domain and w be a solution of
(4.5), or more generally a sub-solution with prescribed singularities:

w.x/�
X
j

j̨ log jx�pj j 2 C 2.�/:

Then for any domain ! b�,

(4.6) 2`2.@!/�m.!/.8� �m.!//:

Proof. Define v and w" by

w.x/D
X
j

j̨ log jx�pj jC v.x/;

w".x/D
X
j

j̨

2
log.jx�pj j2C "2/C v.x/:

By straightforward computations, we have

4w".x/C e
w".x/

D

X
j

2 j̨ "
2

.jx�pj j2C "2/2
C ev

�Y
j

.jx�pj j
2
C "2/ j̨ =2�

Y
j

jx�pj j j̨
�
� 0:

Let `" and m" be defined as in (4.3) with respect to the metric ew".x/jdxj2. Then
we have

2`2".@!/�m".!/.8� �m".!//:

By letting "! 0 we obtain (4.6). �

Next we consider the case that some of the j̨ ’s are negative. For our purpose,
it suffices to consider the case with only one singularity p1 with negative ˛1 (and
we only need the case that ˛1 D �1). In view of (the proof of) Lemma 4.2, the
problem is reduced to the case with only one singularity p1. In other words, let w
satisfy

(4.7) 4wC ew D�2�ıp1 in �:
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LEMMA 4.3. Let w satisfy (4.7) with � simply connected. Suppose that

(4.8)
Z
�

ewdx � 4� I

then

(4.9) 2`2.@!/�m.!/.4� �m.!//:

Proof. We may assume that p1 D 0. If 0 62 ! then

2`2.@!/�m.!/.8� �m.!// > m.!/.4� �m.!//

by Bol’s inequality, trivially. If 0 2 !, we consider the double cover z� of �
branched at 0. Namely we set z�D f �1.�/ where

x D f .z/D z2 for z 2 C:

The induced metric evjdzj2 on z� satisfies

ev.z/jdzj2 D ew.x/jdxj2 D ew.z
2/4jzj2jdzj2:

That is, the metric potential v is the regular part

v.z/ WD w.x/C log jxjC log 4D w.z2/C 2 log jzjC log 4:

By construction, v satisfies

4vC ev D 0 in z�nf0g:

Since v is bounded in a neighborhood of 0, by the regularity of elliptic equations,
v.z/ is smooth at 0. Hence v satisfies

4vC ev D 0 in z�:

Let z! D f �1.!/. Clearly @z! � f �1.@!/. Also

l.@z!/� 2l.@!/ and m. Qw/D 2m.!/;

where

l.@z!/D

Z
@z!

ev=2 ds and m.z!/D

Z
z!

ev dx:

By Bol’s inequality, we have

4`2.@!/� `2.@z!/�
1

2
m.z!/.8� �m.z!//Dm.!/.8� � 2m.!//:

Thus 2`2.@!/�m.!/.4� �m.!//. �

LEMMA 4.4 (Symmetrization I). Let �� R2 be a simply connected domain
with 0 2� and let v be a solution of

4vC ev D�2�ı0
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in �. If the first eigenvalue of4C ev is zero on � then

(4.10)
Z
�

ev dx � 2�:

Proof. Let  be the first eigenfunction of 4C ev:

(4.11)
�
4 C ev D 0 in � and
 D 0 on @�:

In R2, let U and ' be the radially symmetric functions

(4.12)

8̂̂<̂
:̂
U.x/D log

2

.1Cjxj/2jxj
and

'.x/D
1� jxj

1Cjxj
:

From 4D @2

@r2
C
1
r
@
@r
C

1
r2

@2

@�2
, it is easy to verify that U and ' satisfy

(4.13)
�
4U C eU D�2�ı0 and
4'C eU' D 0 in R2:

For any t > 0, set �t D fx 2� j  .x/ > tg and r.t/ > 0 such that

(4.14)
Z
Br.t/

eU.x/ dx D

Z
f >tg

ev.x/ dx;

where Br.t/ is the ball with center 0 and radius r.t/. Clearly r.t/ is strictly decreas-
ing in t for t 2 .0;max /. In fact, r.t/ is Lipschitz in t . Denote by  �.r/ the
symmetrization of  with respect to the measure eU.x/ dx and ev.x/ dx. That is,

 �.r/D supft j r < r.t/g:

Obviously  �.r/ is decreasing in r and for t 2 .0;max /,  �.r/D t if and only
if r.t/D r . Thus by (4.14), we have a decreasing function

(4.15) f .t/ WD

Z
f �>tg

eU.x/ dx D

Z
f >tg

ev.x/ dx:

By Lemma 4.3, for any t > 0,

(4.16) 2`2.f D tg/� f .t/.4� �f .t//:

We will use inequality (4.16) in the following computation: For any t > 0, by the
Co-Area formula,

�
d

dt

Z
�t

jr j2 dx D

Z
@�t

jr j ds and

�f 0.t/D�
d

dt

Z
�t

ev dx D

Z
@�t

ev

jr j
ds
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hold almost everywhere in t . Thus

�
d

dt

Z
�t

jr j2 dx D

Z
f Dtg

jr j ds(4.17)

�

�Z
f Dtg

ev=2 ds

�2�Z
f Dtg

ev

jr j
ds

��1
D�`2.f D tg/f 0.t/�1

� �
1

2
f .t/.4� �f .t//f 0.t/�1:

It is known that  � 2H 1
0 .Br.0// and the same procedure for  � leads to

(4.18) �
d

dt

Z
f �>tg

jr �j2 dx D

Z
f �Dtg

jr �j ds

D

�Z
f �Dtg

eU=2 ds

�2�Z
f �Dtg

eU

jr �j
ds

��1
D�`2.f � D tg/f 0.t/�1

D�
1

2
f .t/.4� �f .t//f 0.t/�1;

with all inequalities being equalities. Hence

�
d

dt

Z
f >tg

jr j2 dx � �
d

dt

Z
f �>tg

jr �j2ds

holds almost everywhere in t . By integrating along t , we getZ
�

jr j2 dx �

Z
Br.0/

jr �j2 dx:

Since  and  � have the same distribution (or by looking at �
R
f 0.t/t2 dt di-

rectly), we have Z
Br.0/

eU.x/ �
2
dx D

Z
�

ev.x/ 2 dx:

Therefore

0D

Z
�

jr j2 dx�

Z
�

ev 2 dx �

Z
Br.0/

jr �j2 dx�

Z
Br.0/

eU �
2
dx:

This implies that the linearized equation4CeU.x/ has nonpositive first eigenvalue.
By (4.12), this happens if and only if r.0/� 1. ThusZ

�

ev.x/ dx D

Z
Br.0/

eU.x/ dx � 2�: �
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Remark 4.5 (see [1]). By applying symmetrization to 4vC ev D 0 in � with
�1.4C e

v/D 0, the corresponding radially symmetric functions are

U.x/D�2 log
�
1C

1

8
jxj2

�
and '.x/D

8� jxj2

8Cjxj2
:

The same computations leads to
R
� e

v dx � 4� .

A closer look at the proof of Lemma 4.4 shows that it works for more general
situations as long as the isoperimetric inequality holds:

LEMMA 4.6 (Symmetrization II). Let �� R2 be a simply connected domain
and let v be a solution of

4vC ev D
XN

jD1
2� j̨ ıpj

in �. Suppose that the first eigenvalue of 4C ev is zero on � with ' the first
eigenfunction. If the isoperimetric inequality with respect to ds2 D evjdxj2,

2`2.@!/�m.!/.4� �m.!//

holds for all level domains ! D f' � tg with t � 0, thenZ
�

ev dx � 2�:

Notice that we do not need any further constraint on the sign of j̨ .
For the last statement of Theorem 1.4, the limiting procedure of Lemma

4.2 implies that the isoperimetric inequality (Lemma 4.3) and symmetrization I
(Lemma 4.4) both hold regardless on the presence of singularities with nonnega-
tive ˛.

Indeed the proof of Lemma 4.3 can be adapted to the case

4wC ew D�2�ıp1 C
XN

jD2
2� j̨ ıpj

with j̨ > 0 for j D 2; : : : ; N . On the double cover N�!� branched over p1 D 0,
the metric potential v.z/ again extends smoothly over z D 0 and satisfies

4vC ev D
XN

jD2
2� j̨ .ıqj C ıq0j

/;

where qj ; q0j 2 N� are points lying over pj . The remaining argument works by using
Lemma 4.2 and we still conclude 2`2.@!/�m.!/.4� �m.!//.

Thus the proof of Theorem 1.4 is complete.

Proof of Theorem 4.1. Let u be a solution of equation (4.1). It is clear that we
must have

R
T e

u D 1. Suppose that '.x/ is a nontrivial solution of the linearized
equation at u:

(4.19)
�
4'C �eu' D 0 and
'.z/D '.�z/ in T :

We will derive from this a contradiction.
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Since both u and ' are even functions, by using x D }.z/ as a two-fold
covering map of T onto S2DC[f1g, we may require that since } is an isometry:

eu.z/jdzj2 D ev.x/jdxj2 D ev.x/j}0.z/j2jdzj2:

Namely, we set

(4.20) v.x/ WD u.z/� log j}0.z/j2 and  .x/ WD '.z/:

There are four branch points on C[f1g, namely p0 D }.0/D1 and pj D ej WD
}.!j =2/ for j D 1; 2; 3. Since }0.z/2 D 4

Q3
jD1.x � ej /, by construction v.x/

and  .x/ then satisfy

(4.21)

(
4vC �ev D

X3

jD1
.�2�/ıpj and

4 C �ev D 0 in R2:

To take care of the point at infinity, we use coordinate y D 1=x or equivalently
we consider T ! S2 via y D 1=}.z/� z2. The isometry condition reads as

eu.z/jdzj2 D ew.y/jdyj2 D ew.y/
j}0.z/j2

j}.z/j4
jdzj2:

Near y D 0 we get

w.y/D u.z/� log
j}0.z/j2

j}.z/j4
�

� �
4�
� 1

�
log jyj:

Thus � � 4� implies that p0 is a singularity with nonnegative ˛0:

4wC �ew D ˛0ı0C
X3

jD1
.�2�/ı1=pj :

In dealing with equation (4.1) and the above resulting equations, by replacing
u by uC log � etc., we may (and will) replace the � on the left-hand side by 1 for
simplicity. The total measures on T and R2 are then given byZ

T

eu dz D � � 8� and
Z

R2
ev dx D

�

2
� 4�:

The nodal line of  decomposes S2 into at least two connected components
and at least two of them are simply connected. If there is a simply connected com-
ponent � which contains no pj ’s, then the symmetrization (Remark 4.5) leads toZ

�

ev dx � 4�;

which is a contradiction because R2n�¤∅. If every simply connected component
�i , i D 1; : : : ; m, contains only one pj , then Lemma 4.4 implies thatZ

�i

ev dx � 2� for i D 1; : : : ; m:
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The sum is at least 2m� , which is again impossible unlessmD2 and R2DS�1[S�2.
So without lost of generality we are left with one of the following two situations:

R2[f1gnf D 0g D�C[��

where
�C � fx j  .x/ > 0g and �� � fx j  .x/ < 0g:

Both �C and �� are simply connected.

(1) Either �� contains p1; p2 and p3 2�C or

(2) p1 2��, p3 2�C and p2 2 C D @�C D @��.

Assume that we are in case (1). By Lemma 4.3, we have on �C

(4.22) 2`2.f D tg/�m.f � tg/.4� �m.f � tg//

for t � 0.
We will show that the similar inequality

(4.23) 2`2.f D tg/�m.f � tg/.4� �m.f � tg//

holds on �� for all t � 0.
Let t � 0 and ! be a component of f � tg.
If ! contains at most one point of p1 and p2, then Lemma 4.3 implies that

2`2.@!/� .4� �m.!//m.!/:

If ! contains both p1 and p2, then R2[f1gn! is simply connected which
contains p3 only. Thus by Lemma 4.3

2`2.@!/� .4� �m.R2n!//m.R2n!/(4.24)

D .4� � �=2Cm.!//.�=2�m.!//

D .4� �m.!//m.!/C .4� � �=2/.�=2� 2m.!//:

Since � � 8� and
R
�C

evdx � 2� , we get

�

2
D

Z
R2
ev �

Z
�C

evC

Z
!

ev � 2� Cm.!/� 2m.!/:

Then again
2`2.@!/� .4� �m.!//m.!/

with equality hold only when �D 8� and m.!/D 2� .
Now it is a simple observation that domains which satisfy the isoperimetric

inequality (4.9) have the addition property. Indeed, if 2a2 � .4� �m/m and 2b2 �
.4� �n/n, then

2.aC b/2 D 2a2C 4abC 2b2 > .4� �m/mC .4� �n/n

D 4�.mCn/� .mCn/2C 2mn > .4� � .mCn//.mCn/:

Hence (4.23) holds for all t � 0.
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Now we can apply Lemma 4.6 to �� to conclude thatZ
��

ev dx D 2�

(which already leads to a contradiction if � < 8�) and the equality

2`2.f D tg/D .4� �m.f � tg//m.f � tg/

in (4.23) holds for all t 2 .min ; 0/. This implies that f � tg has only one
component and it contains p1 and p2 for all t 2 .min ; 0/. But then  attains
its minimum along a connected set  �1.min / containing p1 and p2, which is
impossible.

In case (2), � < 8� again leads to a contradiction via the same argument. For
�D 8� , we have Z

�C

ev dx D

Z
��

ev dx D 2�

and all inequalities in (4.17) are equalities. So under the notation there�Z
@�t

ev=2 dx

�2
D

Z
@�t

jr j ds

Z
@�t

ev

jr j
ds

for all t 2 .min��  ;max�C  /. This implies that jr j2.x/D C.t/ev.x/ almost
everywhere in  �1.t/ for some constant C which depends only on t . By continuity
we have

(4.25) jr j2.x/D C. .x//ev.x/

for all x except when  .x/Dmax�C  or  .x/Dmin��  .
By letting x D p2 2  �1.0/, we find C.0/ D jr j2.p2/e�v.p2/ D 0. By

(4.25) this implies that jr .x/j D 0 for all x 2 �1.0/, which is clearly impossible.
Hence the proof of Theorem 4.1 is completed. �

Since equation (4.1) has a unique solution at � D 4� , by the continuation
from �D 4� to 8� and Theorem 4.1, we conclude that (4.1) has at most a solution
at � D 8� , and this implies that the mean field equation (1.2) has at most one
solution up to scaling. Thus, Theorem 1.2 is proved and then Theorem 1.3 follows
immediately.

5. Comparing critical values of Green functions

For simplicity, from now on we normalize all tori to have !1 D 1, !2 D � . In
Section 3 we showed that the existence of solutions of equation (1.2) is equivalent
to the existence of nonhalf-period critical points of G.z/. The main goal of this
and the next sections is to provide criteria for detecting minimum points of G.z/.
The following theorem is useful in this regard.

THEOREM 5.1. Let z0 and z1 be two half-periods. Then G.z0/ � G.z1/ if
and only if j}.z0/j � j}.z1/j.



936 CHANG-SHOU LIN and CHIN-LUNG WANG

Proof. By integrating (2.7), the Green function G.z/ can be represented by

(5.1) G.z/D�
1

2�
Re
Z
.�.z/� �1z/ dzC

1

2b
y2CC.�/:

Thus

(5.2) G
�!2
2

�
�G

�!3
2

�
D

1

2�
Re
Z !3

2

!2
2

.�.z/� �1z/ dz:

Set F.z/D �.z/� �1z. We have F.zC!1/D F.z/ and

�
�
t C

!2

2

�
� �1

�
t C

!2

2

�
D��

�
�!2

2
� t
�
� �1

�
t C

!2

2

�
D��

�!2
2
� t
�
C �2� �1

�
t C

!2

2

�
D�

h
�
�!2
2
� t
�
� �1

�!2
2
� t
�i
C �2� �1!2

D�

h
�
�!2
2
� t
�
� �1

�!2
2
� t
�i
� 2�i I

hence ReF.1
2
!2C t / is antisymmetric in t 2 C.

To calculate the integral in (5.2), we use the addition theorem to get

}0.z/

}.z/� e1
D �

�
z�

!1

2

�
C �

�
zC

!1

2

�
� 2�.z/

D F
�
z�

!1

2

�
CF

�
zC

!1

2

�
� 2F.z/:

Integrating along the segment from 1
2
!2 to 1

2
!3, we get

log
e3� e1

e2� e1
D

Z
L1

F.z/ dzC

Z
L2

F.z/ dz� 2

Z
L3

F.z/ dz;

where L1 is the line from 1
2
.!2�!1/ to 1

2
!2, L2 is the line from 1

2
!3 to 1

2
!2C!1

and L3 is the line from 1
2
!2 to 1

2
!3. Since F.z/ D F.z C !1/ and ReF.z/ is

antisymmetric with respect to 1
2
!2, we have

log
e3� e1

e2� e1
D 2

Z
L

F.z/ dz� 4

Z
L3

F.z/ dz D�2�i � 4

Z
L3

F.z/ dz;

where L is the line from 1
2
.!2�!1/ to 1

2
!3. Thus we have

log
ˇ̌̌̌
e3� e1

e2� e1

ˇ̌̌̌
D�4Re

Z !3
2

!2
2

F.z/ dz D�8�
�
G
�!2
2

�
�G

�!3
2

��
:

That is,

(5.3) G
�!2
2

�
�G

�!3
2

�
D

1

8�
log

ˇ̌̌̌
e2� e1

e3� e1

ˇ̌̌̌
:
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Similarly, by integrating (2.7) in the !2 direction, we get

(5.4) G
�!1
2

�
�G

�!3
2

�
D

1

2�
Re
Z !3

2

!1
2

.�.z/� �2z/ dz:

The same proof then gives rise to

(5.5) G
�!1
2

�
�G

�!3
2

�
D

1

8�
log

ˇ̌̌̌
e1� e2

e3� e2

ˇ̌̌̌
:

By combining the above two formulae we get also that

(5.6) G
�!1
2

�
�G

�!2
2

�
D

1

8�
log

ˇ̌̌̌
e1� e3

e2� e3

ˇ̌̌̌
:

In order to compare, say, G.1
2
!1/ and G.1

2
!3/, we may use (5.5). Let

�D
e3� e2

e1� e2
:

By using e1C e2C e3 D 0, we get

(5.7)
e3

e1
D
2�� 1

2��
:

It is easy to see that j2�� 1j � j2��j if and only if j�j � 1. Henceˇ̌̌̌
e3

e1

ˇ̌̌̌
� 1 if and only if j�j � 1:

The same argument applies to the other two cases too and the theorem follows. �

It remains to make the criterion effective in � . Recall the modular function

�.�/D
e3� e2

e1� e2
:

By (5.3), we have

(5.8) G
�!3
2

�
�G

�!2
2

�
D

1

4�
log j�.�/� 1j:

Therefore, it is important to know when j�.�/� 1j D 1.

LEMMA 5.2. j�.�/� 1j D 1 if and only if Re � D 1
2

.

Proof. Let }.zI �/ be the Weierstrass } function with periods 1 and � ; then

}.zI �/D }. NzI N�/:

For � D 1
2
C ib, N� D 1� � and then }.zI N�/D }.zI �/. Thus

(5.9) }.zI �/D }. NzI �/ for � D
1

2
C ib:

Note that if z D 1
2
!2 then Nz D 1

2
N!2 D

1
2
.1�!2/D

1
2
!3 .mod !1; !2/. Therefore

Ne2 D e3 and Ne1 D e1:
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Since e1C e2C e3 D 0, we have

(5.10) Re e2 D�
1

2
e1 and Im e2 D�Im e3:

Thus

(5.11) j�.�/� 1j D

ˇ̌̌̌
e3� e1

e2� e1

ˇ̌̌̌
D 1:

A classic result says that �0.�/ ¤ 0 for all � . By this and (5.11), it follows
that � maps f � j Re � D 1

2
g bijectively onto f�.�/ j j�.�/� 1j D 1 g. �

Let � be the fundamental domain for �.�/, i.e.,

�D f � 2 C j j� � 1=2j � 1=2; 0� Re � � 1; Im � > 0 g;

and let �0 be the reflection of � with respect to the imaginary axis.
Since G.1

2
!3/ < G.1

2
!2/ for � D ib, we conclude that for � 2 �0 [ �,

j�.�/� 1j< 1 if and only if jRe � j< 1
2

. Therefore for � 2�0[�,

jRe � j<
1

2
if and only if G

�!3
2

�
<G

�!2
2

�
:

For j� j D 1, using suitable Möbius transformations we may obtain similar
results. For example, from the definition of }, (5.9) implies that

(5.12) N}.z/D
�� C 1
N� C 1

�2
}
�� C 1
N� C 1

Nz
�

and so (compare (2.3))

(5.13) G.z/DG
�� C 1
N� C 1

Nz
�
:

Clearly, for z D 1
2
� , (5.13) implies that G.1

2
!2/DG.

1
2
!1/. So

(5.14) j� j D 1 if and only if
ˇ̌̌̌
e2� e3

e1� e3

ˇ̌̌̌
D 1;

(5.15) j� j< 1 if and only if G
�!1
2

�
<G

�!2
2

�
:

Similarly,

(5.16) j� � 1j< 1 if and only if G
�!1
2

�
<G

�!3
2

�
:

6. Degeneracy analysis of critical points along Re � D 1
2

By (2.7), the derivatives of G can be computed by

(6.1) 2�Gx D Re .�1t C �2s� �.z//; �2�Gy D Im .�1t C �2s� �.z//:
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When � D 1
2
C ib, since }.z/ is real for z 2 R, �1 is real and (6.1) becomes

(6.2) 2�Gx D �1t C
1

2
�1s�Re �.z/; 2�Gy D Im �.z/C .2� � �1b/s:

Thus the Hessian of G is given by

2�Gxx D Re}.z/C �1;(6.3)

2�Gxy D�Im}.z/;

2�Gyy D�
�

Re}.z/C �1�
2�

b

�
:

We first consider the point 1
2
!1. The degeneracy condition of G at 1

2
!1

reads as
e1C �1 D 0 or e1C �1�

2�

b
D 0:

We will use the following two inequalities (Theorem 1.7) whose proofs will
be given in Sections 8 and 9 through theta functions:

e1.b/C �1.b/ is increasing in b(6.4)

and

e1.b/ is increasing in b:(6.5)

LEMMA 6.1. There exists b0 < 1
2
< b1 <

p
3=2 such that 1

2
!1 is a degenerate

critical point of G.zI �/ if and only if b D b0 or b D b1. Moreover, 1
2
!1 is a

local minimum point of G.zI �/ if b 2 .b0; b1/ and is a saddle point of G.zI �/ if
b 2 .0; b0/ or b 2 .b1;1/.

Proof. Let b0 and b1 be the zero of e1 C �1 D 0 and e1 C �1 � 2�=b D 0
respectively. Then Lemma 6.1 follows from the explicit expression of the Hessian
of G by (6.4). �

Numerically we know that b1 � 0:7 <
p
3=2. Now we analyze the behavior

of G near 1
2
!1 for b > b1.

LEMMA 6.2. When b > b0, then 1
2
!1 is the only critical point of G along the

x-axis.

Proof. }.t I �/ is real if t 2 R. Since }0.t I �/ ¤ 0 for t ¤ 1
2
!1, }0.t I �/ < 0

for 0 < t < 1
2
!1. Since b > b0, by (6.3), (6.4) and Lemma 6.1,

2�Gxx.t/D }.t/C �1 > e1C �1 > 0;

which implies that Gx.t/ < Gx.12!1/D 0 if 0 < t < 1
2
!1. Hence G has no critical

points on .0; 1
2
!1/. Since G.z/ D G.�z/, G cannot have any critical point on

.�1
2
!1; 0/. �
By Lemma 6.1 and the conservation of local Morse indices, we know that

G.zI �/ has two more critical points near 1
2
!1 when b is close to b1 and b > b1.

We denote these two extra points by z0.�/ and �z0.�/. In this case, 1
2
!1 becomes
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a saddle point and z0.�/ and �z0.�/ are local minimum points. From Lemma 5.2,
(5.15) and (5.16) we know that

G
�!1
2

�
<G

�!2
2

�
DG

�!3
2

�
if b1 < b <

p
3=2:

Thus in this region ˙z0.�/ must exist and they turn out to be the minimum point
of G since there are at most five critical points. In fact we will see below that this
is true for all b > b1 and 1

2
!2, 1

2
!3 are all saddle points.

LEMMA 6.3. The critical point z0.�/ is on the line Re z D 1
2

. Moreover, the
Green function G.zI �/ is symmetric with respect to the line Re z D 1

2
.

Proof. Representing the torus T in question by the rhombus torus with sides
� and N� D 1� � , we see that the obvious symmetries z 7! Nz, z 7! 1� z of T and
Theorem 1.2 show that z0.�/ must be on the x-axis or the line Re � D 1

2
. The

former case is excluded by Lemma 6.2. �

Let G 1
2

be the restriction of G on the line Re z D 1
2

; i.e., G 1
2
.y/DG.1

2
C iy/.

Thus, Lemma 6.3 implies that any critical point of G 1
2

is automatically a critical
point of G.

LEMMA 6.4. For b > b1, G 1
2
.y/ has exactly one critical point in .0; b/. This

point is necessarily a nondegenerate minimal point.

Proof. Let z D t!1C s!2. Then Re z D 1
2

is equivalent to 2t C s D 1, which
implies Nz D .t C s/!1� s!2 D�z. By (5.9)

}.zI �/D }. NzI �/D }.�zI �/D }.zI �/:

Hence }.zI �/ is real for Re z D 1
2

. By (6.3),

2�Gyy D�
�
}C �1�

2�

b

�
:

Since @}=@y D i}0.zI �/¤ 0 for z ¤ 1
2
!1 and Re z D 1

2
, Gyy.z/ has at most one

zero. Let z0.�/ be the critical point above (which exists at least for b > b1 and
close to b1). Then Gy.z0.�//DGy.12!1/D 0 and so Gyy. Oz0/D 0 for some Oz0 in
the open line segment .1

2
!1; z0.�//. Since 2�Gyy.12!1/D�.e1C�1�2�=b/< 0,

we have Gyy.z0.�// > 0. Hence z0.�/ is a nondegenerate minimum point of G 1
2

as long as it exists with b > b1.
By the stability of nondegenerate minimal points (here for one variable func-

tion), we conclude that z0.�/ exists for all b > b1. �

LEMMA 6.5. If }00.z0.�/I �/D 0 then � D .1C
p
3i/=2.

Proof. Let z0D t0!1C s0!2. If }00.z0I �/D 0, by the addition theorem (2.12)

�.2z0/D 2�.z0/D 2.t0�1C s0�2/;

so that 2z0 is also a critical point. Note that Re 2z0D 1. Since 2z0�1C!2 is also
a critical point with Re .2z0� 1C!2/D 1

2
, we have either 2z0� 1C!2 D�z0 or
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e1

℘(1
4 (ω2 + ω3)) ℘(1

4 )

−1
2e1

e3

e2

Figure 4. The image of the mapping z 7! }.z/.

2z0� 1C!2 D z0. The latter leads to z0 D 1�!2 D !3, which is not impossible.
Thus we have 2z0 D �z0 in T and }.2z0/ D }.�z0/ D }.z0/. By the addition
theorem for },

(6.6) }.z0/D }.2z0/D�2}.z0/C
1

4

�
}00.z0/

}0.z0/

�2
D�2}.z0/:

Therefore }.z0/D 0. Together with 2}00 D 12}2 � g2 we find g2 D 0, which is
equivalent to � D .1C

p
3i/=2. �

We need also the following technical lemma:

LEMMA 6.6. } maps Œ1
2
!2;

1
2
!3�[ Œ

1
2
.1�!2/;

1
2
!2� one-to-one and onto the

circle fw j jw�e1j D je2�e1jg, where e2D Ne3, }.1
4
.!2C!3//D e1�je2�e1j<0

and }.1
4
/D e1Cje2� e1j> 0.

Here Œ1
2
!2;

1
2
!3� means segment f1

2
!2C t j 0� t �

1
2
g, and Œ1

2
.1�!2/;

1
2
!2�

is f1
4
C i t j jt j � b

2
g. Thus, the image of Œ1

2
!2;

1
2
!3� is the arc connecting e2 and e3

through }.1
4
.!2C!3// and the image of Œ1

2
.1�!2/;

1
2
!2� is the arc connecting

e3 and e2 through }.1
4
/. See Figure 4. Note our figure is for the case e1 > 0, i.e.,

b > 1
2

. In this case, the angle †e3e1e2 is less than � . For the case e1 < 0, the
angle is greater than � .

Proof. First we have

(6.7) 4�
�
G.z/�G

�
z;
!1

2

��
D log

ˇ̌̌
}.z/�}

�!1
2

�ˇ̌̌
CC:

Since G.1
2
!2;

1
2
!1/DG.

1
2
!2�

1
2
!1/DG.

1
2
!2/,

(6.8) 4�
�
G.z/�G

�
z;
!1

2

��
D log

ˇ̌̌̌
}.z/� e1

e2� e1

ˇ̌̌̌
:



942 CHANG-SHOU LIN and CHIN-LUNG WANG

Let z D 1
2
!2C t , t 2 R. We have

G
�
z;
!1

2

�
DG

�!2
2
C t �

!1

2

�
DG

�!1
2
�
!2

2
� t
�

DG
�!2
2
C t

�
DG.z/:

By (6.8),

(6.9)
ˇ̌̌̌
}.z/� e1

e2� e1

ˇ̌̌̌
D 1 for z D

!2

2
C t:

Since }.z/ is decreasing in y for z D 1
2
C iy,

}
�!2C!3

4

�
D }

�1
2
C
ib

2

�
< }.1=2/D e1:

Thus }.1
4
.!2 C !3// D e1 � je2 � e1j and the image of Œ1

2
!2;

1
2
!3� is exactly

the arc on the circle fw j jw � e1j D je2 � e1j g connecting e2 and e3 through
}.1

4
.!2C!3//. It is one-to-one since }0.z/¤ 0 for z D 1

2
!2C t , t ¤ 0.

Next let z D 1
4
C i t . Then we have

G
�
zI
!1

2

�
DG

�
z�

!1

2

�
DG

�
�
1

4
C i t

�
DG

�
�
1

4
� i t

�
DG

�1
4
C i t

�
DG.z/:

Thus by (6.8) again,

j}.z/� e1j D je2� e1j for z D
1

4
C i t:

Since }.t/ is decreasing in t for t 2 .0; 1
2
/, }.1

4
/ > }.1

2
/. So }.1

4
/D e1C

je2�e1j and the image of Œ1
2
.1�!2/;

1
2
!2� is the arc of fw j jw�e1j D je2�e1j g

connecting e3 and e2 through e1Cje2� e1j. �

We are ready to prove the main results of this section:

THEOREM 6.7. For b >b1,˙z0.�/ are nondegenerate (local) minimum points
of G. Furthermore,

(6.10) 0 < Im z0.�/ <
b

2
:

Proof. We want to prove Gxx.z0.�/I �/ > 0 and Im z0.�/ < b=2. By (6.3),

2�Gxx.z0.�/I �/D }.z0.�/I �/C �1:

Note that e1e2C e2e3C e1e3 D je2j2� e21 and

(6.11) }00.z/D 2.3}2.z/Cje2j
2
� je1j

2/:
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As in (5.7), in terms of �.�/,

(6.12)
e2

e1
D
�C 1

�� 2
:

Thus
d

d�

�
e2

e1

�
D

�3

.�� 2/2
¤ 0 for b ¤

1

2
:

From here, we have d
db

ˇ̌̌
e2
e1

ˇ̌̌2
¤ 0 for b ¤ 1

2
, which implies that d

db

ˇ̌̌
e2
e1

ˇ̌̌2
< 0 for

b > 1
2

. Therefore at � D 1
2
.1C
p
3i/ (where }.z0.�//D 0),

(6.13)
d

db
}00.z0.�/I �/D 2je1j

2 d

db

ˇ̌̌̌
e2

e1

ˇ̌̌̌2
< 0:

Since }00.z0.�/I �/ D 0 at � D .1C
p
3i/=2, we have }00.z0.�/; �/ < 0 for

b >
p
3=2 and, sufficiently close to

p
3=2. By Lemma 6.5, we then have that

}00.z0.�/I �/ < 0 for all b >
p
3=2. Thus

(6.14) j}.z0.�/I �/j �

q
1
3
.je1j2� je2j2/;

and

�1C}.z0.�/I �/� �1�

q
1
3
.je1j2� je2j2/(6.15)

> �1�

q
1
4
je1j2 D �1�

1

2
e1;

where je2j2 D je1j2=4CjIm e2j
2 > je1j

2=4 is used (cf. (5.10)).
Later we will show that �1 > 1

2
e1 always holds (this is part of Theorem 1.7

to be proved in �9; another direct proof will be given in (6.22)). Thus the nonde-
generacy of z0.�/ for b >

p
3=2 follows.

For b1 < b <
p
3=2, write z0.�/ D t0.�/ � 1C .1� 2t0.�//� . It is clear that

when b ! bC1 , t0 ! 1=2. We claim that t0.�/ > 1=3 if b1 < b <
p
3=2. For if

t0.�/D 1=3, i.e. z0.�/D 1
3
!3, then 2z0.�/D �z0.�/ is also a critical point. By

the addition formula of � we get }00.1
3
!3/D 0, and then Lemma 6.5 implies that

b D
p
3=2, which is a contradiction.

Note that by (6.6), it is easy to see for � D 1
2
C ib,

(6.16) 12}
�!3
3
I �
�
D

 
}00.1

3
!3I �/

}0.1
3
!3I �/

!2
D�

 
@2y}.

1
3
!3I �/

@y}.
1
3
!3I �/

!2
< 0:

Hence by the monotone property of }.1
2
C iyI �/ in y 2 .0; b/, it decreases to �1

when y! b and

(6.17) }.z0.�/I �/ > }
�!3
3
I �
�
:
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Let f .b/ WD }.1
3
!3I �/C

1
2
e1.�/. We have f .1

2
/ D }.1

3
!3I

1
2
.1C i// < 0

and f .
p
3=2/D 1

2
e1.

1
2
.1C
p
3i// > 0. Therefore there exists a �0D 1

2
C ib0 such

that f .b0/D 0. For this �0 and at z D 1
3
!3 we compute

} � e1 D�
3

2
e1; } � e2 D�

�e1
2
C e2

�
; } � e3 D

e1

2
C e2;(6.18)

}02 D 4.} � e1/.} � e2/.} � e3/D 6e1

�e1
2
C e2

�2
;

}00 D 2
X

1�i<j�3
.} � ei /.} � ej /D�2

�e1
2
C e2

�2
:

Plugging these into (6.16) we solve

(6.19)
e2

e1
D�

1

2
˙ 3i and then

ˇ̌̌e2
e1

ˇ̌̌2
D
37

4
:

Numerically at b D b1, je2=e1j2 � 3:126 < 37=4. By the decreasing property
of je2=e1j (cf. (6.13)) we find that �0 is unique with b1>b0. Thus }.1

3
!3/C

1
2
e1D

f .b/ > 0 for b > b1. Together with (6.17),

}.z0.�/; �/C �1 > �1�
1

2
e1 > 0

for b1 < b <
p
3=2. This completes the proof of Gxx.z0.�/I �/ > 0.

It remains to show that Im z0.�/ < b=2. This has already been proved in the
case b1 < b <

p
3=2 since t0.�/ > 1=3. For b �

p
3=2, from the continuity of

z0.�/ in b and }00.z0.�/; �/� 0, it is enough to show that

}00
�1
2
C
1

2
bi I �

�
D }00

�1
4
.!2C!3/

�
> 0:

Since

}00 D
1

2
}02

�
1

} � e1
C

1

} � e2
C

1

} � e3

�
;

the positivity at 1
4
.!2C!3/ follows from }02 < 0 and the negativity of the right-

hand side via Lemma 6.6, Figure 4. �

Now we discuss the nondegeneracy of G at 1
2
!2 and 1

2
!3. The local minimum

property of z0.�/ is in fact global by

THEOREM 6.8. For � D 1
2
C ib, both 1

2
!2 and 1

2
!3 are nondegenerate saddle

points of G.

Proof. By (6.3), we have

2�Gxx

�!2
2

�
D Re e2C �1 D �1�

1

2
e1;(6.20)

2�Gxy

�!2
2

�
D�Im e2;

2�Gyy

�!2
2

�
D
2�

b
C
1

2
e1� �1:



MEAN FIELD EQUATIONS ON TORI 945

Hence the nondegeneracy of 1
2
!2 holds if

(6.21) jIm e2j
2 >

�
�1�

1

2
e1

��2�
b
C
1

2
e1� �1

�
:

First we claim that

(6.22) �1�
1

2
e1 > 0

and

(6.23)
2�

b
C
1

2
e1� �1 > 0:

To prove (6.22), we have

(6.24) � �1 D 2

Z 1
2

0

Re}
�!2
2
C t

�
dt;

where }.1
2
!2C t /D }.

1
2
!2� t / is used. By Lemma 6.6,

Re}
�!2
2
C t

�
� �

1

2
e1; for all t 2 .0; 1

2
/,

hence ��1 < �12e1. To prove (6.23), we haveZ !2
2

1�!2
2

}.z/ dz D �
�1�!2

2

�
� �
�!2
2

�
D
1

2
.�1� 2�2/D i.2� � b�1/:

Therefore,

.2� � b�1/D

Z b
2

�b
2

Re}
�1
4
C i t

�
dt > �

1

2
e1b

and the inequality (6.23) follows.
To prove (6.21), we need two more inequalities. By (6.24),

(6.25) � �1 > }
�!2C!3

4

�
D e1� je2� e1j;

and by Lemma 6.6,

(6.26) .2� � b�1/ < }.1=4/b D .e1Cje2� e1j/b:

Thus �
�1�

1

2
e1

��2�
b
C
1

2
e1� �1

�
<
�
je2� e1j �

3

2
e1

��
je2� e1jC

3

2
e1

�
D je2� e1j

2
�
9

4
e21 D jIm e2j

2;

Therefore, the nondegeneracy of G at 1
2
!2 is proved. By (6.21), 1

2
!2 is always

a saddle point. Representing the torus T by the rhombus torus with sides � and
N� D 1 � � , then the case for 1

2
!3 follows from the case for 1

2
!2 for symmetry

reasons. �
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7. Green functions via theta functions

The purpose of Sections 7–9 is to prove the two fundamental inequalities
(Theorem 1.7) that have been used in previous sections. The natural setup is based
on theta functions (we take [11] as our general reference). This is easy to explain
since the moduli variable � is explicit in theta functions and differentiations in
� are much easier than in the Weierstrass theory. To avoid cross references, the
discussions here are independent of previous sections.

Consider a torus T DC=ƒ withƒD .ZCZ�/, a lattice with � D aCbi , b >0.
Let qD e�i� with jqj D e��b < 1. The theta function #1.zI �/ is the exponentially
convergent series

#1.zI �/D�i

1X
nD�1

.�1/nq.nC
1
2
/2e.2nC1/�iz(7.1)

D 2

1X
nD0

.�1/nq.nC
1
2
/2 sin.2nC 1/�z:

For simplicity we also write #1.zI �/ as #1.z/. It is entire with

(7.2) #1.zC 1/D�#1.z/; #1.zC �/D�q
�1e�2�iz#1.z/;

which has simple zeros at the lattice points (and no others). The following heat
equation is clear from the definition

(7.3)
@2#1

@z2
D 4�i

@#1

@�
:

As usual we use z D xC iy. Here comes the starting point:

LEMMA 7.1. Up to a constant C.�/, the Green function G.z;w/ for the
Laplace operator4 on T is given by

(7.4) G.z;w/D�
1

2�
log j#1.z�w/jC

1

2b
.Im.z�w//2CC.�/:

Proof. Let R.z;w/ be the right-hand side. Clearly for z ¤ w we have
4zR.z;w/ D 1=b which integrated over T gives 1. Near z D w, R.z;w/ has
the correct behavior. So it remains to show that R.z;w/ is indeed a function on T .
From the quasi-periodicity, R.zC 1;w/DR.z;w/ is obvious. Also

R.zC �; w/�R.z;w/D�
1

2�
log e�bC2�y C

1

2b
..yC b/2�y2/D 0:

These properties characterize the Green function up to a constant. �

By the translation invariance of G, it is enough to consider w D 0. Let

G.z/DG.z; 0/D�
1

2�
log j#1.z/jC

1

2b
y2CC.�/:

If we represent the torus T as centered at 0, then the symmetry z 7! �z shows
that G.z/DG.�z/. By differentiation, we get rG.z/D�rG.�z/. If �z0 D z0
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in T , that is 2z0 D 0 .mod ƒ/, then we get rG.z0/ D 0. Hence we obtain the
half-periods 1

2
, 1
2
� and 1

2
.1C �/ as three obvious critical points of G.z/ for any T .

By computing @G=@z D 1
2
.Gx � iGy/ we find

COROLLARY 7.2. The equation of critical points zDxCiy ofG.z/ is given by

(7.5)
@G

@z
�
�1

4�

�
.log#1/zC 2�i

y

b

�
D 0:

Remark 7.3. With �.z/��1z D .log#1.z//z understood (cf. (9.9)), this leads
to alternative simple proofs of Lemma 2.3 and Corollary 2.4.

We compute easily

Gx D�
1

2�
Re .log#1/z;(7.6)

Gy D�
1

2�
Re .log#1/zi C

y

b
D

1

2�
Im .log#1/zC

y

b
;

Gxx D�
1

2�
Re .log#1/zz;

Gxy DC
1

2�
Im .log#1/zz;

Gyy D�
1

2�
Re .log#1/zzi2C

1

b
D

1

2�
Re .log#1/zzC

1

b
;

and the Hessian

H D

ˇ̌̌̌
Gxx Gxy
Gyx Gyy

ˇ̌̌̌
(7.7)

D
�1

4�2

h
.Re .log#1/zz/2C

2�

b
.Re .log#1/zz/C .Im .log#1/zz/2

i
D
�1

4�2

�ˇ̌̌
.log#1/zzC

�

b

ˇ̌̌2
�

�
�

b

�2�
:

To analyze the critical point of G.z/ in general, we use the methods of continu-
ity to connect � to a standard model like the square torus, that is � D i , which under
the modular group SL.2;Z/ is equivalent to the point � D 1

2
.1Ci/ by � 7! 1=.1��/.

On this special torus, there are precisely three critical points given by the half-
periods (cf. [5, Lemma 2.1]).

The idea is, new critical points should be born only at certain half-period
points when they degenerate under the deformation in � . The heat equation pro-
vides a bridge between the degeneracy condition and deformations in � . In the
following, we focus on the critical point z D 1

2
and analyze its degeneracy behavior

along the half line L given by 1
2
C ib, b 2 R.

8. First inequality along the line Re � D 1
2

When � D 1
2
C ib 2 L,

#1.z/D 2

1X
nD0

.�1/ne�i=8e�i
n.nC1/
2 e��b.nC

1
2
/2 sin.2nC 1/�zI
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hence we have the important observation that

e��i=8#1.z/ 2 R when z 2 R:

Similarly this holds for any derivatives of #1.z/ in z. In particular,

.log#1/zz D
#1zz#1� .#1z/

2

#21
(8.1)

D 4�i
#1�

#1
� .log#1/2z D 4�.log#1/b � .log#1/2z

is real-valued for all z 2R and � 2L. Here the heat equation and the holomorphicity
of .log#1/ have been used.

Now we focus on the critical point z D 1
2

which is fixed until the end of this
section. The critical point equation implies that .log#1/z.12/ D �2�iy=b D 0

since now y D 0. Thus

(8.2) .log#1/zz D 4�.log#1/b
as real functions in b. In this case, the point 1

2
is a degenerate critical point (H.b/

D 0) if and only if

(8.3) 4�.log#1/b D 0 or 4�.log#1/bC
2�

b
D 0:

Notice that as functions in b > 0,

j#1j D e
��i=8#1

�1
2
I
1

2
C ib

�
D 2

1X
nD0

.�1/
n.nC1/
2 e�

1
4
�b.2nC1/2

2 RC:

To see this, notice that the right-hand side is nonzero, real and positive for large b,
hence positive for all b. Clearly .log j#1j/b D .log#1/b .

THEOREM 8.1. Over the line L, .log#1/bb D .log j#1j/bb < 0. Namely,
.log#1/b is decreasing from positive infinity to ��=4. Hence, Gxx D 0 and
Gyy D 0 occur exactly once on L, respectively.

Proof. Denote e��b=4 by h and r D h8 D e�2�b . Since .2nC 1/2 � 1 D
4n.nC 1/, we get

j#1jb D�2
�

4

1X
nD0

.�1/
n.nC1/
2 .2nC 1/2h.2nC1/

2

(8.4)

D�2h
�

4

1X
nD0

.�1/
n.nC1/
2 .2nC 1/2r

n.nC1/
2 ;

j#1jbb D 2
�2

42

1X
nD0

.�1/
n.nC1/
2 .2nC 1/4h.2nC1/

2

D 2h
�2

42

1X
nD0

.�1/
n.nC1/
2 .2nC 1/4r

n.nC1/
2 :
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Denote the arithmetic sum n.nC 1/=2 by An, then

.log j#1j/bb D
j#1jbbj#1j � j#1j

2
b

j#1j2

(8.5)

D h2
�2

4
j#1j
�2

1X
n;mD0

.�1/AnCAm..2nC 1/4� .2nC 1/2.2mC 1/2/rAnCAm

D h2
�2

4
j#1j
�2
X
n>m

.�1/AnCAm..2nC 1/2� .2mC 1/2/2rAnCAm

D 16h2�2j#1j
�2
X
n>m

.�1/AnCAm.An�Am/
2rAnCAm

D 16h2�2j#1j
�2.�r � 9r3C 4r4C 36r6� 25r7� 9r9C 100r10C � � � /:

We will prove .log j#1j/bb < 0 in two steps. First we show by direct estimate
that this is true for b � 1

2
(indeed the argument holds for b > 0:26). Then we derive

a functional equation for .log j#1j/bb which implies that the case with 0 < b � 1
2

is equivalent to the case b � 1
2

.

Step 1 (Direct Estimate). The point is to show that in the above expression
the sum of positive (even degree) terms is small. So let 2k 2 2N. The number of
terms with degree 2k is certainly no more than 2k, so a trivial upper bound for the
positive part is given by

(8.6) AD

1X
kD2

.2k/3r2k D 8r4
8� 5r2C 4r4� r6

.1� r2/4
;

where the last equality is an easy exercise in power series calculations in calculus.
For r � 1=5 we compute

.�r � 9r3CA/.1� r2/4(8.7)

D� r � 5r3C 64r4C 30r5� 40r6� 50r7C 32r8C 35r9� 8r10� 9r11

<� r � 5r3C 64r4C 30r5

<� 5r3� r
�
1�

64

125
�
30

625

�
D�5r3�

11

25
r < 0:

So .log j#1j/bb < 0 for b D�.log r/=2� > .log 5/=2� � 0:25615.

Step 2 (Functional Equation). By the lemma to be proved below, we have for
O� D .� � 1/=.2� � 1/D OaC i Ob, that

(8.8) .log#1/ Ob.1=2I O�/D�i.1� 2�/C .1� 2�/
2.log#1/b.1=2I �/:

When � D 1
2
C ib, we have O� D 1

2
C

i
4b

. As before we may then replace #1
by j#1j. Under � ! O� , Œ1

2
;1/ is mapped onto .0; 1

2
� with directions reversed. Let
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f .b/D .log j#1j/b.12 ;
1
2
C ib/. Then we get

(8.9) f .1=4b/D�2b� 4b2f .b/:

Plugging in b D 1
2

we get that f .1
2
/D�1

2
. So �1

2
D f .1

2
/ > f .b/ for b > 1

2
.

Then

f
� 1
4b

�
D�2bC 2b2C 4b2

h
�
1

2
�f .b/

i
(8.10)

D 2
h
b�

1

2

i2
�
1

2
C 4b2

h
�
1

2
�f .b/

i
is strictly increasing when b > 1

2
. That is, f .b/ is strictly decreasing when b 2 .0; 1

2
�.

The remaining statements are all clear. �

Now we prove the functional equation. For this we need to use Jacobi’s imag-
inary transformation formula, which explains the modularity for certain special
theta values (cf. [11, p. 475]). It reads that for �� 0 D�1,

(8.11) #1.zI �/D�i.i�
0/
1
2 e�i�

0z2#1.z�
0
I � 0/:

Recall that the two generators of SL.2;Z/ are S� D �1=� and T � D � C 1.
Since #1.zI � C 1/D e�i=4#1.zI �/, T plays no role in .log#1.zI �//� .

LEMMA 8.2. Let O� D ST �2ST �1� D .� � 1/=.2� � 1/. Then

(8.12) .log#1/ O� .1=2I O�/D�.1� 2�/C .1� 2�/
2.log#1/� .1=2I �/:

Proof. Let O� D S�1 D�1=�1, �1 D T �2�2 D �2� 2, �2 D S�3 D�1=�3 and
finally �3 D T �1� D � � 1. Notice that for �� 0 D�1 we have d=d� D � 02d=d� 0.
Then

(8.13) d

d O�
log#1.1=2I O�/

D �21
d

d�1

h
log.�i�1/

1
2 C�i�1.1=2/

2
C log#1.�1=2I �1/

i
D
�1
2
C
�i�21
4
C �21

d

d�1
log#1.�1=2I �1/

D
�2� 2

2
C
�i.�2� 2/

2

4
C .�2� 2/

2 d

d�2
log#1.�2=2I �2/

D
1

2

h
�1

�3
� 2

i
C
�i

4

h
�1

�3
� 2

i2
C

h
�1

�3
� 2

i2
�

�
�3
2
C�i�23

d

d�3

�
�3.�2=2/

2
�
C �23

d

d�3
log#1.�2�3=2I �3/

�
:

We plug in �2�3 D �1 and �3 D � � 1. It is clear that the second and the fourth
terms are canceled out, the first and the third terms are combined into

(8.14) 1

2

1�2�

��1

h
1C

1�2�

��1
.� � 1/

i
D�.1� 2�/:

This proves the statement. �
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By the previous explicit computations,

Gxx

�1
2
I
1

2
C ib

�
D�2.log#1.1=2//b;(8.15)

Gxy

�1
2
I
1

2
C ib

�
D 0;

Gyy

�1
2
I
1

2
C ib

�
D 2.log#1.1=2//bC

1

b
:

A numerical computation shows that Gxx.b0/D 0 for b0 D 0:35 � � � and Gyy.b1/
D 0 for b1 D 0:71 � � � . Hence the sign of .Gxx.b/; Gyy.b// is .�;C/, .C;C/
and .C;�/ for b < b0, b0 < b < b1 and b1 < b respectively. That is, 1

2
is a

saddle point, local minimum point and saddle point respectively. This implies that
for b D b1C " > b1, there are more critical points near 1

2
which come from the

degeneracy of 1
2

at b D b1 and the conservation of local Morse index.

9. Second inequality along the line Re � D 1
2

The analysis of extra critical points split from 1
2

also relies on other, though
similar, inequalities. Recall the three other theta functions:

#2.zI �/ WD #1

�
zC

1

2
I �
�
;(9.1)

#4.zI �/ WD

1X
nD�1

.�1/nqn
2

e2�inz D 1C 2

1X
nD1

.�1/nqn
2

cos 2n�z;

#3.zI �/ WD #4

�
zC

1

2
I �
�
D 1C 2

1X
nD1

qn
2

cos 2n�z D
1X

nD�1

qn
2

e2�inz :

It is readily seen that #1.z/D�ie�izC�i�=4#4.zC 1
2
�/. So the four theta functions

are translates of others by half-periods.
We had seen previously that .log j#1.12/j/bb < 0 over the line Re � D 1

2
. This

is equivalent to the fact that .log j#2.0/j/bb < 0. We now discuss the case for #3.0/
and #4.0/ where the situation is reversed(!) and it turns out the proof is easier and
purely algebraic.

THEOREM 9.1. Over the line Re � D 1
2

, we have #4.0/D #3.0/. Moreover,
.log j#3.0/j/b < 0 and .log j#3.0/j/bb > 0.

Proof. Since q D e�i� D e�i=2e��b D ie��b , qn
2

D in
2

e��bn
2

, we see that

#3.0/D
X
n22Z

rn
2

C i
X

m22ZC1

rm
2

;(9.2)

#4.0/D
X
n22Z

rn
2

� i
X

m22ZC1

rm
2

;
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where r D e��b < 1. Then we compute directly that

j#3.0/j
2
D

�X
n22Z

rn
2
�2
C

�X
m22ZC1

rm
2
�2

(9.3)

D

X
n;n022Z

rn
2Cn02

C

X
m;m022ZC1

rm
2Cm02

D

X
k22Z�0

p2.k/r
k;

where p2.k/ is the number of ways to represent k as the (ordered) sum of two
squares of integers. Then

(9.4) .j#3.0/j
2/b D��

X
k22Z�0

p2.k/kr
k

and in particular .log j#3.0/j2/b < 0.
We also have

(9.5) .j#3.0/j
2/bb D �

2
X

k22Z�0

p2.k/k
2rk :

Hence,

(9.6) .j#3.0/j
2/bbj#3.0/j

2
�.j#3.0/j

2/2bD�
2

X
k;l22Z�0

p2.k/p2.l/.k
2
�kl/rkCl

D �2
X
k<l

p2.k/p2.l/.k� l/
2rkCl > 0:

This implies that .log j#3.0/j/bb > 0. The proof is complete. �

Now we relate these to Weierstrass’ elliptic functions. From .log �.z//0 D
�.z/, �.z/ is entire, odd with a simple zero on lattice points. Moreover,

(9.7) �.zC!i /D�e
�i .zC

1
2
!i /�.z/:

This is similar to the theta function transformation law; indeed,

(9.8) �.z/D e�1z
2=2#1.z/

# 01.0/
:

Hence

(9.9) �.z/� �1z D

�
log

#1.z/

# 01.0/

�
z

D .log#1.z//z

and

(9.10) }.z/C �1 D�.log#1.z//zz D�4�i.log#1.z//� C Œ.log#1.z//z�2:

For z D 1
2

, this simplifies to e1 C �1 D �4�i.log#1.12//� . Thus our first
inequality simply says that on the line Re � D 1

2
,

(9.11) .e1C �1/b D�4�

�
log#1

�1
2

��
bb

D�4�.log#2.0//bb > 0:
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From the Taylor expansion of �.z/ and #1.z/, it is known that

(9.12) �1 D�
2

3Š

# 0001 .0/

# 01.0/
D�

4�i

3
.log# 01.0//� ;

hence

(9.13) e1 D�4�i.log#2.0//� C
4�i

3
.log# 01.0//� :

The Jacobi Triple Product Formula (cf. [11, p. 490]) asserts that

# 01.0/D �#2.0/#3.0/#4.0/:

So

1

2
e1� �1 D 2�i

�
log

# 01.0/

#2.0/

�
�

(9.14)

D 2�i.log#3.0/#4.0//� D 4�.log j#3.0/j/b:

Our second inequality then says that on the line Re � D 1
2

, 1
2
e1 � �1 < 0,

.1
2
e1 � �1/b > 0 and 1

2
e1 � �1 increases to zero in b. Together with the first

inequality (9.11), we find also that e1 increases in b.
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